15时间序列分析
- 格式:ppt
- 大小:574.50 KB
- 文档页数:74
【时间简“识”】说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。
原版请到经管之家(原人大经济论坛) 查看。
1.带你看看时间序列的简史现在前面的话——时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。
本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。
在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。
所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事!Long long ago,有多long?估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。
记录这个河流涨落有什么意义?当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。
结果,他们发现尼罗河的涨落非常有规律。
掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。
好~~从上面那个故事我们看到了1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。
2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。
既然有了序列,那怎么拿来分析呢?时间序列分析方法分为描述性时序分析和统计时序分析。
1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。
2、统计时序分析(1)频域分析方法原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动∙发展过程:1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段∙特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性(2)时域分析方法∙原理:事件的发展通常都具有一定的惯性,这种惯性用统计的语言来描述就是序列值之间存在着一定的相关关系,这种相关关系通常具有某种统计规律。
时间序列分析时间序列通常是对某一统计指标,按照相等时间间隔测量的一系列数据点,它反映的是某变量在时间上的一系列变化。
大量社会经济统计指标都依年、季、月或日统计其指标值,随着时间的推移,形成了统计指标的时间序列。
例如, 过去每年国内生产总值数据、过去十年内年度增值税收入数据、过去五年内季度关税数据等等。
时间序列分析就是估算和研究某一时间序列在长期变动过程中所存在的统计规律,具体是指,我们只知道需要预测的那个变量(简称预测变量)在历史上的一系列观察值,通过分析这些观察值所显示出来的规律,如长期变动趋势、季节性变动规律、周期变动规律,然后把这个规律外推到预测期,从而获得该预测变量的值或分布,并进一步预测今后的发展和变化。
一、时间序列的变动因素一般认为,一个时间序列中包含四种变动因素:长期趋势变动、季节性变动、周期性变动和不规则变动。
换言之,时间序列通常是上述四种变动因素综合作用的结果。
1、长期变动趋势(T:Secular Trend)长期变动趋势是指变量值在一个长时期内的增或减的一般趋势。
长期变动趋势可能呈现为直线型变动趋势,也可能呈现曲线型变动趋势,依变量不同而异。
2、季节性变动(S:SeasonaI Variation)季节性变动是指变量的时间序列值因受季节变化而产生的变动。
季节变动是一种年年重复出现的一年内的季节性周期变动,即每年随季节替换,时间序列值呈周期变化。
3、周期性变动(C:CyclicaI Variation)周期性变动又称循环变动,它是指变量的时间序列值相隔数年后所呈现的周期变动。
在一个时间序列中,循环变动的周期可以长短不一,变动的幅度也可大可小。
4、不规则变动(I:lrregular Variation)不规则变动是指变量的时间序列值受突发事件,偶然因素或不明原因所引起的非趋势性、非季节性、非周期性的随机变动,因此,不规则变动是一种无法预测的波动。
图1显示的是我国1997年1月至2007年12月的月度消费者价格(CPI )指数(同比)。
时间序列分析方法时间序列分析是一种常见的统计分析方法,它研究的是定量和定性的数据的动态变化情况,能反映系统潜在变化的趋势和规律,并且能通过预测技术预测未来趋势。
时间序列分析是研究随时间变化的数据可靠性和有效性的重要工具,能够发现其中的趋势和变化规律,从而帮助企业和投资者更全面地了解各种现象,更好地进行决策和行为分析。
时间序列分析可以通过应用不同的统计方法来完成,例如自相关分析、序列回归分析、协整和非线性统计分析等。
1.自相关分析自相关分析(AutoRegressive Analysis)是分析时间序列上延迟自身的统计方法,主要是描述时间序列动态变化趋势和长时间趋势。
它主要利用某一特定时刻以前t个时刻的数据来预测该时刻的值,并用一个具有时间序列模型来计算,如指数移动平均(EMA)和ARMA (Autoregressive Moving Average)等。
自相关分析的优点是简单容易,能够充分发挥时间序列的短期显著特征,缺点是只能反映短期的趋势,无法发现和分析长期的趋势。
2.序列回归序列回归(Sequence Regression)是一种统计学方法,它根据时间序列的趋势,建立一种回归关系,利用某一特定时刻以前n个时刻的数据,预测该时刻的数值,并以此来表示时间序列的趋势,如线性回归、非线性回归等。
序列回归的优点是能够表示时间序列上一些重要的长期特征,缺点是忽略了时间序列上短期的变化特征。
3.协整分析协整分析(Cointegration Analysis)是指时间序列上两个或多个序列的滞后值的长期关系。
它通过检验两个序列的相关度分析系统的同步变化,检测出两个长期运动不相关的非零均值,并利用协整分析模型来预测未来的发展趋势。
协整分析的优点是能够发现时间序列上的长期趋势,缺点是忽略了短期变化特征,而且模型拟合效果不太好。
4.非线性统计分析非线性统计分析(Nonlinear Statistical Analysis)是时间序列分析的一种方法,它可以用来描述一个序列的非线性变化特性,如分析非线性的自相关系数、分析变量的越界规律、预测变量系统整体特性,如混沌理论等。
什么是时间序列分析关键信息项:1、时间序列分析的定义2、时间序列分析的目的3、时间序列分析的常用方法4、时间序列数据的特点5、时间序列分析的应用领域6、时间序列分析的步骤7、时间序列分析的局限性11 时间序列分析的定义时间序列分析是一种用于研究数据随时间变化规律的统计方法。
它通过对一系列按时间顺序排列的数据点进行分析,以揭示数据中的趋势、季节性、周期性和随机性等特征。
时间序列分析在经济学、金融学、气象学、工程学等多个领域都有广泛的应用。
111 时间序列数据的特点时间序列数据具有以下几个主要特点:1111 顺序性:数据是按照时间顺序依次记录的,时间顺序对于分析结果具有重要影响。
1112 相关性:相邻时间点的数据之间往往存在一定的相关性。
1113 趋势性:数据可能呈现出长期的上升、下降或稳定的趋势。
1114 季节性:某些数据在一年内的特定时间段内会表现出相似的模式,如销售数据在节假日期间的增加。
1115 随机性:数据中还包含了一些无法预测的随机波动。
12 时间序列分析的目的时间序列分析的主要目的包括:121 预测未来值:通过对历史数据的分析,预测未来一段时间内数据的可能取值,为决策提供依据。
122 理解数据的动态特征:揭示数据的趋势、季节性和周期性等模式,帮助人们更好地理解数据产生的机制。
123 监测和控制:用于监测系统的运行状态,及时发现异常情况并采取相应的控制措施。
124 评估政策和干预的效果:在政策实施或干预措施执行后,通过时间序列分析评估其对相关数据的影响。
13 时间序列分析的常用方法常用的时间序列分析方法包括:131 移动平均法:通过计算一定时期内数据的平均值来平滑数据,消除随机波动。
132 指数平滑法:对历史数据进行加权平均,给予近期数据更高的权重,以更好地反映数据的最新变化。
133 自回归模型(AR):利用数据自身的滞后值来预测当前值。
134 移动平均自回归模型(ARMA):结合自回归和移动平均的特点进行建模。
◆已知某中心化MA(1)模型1阶自相关系数ρ1=0.5,求该模型的表达式。
解:ρ1=(-θ1)/(1+θ1^2),θ1 =(-1+Г1-4ρ1^2)/2ρ1=-1,MA(1)模型的表达式为xt=εt+εt-1◆确定常数C的值以保证如下表达式为MA(2)模型:xt=10+0.5x(t-1)+εt-0.8ε(t-2)+Cε(t-3)。
解:E (xt)=φ0/(1-φ1)=10/(1-0.5)=20,原模型可变为:(1-0.5B)(xt-20)=(1-0.8B^2+CB^3)εt,xt-20=(1-0. 8B^2+CB^3)εt/(1-0.5B),显然,当1-0.8B^2+CB^3能够整除1-0.5B时,模型为MA(2)模型,由此得B= 2是1-0.8B^2+CB^3=0的根,故C=0.275◆已知MA(2)模型为:xt=εt-0.7ε(t-1)+0.4ε(t-2),εt~WN(0,σ(ε)^2),求E(xt),Var(xt),ρk,(k≥1)。
解:E(xt)=0, Var(xt)=(1+θ1^2+θ2^2)σ(ε)^2=1.65σ(ε)^2,ρ1=(-θ1+θ1θ2)/(1+θ1^2+θ2^2)=-0.98/1.65=-0.5939,ρ2=(-θ2)/(1+θ1^2+θ2^2)=0.4/1.65=0.2424,ρk=0,k≥3◆证明:(1)对任意常数C,如下定义的无穷阶MA序列一定是非平稳序列:xt=εt+C(εt-1+εt-2+…),εt~WN(0,σ(ε)^2)。
证明:xt=εt+C(εt-1+εt-2+…),xt-1=εt-1+C(εt-2+εt-3+…),xt=εt+C [(xt-1-εt-1)/C+εt-1]=xt-1+εt+(C-1) εt-1,即(1-B)xt=[1-(C-1)B] εt,显然模型的AR部分的特征根是1,模型非平稳。
(2){xt}的1阶差分序列一定是平稳序列,并求{yt}的自相关系数表达式:yt=xt-xt-1。
一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
时间序列分析法时间序列分析是一种广泛应用于统计学和经济学领域的方法,它专门用于处理具有时间依赖性的数据。
时间序列数据是按时间顺序排列的一组观测值,例如股票价格、气温变化、经济指标等。
时间序列分析的目标是从历史数据中提取模式、趋势和周期以及预测未来的数据走势。
时间序列分析包括了多种方法和技术,下面将介绍其中几种常用的方法:1. 均值模型均值模型是最简单的时间序列模型之一,它假设时间序列的未来值将等于过去几期的平均值。
均值模型最常用的是移动平均模型(MA)和指数平滑模型(ES)。
移动平均模型根据过去几期的观测值对未来值进行预测,而指数平滑模型则给予较大权重给近期的观测值。
2. 趋势分析趋势分析用于识别时间序列中的长期趋势。
常用的趋势分析方法包括线性趋势分析、多项式回归分析以及指数平滑趋势分析。
这些方法主要是通过拟合一个数学模型来描述时间序列的趋势,然后根据模型对未来走势进行预测。
3. 季节性分析季节性分析用于识别和预测时间序列中的季节性模式。
常用的季节性分析方法包括季节性平均法、回归分析以及季节性指数平滑法。
这些方法可以通过拟合一个季节性模型来描述时间序列的季节性变动,并进行未来的预测。
4. 自回归移动平均模型(ARMA)ARMA模型是一种将自回归模型(AR)和移动平均模型(MA)结合起来的时间序列模型。
AR模型通过过去的观测值对未来值进行预测,而MA模型则根据过去的误差对未来值进行预测。
ARMA模型可以通过估计AR和MA参数来对时间序列进行预测。
5. 自回归积分移动平均模型(ARIMA)ARIMA模型是一种将自回归模型(AR)和移动平均模型(MA)与差分运算结合起来的时间序列模型。
ARIMA模型可以通过求解差分参数来对非平稳时间序列进行预测。
差分运算可以减少时间序列的趋势和季节性,使其更具平稳性。
以上是常用的时间序列分析方法,每种方法都有其适用性和局限性。
在实际应用中,根据具体情况选择合适的方法进行分析和预测。