人教版七数上有理数学案
- 格式:doc
- 大小:42.50 KB
- 文档页数:5
初中七年级数学上册第一章:有理数——1.2.4:绝对值(解析)一:知识点讲解知识点一:绝对值绝对值:✧ 几何意义:一般地,数a 的绝对值就是数轴上表示数a 的点与原点之间的距离,数a 的绝对值记作a ,读作“a 的绝对值”。
✧ 代数意义:一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数;零的绝对值是零,即对于任何有理数,都有⎪⎩⎪⎨⎧<-=>=0000a a a a a a ,,,。
由绝对值的定义可知,一个数的绝对值是非负数,在数轴上,一个数离原点越近,绝对值越小;离原点越远,绝对值越大。
绝对值是它本身的数是非负数,即若a a =,则0≥a ,即a 为非负数;绝对值是其相反数的数是非正数,即若a a -=,则0≤a ,即a 为非正数。
绝对值是某个正数的数有两个,它们互为相反数,即若a x =(0>a ),则a x ±=,即若2=x ,则2±=x 。
互为相反数的两个数的绝对值相等;绝对值相等的两个数相等或互为相反数。
若几个数的绝对值之和为0,则这几个数同时为0。
求一个数的绝对值,要“先判后去”,即先判断这个数是正数、0、还是负数,再由绝对值的定义去掉绝对值符号。
例1:写出下列各数的绝对值:23-、211、﹣3、0、45、π- 解:23、211、3、0、45、π知识点二:有理数大小的比较有理数大小的比较:✧ 利用数轴比较大小:依据:在数轴上表示有理数,左边的数小于右边的数;具体方法:把要比较大小的有理数在同一条数轴上表示出来,那么有理数从左到右的顺序就是从小到大的顺序。
✧ 利用数的性质比较大小:依据:正数大于0,0大于负数,正数大于负数。
两个正数,绝对值大的数大;两个负数,绝对值大的数反而小; 具体方法:在比较几个数的大小时,步骤如下:先将它们分类成正数、0、负数,再按上面的依据进行比较。
两个正有理数比较大小:1) 比较两个小数大小,先看正数部分,正数部分大的那个数大;2) 两个分数比较大小,同分母分数,分子大的分数大,异分母分数,要先通分,再比较; 3) 比较分数与小数大小,一般先将小数化成分数再比较。
课题:2.2.2有理数的除法(第一课时)【学习目标】1.记住有理数除法的运算法则;2.会进行有理数的除法运算、分数化简以及乘除混合运算【学习重难点】重点:有理数的除法法则及运算.难点:准确、熟练地运用除法法则.【学习过程】一、知识回顾问题1:①你还记得有理数乘法的运算法则吗?在下列横线上填上适当的数,使算式成立:1)______×(-4)=8 2)3×_____=-15 3)(-9)×_____=54②写出下列各数的倒数-4 的倒数,3的倒数, 的倒数。
问题2:①计算8÷4=______ 2÷7=______ =______二、自学研讨问题3:我们知道,除法是乘法的逆运算,根据这一关系,你能求出8÷(-4)的值吗?因为(-2)(-4)=8,所以8÷(-4)=____同理,因为3×(-5)=-15,所以-15÷3 =____。
因为,所以____问题4:先比较大小,再观察归纳,你有什么发现?8÷(-4)8×(一);(-15)÷3 (-15)×;(一1)÷(一2)(-1)×(一);归纳:除法法则(一)即a÷b=________(条件:________)【课堂练习】计算:(1)27÷(-9)= (2)(-72)÷(-9)= (3)0÷(-2)=(4)(-18)÷6= (5)5÷= (6)48÷(-6)=三、合作展示根据有理数的乘法法则和除法法则,讨论:(1)同号两数相除,商的符号怎样确定,结果等于什么?(2)异号两数相除,商的符号怎样确定,结果等于什么?(3)0除以任何一个不等于0的数,结果等于什么?有理数除法法则(二):两数相除,同号得,异号得,并把绝对值.0除以任何一个不等于0的数,都得.两个法则都可以用来求两个有理数相除.如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.问题5:分数的化简问题6;计算(1)(-125)÷(-5);(2)-2.5÷×(-).四、达标测试(选择每题2分,计算每题3分,共25分)1.若a + b<0,>0,那么下列结论成立的是()A.a >0,b>0 B.a <0,b<0 C.a>0,b <0 D.a<0 ,b>0 2.实数在数轴上的位置如图所示,则下列结论正确的是()A.B、C、D、3.计算:①②③④(-)(-3)÷(-1)÷3 ⑤-54 2÷(-4)4.计算:①(-24)÷(-6)② -÷(--。
第一章有理数数学活动学习目标1.通过收集观察、思考、探究得出结论,使学生能处理并解决实际生活中的实际问题.2.会用计算器进行有理数的运算.3.会解决与科学记数法有关的实际问题.探究活动1.在市场经济中,毛利润计算公式是:毛利润=销售收入-成本,小亮利用此公式计算爸爸经营的商店在某一天的利润为-25元,请问:-25元的利润的意义是.2.活动1:帮助家庭记录一个月(或一周)的生活收支账目,收入记为正数,支出记为负数,计算当月(周)的总收入、总支出、总节余以及每日平均支出等数据.(妥善保存账目,作为日后家庭理财的参考资料)练习:(1)某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元)①星期三收盘时,每股是多少元?②本周内最高价是每股多少元?最低价是每股多少元?(2)某中学对八年级男生进行引体向上的测试,以做7个为标准,超过的个数用正数表示,不足的个数用负数表示,其中8名男生成绩如下:+3-20+4-1-1+2-5①这8名男生有百分之几达到标准?②他们一共做了多少个引体向上?(3)小丽从超市买回几袋酸奶,因当天喝不完,想放进冰箱里冷藏,酸奶上标明保存温度是4±2(℃)①小丽把温度调至12℃,请问可以吗?②小丽可以调至的温度应在什么范围内?(4)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.①用一个单位长度表示1千米,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;②超市D距货场A多远?③货车一共行驶了多少千米?3.活动2:熟悉你所用的计算器有关有理数运算的功能和操作方法,对于包含乘方、乘除与加减运算的算式,考虑怎样操作计算器最简便,实习这样的操作,并与同学进行交流.应用:已知一个圆柱的底面半径长2.32cm,高为7.06cm,求这个圆柱的体积.(π取3.14)4.活动3:收集现实生活中你认为非常大的数据的实例,体会科学记数法和近似数等在实际中的应用.应用:用科学记数法表示大数和小数时,要注意a×10n中a和n的值,在具体问题情境中感受大数.(1)一个正常人的平均心跳速率约是每分70次,一年大约跳次.(一年按365天)(2)地球上的陆地面积约为149000000平方千米,可记作平方千米.(3)我国森林覆盖面积约为1336320平方千米,可记作平方千米.课堂练习1.一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动为±10%,想一想:(1)±10%的含义是.(2)该商品的最高价格为,最低价格为.(3)如果以标准价格为标准,超过标准价格记“+”,低于标准价格记“-”,该商品价格的浮动范围可表示为.2.某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):表中星期六的盈亏数被墨水涂污了,请你计算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?3.某地在1月份中,1日至8日室外平均气温是-12℃,9日至21日是-12.5℃,22日至31日是-12.9℃,求该地1月份平均气温.4.一天有8.64×104s,一年按365天计算,一年有秒.(用科学记数法表示)5.高速公路养护小组乘车沿着东西方向的公路巡视维护,某天早晨从甲地出发,晚上最后到达乙地,规定向东为正方向,当天的行驶记录(单位:千米)如下:+21,-8,+11,-15,-4,+16,-4,-7.问:(1)乙地在甲地何方?相距多少千米?(2)若汽车行驶每千米耗油a L,该天共耗油多少升?6.某地一周内每天的最高气温与最低气温记录如下表,哪天的温差最大?哪天的温差最小?本周的平均温差是多少?(结果取整数)参考答案探究活动1.亏本25元2.活动1略练习:(1)①67.5元②68.5元,59元(2)①50%②56(3)①不可以②2℃到6℃(4)①略②2千米③11千米3.活动2:略应用:119.3192cm24.活动3:略应用:(1)3.6792×107(2)1.49×108(3)1.33632×106课堂练习1.(1)商品价格上调10%或下降10% (2)220元180元(3)200±20(元)2.盈利38元3.-12.5℃4.3.1536×1075.(1)在甲地的东方10千米处.(2)86a L.6.星期日的温差最大,星期一的温差最小,平均温差约为10℃.(设计者:夏莉莉)。
第一章有理数复习复习整理有理数有关概念和有理数的运算法则,运算律以及近似数等有关知识.重点:有理数概念和有理数的运算;难点:对有理数的运算法则的理解.知识回顾(一)正负数、有理数的分类正整数、零、负整数统称整数,试举例说明.正分数、负分数统称分数,试举例说明.整数和分数统称有理数.(二)数轴:规定了原点、正方向、单位长度的直线,叫数轴.(三)相反数的概念,只有符号不同的两个数叫做互为相反数.0的相反数是__0__.一般地:若a为任一有理数,则a的相反数为-a.相反数的相关性质:1.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点0的两边,并且到原点的距离相等;2.互为相反数的两个数,和为0.(四)绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是__0__.一个有理数a的绝对值,用式子表示就是:(1)当a是正数(即a>0)时,∣a∣=a;(2)当a是负数(即a<0)时,∣a∣=__-a__;(3)当a =0时,∣a ∣= 0 .(五)有理数的运算(1)有理数加法法则:______________________; (2)有理数减法法则:______________________;(3)有理数乘法法则:______________________;(4)有理数除法法则:______________________;(5)有理数的乘方:________________________.求n 个相同因数的积的运算,叫做有理数的乘方.即:a n=aa …a (有n 个a ).从运算上看式子a n ,可以读作a 的n 次方;从结果上看式子a n ,可以读作a 的n 次幂. 有理数混合运算顺序:(1)先乘方,再乘除,后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行(六)科学记数法、近似数把一个大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数),叫做科学记数法.1.把下列各数填在相应的大括号内:1,,-789,25,0,-20,,-590,78正整数集{1,25,…};正有理数集{1,25,78…}; ,-789,-20,,-590…};负整数集{-789,-20,-590…};自然数集{1,25,0…};正分数集{78…};,,…}.2.如图所示的图形为四位同学画的数轴,其中正确的是( D )3.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来. 4,-|-2|,,1,0.4.下列语句中正确的是( D )A .数轴上的点只能表示整数B .数轴上的点只能表示分数C .数轴上的点只能表示有理数D .所有有理数都可以用数轴上的点表示出来5.-5的相反数是__5__;-(-8)的相反数是-8;-[+(-6)]=__6__;0的相反数是__0__;a 的相反数是-a .6.若a 和b 是互为相反数,则a +b =__0__.7.如果-x =-6,那么x =__6__;-x =9,那么x =-9.8.|-8|=__8__;-|-5|=-5;绝对值等于4的数是±4.9.如果a >3,则|a -3|=__a -3__,|3-a |=a -3. 10.有理数中,最大的负整数是__-1__,最小的正整数是__1__,最大的非正数是__0__.11.33=__27__;(-12)2=__14__;-52=-25;22的平方是__16__. 12.下列各式正确的是( C )A .-52=(-5)2B .(-1)1996=-1996 C .(-1)2003-(-1)=0 D .(-1)99-1=013.用科学记数法表示:1 305 000 000=1.305×109;-1 020=-1.02×103. 14.120万用科学记数法应写成1.20×10624000.15.千万分位;5.47×105精确到__千__位.16.计算:(1)12-(-18)+(-7)-15;解:原式=12+18-7-15=30-22=8;(2)-23÷49×(-23)3; 解:原式=-8×94×(-827) =163; (3)(-1)10×2+(-2)3÷4;解:原式=1×2-8÷4=2-2=0;(4)(-10)4+[(-4)2-(3+32)×2].解:原式=10000+[16-(3+9)×2]=10000+(16-24)=10000-8=9992.。
第一章 有理数1.3 有理数的加减法1.3.2 有理数的减法第1课时 有理数的减法法则学习目标:1.理解有理数减法法则, 能熟练进行减法运算.2.会将减法转化为加法,进行加减混合运算,体会化归思想.学习难点有理数的减法法则的理解,将有理数减法运算转化为加法运算.自主学习:一、情境引入:1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?探索新知:(一) 有理数的减法法则的探索1.我们不妨看一个简单的问题: (-8)-(-3)=?也就是求一个数“?”,使 (?)+(-3)=-8根据有理数加法运算,有 (-5)+(-3)= -8所以 (-8)-(-3)= -5 ①2.这样做减法太繁了,让我们再想一想有其他方法吗?试一试做一个填空:(-8)+( )= -5容易得到 (-8)+(+3 )= -5 ②思考: 比较 ①、②两式,我们有什么发现吗?3.验证:(1)如果某天A 地气温是3℃,B 地气温是-5℃,A 地比B 地气温高多少?3-(-5)=3+ ;(2)如果某天A 地气温是-3℃,B 地气温是-5℃,A 地比B 地气温高多少?(-3)-(-5)=(-3)+ ;(2)如果某天A 地气温是-3℃,B 地气温是5℃,A 地比B 地气温高多少?(-3)-5=(-3)+ ;(二)有理数的减法法则归纳1.说一说:两个有理数减法有多少种不同的情形?2.议一议:在各种情形下,如何进行有理数的减法计算?3.试一试:你能归纳出有理数的减法法则吗?由此可推出如下有理数减法法则:减去一个数,等于加上这个数的相反数。
字母表示:)(b a b a -+=-由此可见,有理数的减法运算可以转化为加法运算。
【思考】:两个有理数相减,差一定比被减数小吗?说明:(1)被减数可以小于减数。
课题:§1.3.2 有理数的加法运算律 (课时9)【学习目标】1. 能用符号语言准确地表述有理数加法交换律和结合律;2. 能够运用运算律对现有的计算进行简便运算. 【学习重点】多个有理数的混和运算顺序和方法. 【学习难点】灵活运用运算律.【学前准备】认真阅读课本P19---P201. 有理数加法交换律:两个数相加,交换 位置,和 ,即a+b= . 有理数加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和 , 即(a+b)+c=a+ .注:以上运算律式子中的字母a 、b 、c 表示任意一个有理数. 2.探究:计算16+(-25)+24+(-35) (你怎样使计算简化)3. 探究:计算①413+)532(-+435+532 ②-1.5+1.75+(-3.75)+6.5思考:上述两小题用到加法 ,使计算简化. 【课堂探究】 例1 计算:(1))22(6)17(23-++-+ (2))423(13)2(-++-+++-()(3))61(31)21(1-++-+ (4))528(435)532(413-++-+小组归纳:在多个有理数相加时,灵活运用加法运算律,可使运算简便,通常有哪些技巧?反馈练习:计算(1) -312+5.5 + 312 (2)(+17)+(-32)+(-16)+(+24)+(-1) (3)61+(-72) +(65-)+ (+75) (4)(-1.5)+(3.125)+(-814)+(-213)例2 10袋大米称后记录如下(单位:千克):91, 91, 91.5,89, 91.2, 91.3, 88.7, 88.8, 91.8, 91.110袋大米一共多少千克?如果每袋大米以90千克为标准,10袋大米总计超过多少千克 或不足多少千克?【归纳总结】◆有理数加法交换律:两个数相加,交换 位置,和 ,即a + b = . 有理数加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和 ,即(a + b )+ c = a + .注:以上运算律式子中的字母a 、b 、c 表示任意一个有理数. ◆在多个有理数相加时,运用加法运算律,可使运算简便.课后作业0109--有理数的加法运算律 (课时9)班级: 座号: 姓名:1.计算:(+16)+(-25)+(+24)+(-35) =[( )+( )] + [( )+( )] =( )+( ) =( )从中可知,先把 数和 数分别结合在一起相加,计算比较简便.2.一天早晨的气温是-7C,中午上升了11C,半夜又下降了9C,则半夜的气温是 C. 3.绝对值小于10的所有负整数的和等于 ;绝对值小于10的所有整数的和 . 4.计算:(1)(+17)+(-32)+(-16)+(+24)+(-1) (2)(+536)+(-325)+(+524)+(-311)(3)1+2+3+4+ +9+10+(-9)+ +(-4)+(-3)+(-2)+(-1)(4)(-1) +(-2)+(-3)+(-4)+……+(-50)5.食品店一周中各天的盈亏情况如下(盈余为正):(单位:元)98 136.5 87 127 5.10 12.5 132,,,,,,---请问食品店一周总的盈亏情况如何?6.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5 ,-3.2 ,-0.5,1 ,-2 ,-2 ,-2.5,0.这8筐白菜一共多少千克?7.出租车司机李师傅从上午8:00~9:15在厦大至会展中心的环岛路上营运,共连续运载十 批乘客。
学案设计(一)学习目标1.理解进位制的基本概念,包括十进制和其他进制的表示方法.2.能够运用进位制解决实际问题,如货币计算、时间换算等.3.培养团队协作能力,通过小组合作实践,提高问题解决能力和沟通能力.自主学习二进制是逢二进一,其各数位上的数字为0或1.请把二进制数1011表示成各数位上的数字与基数的幂的乘积之和的形式,从而转换成十进制数.课堂探究活动1认识进位制,探究不同进位制的数之间的转换任务1把89转换为二进制数和八进制数.任务2通过研究二进制数及十进制数之间的转换,你有哪些发现?进一步地,你能进行其他不同进制数之间的转换吗?活动2探究进制数的加法运算任务1查阅资料,分析计算机运算选择二进制的原因,从多个角度分析选择二进制的优越性.任务2小组合作,研究二进制数的加法运算法则,并填写表1中的活动记录单.表1活动记录单加0011数加0101数和(1)根据上面的加法运算法则,计算(10010)2+(111)2,并交流一下计算方法.(2)①计算45+23;②把45,23分别转换为二进制数,利用二进制数的加法运算法则计算它们的和,再把和转换为十进制数;③比较①②的计算结果是否相同.任务3计算机的存储容量是指存储器能存放二进制代码的总位数,用于计量存储容量的基本单位是字节.请研究手机、计算机等电子存储设备的容量以及它们存储的一些电子文件的大小,它们通常以什么单位表示?这些单位之间有什么关系?任务4古人在研究天文、历法时,也曾经采用七进制、十二进制、六十进制记数法.至今,我们仍然使用一星期7天、一年12个月、一小时60分钟的记时方法.结合角度、时间等实际问题,分小组讨论一下六十进制数的加法运算法则.活动3任选教材第65~66页主题之一进行研究综合与实践活动研究报告的参考形式报告主题:年级班组报告时间:1.活动名称2.研究小组成员与分工3.选题的意义4.研究方案5.研究过程6.研究结果7.收获与体会8.对此研究报告的评价(由评价小组或教师填写)学以致用基础达标1.二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13.将(10111)2转换成十进制数是()A.23B.15C.18D.312.我们常用的数是十进制数,大多数计算机程序使用的是二进制(只有数码0和1).十进制数和二进制数可以互相换算,例如将(101)2换算成十进制数为(101)2=1×22+0×21+1×20=4+0+1=5;按此方式,将(1010)2换算成十进制数为()A.10B.9C.11D.183.计算机内部使用的是二进制(共有两个数码0,1).将一个十进制数转化为二进制数,只需将该数写为若干个2n的数字之和,依次写出1或0即可.如十进制数19可以写为二进制数10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20;37可以写为二进制数100101,因为37=32+4+1=1×25+0×24+0×23+1×22+0×21+1×20,则十进制数70是二进制下的()A.7位数B.6位数C.5位数D.4位数4.日常生活中我们使用的数是十进制数,数的进位方法是“逢十进一”.而计算机内部使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0、1,如二进制数1101记为1101(2),1101(2)通过式子1×23+1×22+0×2+1可以转换为十进制数13.仿照上面的转换方法,将11101(2)转换为十进制数是()A.15B.29C.30D.335.计算机的二进制数据是用0和1两个数码来表示的数,进位规则是“逢二进一”,二进制数和十进制数可以互换,例如,二进制数“01011011”换成十进制数为0×27+1×26+0×25+1×24+1×23+0×22+1×21+1×20=91.依此算法,二进制数“01001001”换成十进制数为.素养提升1.阅读材料:现在我们常用的数的进制是十进制,如4 657=4×103+6×102+5×101+7×100.该进制需用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9.在电子计算机中用的是二进制,只需用两个数码:0和1.两种进制的数可以互相换算,如二进制的数110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.(注意:对于任何非零数a 都有a0=1,即20=1)解决问题:二进制的数101011等于十进制的哪个数?应用拓展:我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量.由图可知,她一共采集到的野果数量为个.2.日常生活中,我们通常用到的数,称之为十进制数.在表示十进制数时,我们需要用到10个数码:0,1,2,…,8,9.例如:9 812=9 000+800+10+2=9×10×10×10+8×10×10+1×10+2×1.而在计算机中,常使用二进制数,即使用两个数码:0,1.例如:1011.如果想要知道这个二进制数等于十进制中的哪个数字,我们可以这样计算: (1011)2=(1×2×2×2+0×2×2+1×2+1×1)10=(11)10即二进制数1011等于十进制数11.阅读以上资料后,(1)请你把二进制数10101转换为十进制数的过程补充完整:(10101)2=()10=()10;(2)现在,请你尝试把六进制数421转化为十进制数,并写出转换过程.参考答案自主学习二进制数1011表示成各数位上的数字与基数的幂的乘积之和的形式如下:1×23+0×22+1×21+1×20.这个数转换成十进制数为11.课堂探究活动1认识进位制,探究不同进位制的数之间的转换任务1解:首先,对89进行不断除以2的整除操作,直到商为0,然后将每次的余数按相反的顺序组合起来,即得到二进制数.89÷2=44,余144÷2=22,余022÷2=11,余011÷2=5,余15÷2=2,余12÷2=1,余01÷2=0,余1将余数按相反的顺序组合起来,得到二进制数:1011001将89转换为八进制数:同样,对89进行不断除以8的整除操作,直到商为0,然后将每次的余数按相反的顺序组合起来,即得到八进制数.89÷8=11,余111÷8=1,余31÷8=0,余1将余数按相反的顺序组合起来,得到八进制数:131因此,89的二进制表示为1011001,八进制表示为131.任务2通过研究二进制数和十进制数之间的转换,可以得到以下发现:1.二进制到十进制的转换:二进制数的每一位代表2的幂,从右向左依次增加.将每位的值与对应的2的幂相乘,再相加,即可得到十进制数.2.十进制到二进制的转换:使用除2取余法,不断将十进制数除以2,将余数按相反的顺序组合,即可得到对应的二进制数.3.其他进制数的转换:类似地,可以研究不同进制数之间的转换,例如八进制到十进制、十六进制到十进制等.转换的基本思想是一致的,只需根据不同进制的基数进行相应的运算.4.十进制到其他进制的转换:使用除基数取余法,将十进制数不断除以目标进制的基数,将余数按相反的顺序组合,即可得到对应的进制数.5.其他进制到二进制的转换:首先将其他进制数转换为十进制数,然后再将十进制数转换为二进制数.总体来说,不同进制数之间的转换基于相似的原理,只需注意不同进制的基数和相应的幂次关系.进一步地,可以研究其他进制数之间的转换,例如八进制到十六进制、十六进制到八进制等.活动2探究进制数的加法运算任务1略任务2(1)首先,我们按照二进制数的加法运算的规则逐位相加,从右向左进行.10010+11110101在二进制数的加法运算中,对应位相加时,0+1的结果为1,1+1的结果为0并进位.因此,计算过程如下:·在最右边的位上,0+1=1.·接下来的位上,1+1=0(写下0),并向左进位1.·然后,进位的1与下一个位相加,1+1=0,再次产生进位1.·接着,进位的1与下一位相加,0+1=1.·最后,最左边的位上,1+0(进位)=1.因此,二进制数10010与二进制数111的和为10101.在交流计算方法时,强调了二进制数的加法运算的规则,尤其是0+1和1+1的情况,并通过逐位相加的方式展示了计算过程.(2)①68②将45转换为二进制数:45=(101101)2将23转换为二进制数:23=(10111)2利用二进制数的加法运算规则计算它们的和:101101+101111000100(45的二进制表示)(23的二进制表示)(和的二进制表示)将和转换为十进制数:(1000100)2=68③相同任务3略任务4略活动3略学以致用[基础达标]1.A2.A3.A4.B5.73[素养提升]1.解:∵101011=1×25+0×24+1×23+0×22+1×21+1×20=43,∴二进制数101011等于十进制数43.应用拓展:1×64+2×63+3×62+0×61+2×60=1 838(个),故她一共采集到的野果数量为1 838个.2.解:(1)(10101)2=(1×2×2×2×2+0×2×2×2+1×2×2+0×2+1)10=(21)10,故答案为1×2×2×2×2+0×2×2×2+1×2×2+0×2+1,21.(2)(421)6=(4×6×6+2×6+1)10=(157)10.学案设计(二)学习目标1.理解进位制的基本概念,包括十进制和其他进制的表示方法.2.能够运用进位制解决实际问题,如货币计算、时间换算等.3.培养团队协作能力,通过小组合作实践,提高问题解决和沟通能力.自主学习查阅资料,准备一个与时间有关的小故事,为何钟表分为六十分钟?为何我们有7天一周等.一小时60分钟的来历.课堂探究1.二进制数的加法运算练习题:a.11012+1012b.100112+11012c.11102+101012d.1100102+1011102e.110112+11011022.将下列二进制数转换为十进制数a.11012b.1001102c.111112d.10101012e.110110123.将下列八进制数转换为十进制数a.348b.1278c.5438d.74268e.652178学以致用基础达标1.生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例:12=1×10+2,212=2×10×10+1×10+2;计算机也常用十六进制来表示字符代码,它是用0~F 来表示0~15,满十六进一,它与十进制对应的数如表:十进012…891011121314151617…制十六012…89A B C D E F1011…进制例:十六进制的数2B对应十进制的数为2×16+11=43,10C对应十进制的数为1×16×16+0×16+12=268,那么十六进制的数16F对应十进制的数为()A.28B.62C.367D.3342.2021年7月,第十四届国际数学教育大会在上海召开,本次大会会徽主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力.如图,右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,由0~7共8个基本数字组成.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2 021,则八进制数2023换算成十进制数是()A.1 041B.1 043C.2 023D.3 7473.计算机是将信息转换成二进制数处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制数是1×23+1×22+0×21+1×20=13.将(10111)2转换成十进制数是()A.23B.15C.18D.314.我们常用的数是十进制数,大多数计算机程序使用的是二进制(只有数码0和1).十进制数和二进制数可以互相换算,例如将(101)2换算成十进制数为(101)2=1×22+0×21+1×20=4+0+1=5.按此方式,将(1010)2换算成十进制数为()A.10B.9C.11D.18素养提升1.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些记数符号与十进制的数之间的对应关系如下表:十六0123456789A B C D E F进制十0123456789101112131415进制例如:十进制中的26=16+10,可用十六进制表示为1A;在十六进制中,E+D=1B等.由上可知,在十六进制中,3×E=()A.42B.2AC.A2D.3E2.(多选)八进制是以8作为进位其数的数字系统,有0~7共8个基本数字.如:八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2 021.以下说法正确的是()A.若八进制数最后一位是偶数,换算成十进制依然是偶数B.八进制数111与十进制数111相等C.八进制数2023换算成十进制数是1 045D.十进制数2 023换算成八进制数是3747参考答案自主学习略课堂探究1.a.11012+1012=100102b.100112+11012=111002c.11102+101012=1001112d.1100102+1011102=10110002e.110112+1101102=101000122.a.11012=1310b.1001102=3810c.111112=3110d.10101012=8510e.11011012=109103.a.348=2810b.1278=8710c.5438=35510d.74268=388210e.652178=2709510学以致用[基础达标]1.C2.B3.A4.A [素养提升]1.B2.AD。
1.5 有理数的乘方学案一、引入有理数是数学中重要的概念之一,它包括正整数、负整数和分数。
在前面的学习中,我们已经学习了有理数的加法、减法、乘法和除法运算。
本学案将带领大家进一步学习有理数的乘方运算。
二、有理数的乘方1. 乘方的定义乘方是一种特殊的乘法运算,其中一个数称为底数,另一个数称为指数。
乘方的计算规则如下:a^n = a × a × a × … × a (n个a相乘)其中,a为底数,n为指数。
我们读作“a的n次方”或“a的n次幂”。
例如,2^3表示2的3次方,计算结果为2 × 2 × 2 = 8。
2. 几个特殊的乘方当指数为0时,任何非零数的0次方都等于1,即a^0 = 1(a ≠ 0)。
例如,5^0 = 1。
当指数为1时,任何数的1次方都等于它本身,即a^1 = a。
例如,-3^1 = -3。
当底数为0时,任何非零数的指数都为0时,结果都为0。
即0^n = 0(n ≠ 0)。
例如,0^2 = 0。
3. 有理数的乘方计算有理数的乘方计算可以通过将指数换成乘法来简化。
例如,(-2)^3 = (-2) × (-2) × (-2) = -8。
在计算有理数的乘方时,注意规避错误。
例如,(-2)^2 ≠ -2 × -2 = 4。
这是因为我们必须先计算指数部分,再进行乘法运算。
三、习题练习请根据已学知识,计算下面的乘方。
1.(-3)^4 = ?2.5^2 × 5^3 = ?3.2^3 × 2^(-2) = ?4.1.2^0 = ?5.0^3 = ?6.(-4)^2 + (-4)^3 = ?四、总结通过本学案的学习,我们了解了有理数的乘方运算。
乘方是一种特殊的乘法运算,其中一个数作为底数,另一个数作为指数。
我们学习了乘方的定义及其运算规则,并通过习题练习来提升对有理数乘方运算的理解和应用能力。
初中七年级数学上册第一章:有理数——1.2.1:有理数一:知识点讲解知识点一:有理数的概念有理数:整数和分数统称为有理数。
✧ 整数:正整数、0、负整数统称为整数。
例如:2、3、0、﹣5、﹣7;✧ 分数:正分数、负分数统称为分数。
例如:32、0.1、﹣0.5、25-、﹣150.25; 0和正整数都是自然数。
任何一个有理数都可以写成m n 的形式,而且只有当m 、n 同时满足: ✧ m 、n 是互质的整数;✧ 0≠m 、1≠m 时,mn 才表示一个分数。
分数都能化为小数,但小数不都能化为分数。
只有有限小数和无限循环小数才能化为分数,因此分数包括有限小数和无限循环小数,当不包括无限不循环小数。
例如:π、3.212 212 221…(每两个1之间2的个数逐次增加)不能化为分数。
例1:下列说法正确的是( D )A. 正有理数和负有理数统称为有理数B. 非负整数就是指0、正整数和所有分数C. 正整数和负整数统称为整数D. 整数和分数统称为有理数知识点二:有理数的分类按有理数的定义:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0按有理数的性质符号:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0例2:把下列各数分别填入相应的大括号里:﹣2.5、3.14、﹣2、﹢72、6.0 -、0.618、722、0、﹣0.101、π1) 正数集合: 3.14,﹢72,0.618,722,π ;2) 非负整数集合: ﹢72,0 ;3) 整数集合: ﹣2,﹢72,0 ;4) 负分数集合: ﹣2.5,6.0-,﹣0.101 。
二:知识点复习知识点一:有理数的概念 1. 在下列各数:65-、﹢1、6.7、﹣14、0、227、﹣5、25%中,属于整数的有( C) A. 2个 B. 3个 C. 4个 D. 5个2. 已知下列各数:﹣2、﹢3.5、0、32-、﹣0.7、11,其中负分数有( B )A. 1个B. 2个C. 3个D. 4个3. 在﹣1、32、0.618、0、﹣5%、2017、0.5中,整数有 3 个,分数有 4 个。
数学:1.2.1《有理数》学案(人教版七年级上)【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类 【导学指导】一、温故知新1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)__________________________________________ 二、自主探究问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类; 该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为 类,分别是:引导归纳:统称为整数, 统称为有理数。
问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类? 师生共同交流、归纳 2、正数集合与负数集合所有的正数组成 集合,所有的负数组成 集合【课堂练习】1、P8练习(做在课本上)2.把下列各数填入它所属于的集合的圈内: 15, -91, -5, 152, 813, 0.1, -5.32, -80, 123, 2.333;正整数集合负整数集合正分数集合 负分数集合【要点归纳】: 有理数分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 或者 ⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数【拓展训练】1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数c .-2000既是负数,也是整数,但不是有理数 D .O 是正数和负数的分界2、在下表适当的空格里画上“√”号【总结反思】:。