煤矿主排水系统设计
- 格式:doc
- 大小:298.03 KB
- 文档页数:14
煤矿排水系统设计精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】主排水泵选型计算设计一、概述本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,副立井、回风立井井口标高均为+1195m,副立井、回风立井落底标高均为+220m,主斜井与暗主斜井斜交,暗主斜井落底标高为+206m,初期大巷最低点标高为+205m。
根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。
按照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。
根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。
二、矿井主排水(一)设计依据地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量857m3/h,最大涌水量为1284m3/h计算;矿井水处理所需要增加15m扬程。
(二)排水系统方案根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较:方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。
该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m,年排水电费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。
方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷→主斜井井筒敷设,将矿井涌水排至主井场地。
煤矿自动化方案——煤矿井下自动化排水系统煤矿井下自动化排水系统一、引言煤矿井下自动化排水系统是煤矿安全生产的重要组成部分,旨在提高煤矿井下排水效率,降低煤矿事故风险,保障矿工的生命安全。
本文将详细介绍煤矿井下自动化排水系统的设计原则、主要组成部分以及工作流程。
二、设计原则1. 安全性原则:确保系统在工作过程中不会对矿工造成伤害,同时保证排水设备的可靠性和稳定性。
2. 高效性原则:提高排水效率,缩短排水时间,减少煤矿生产中的停工时间,提高生产效益。
3. 省能性原则:通过优化系统设计,降低能源消耗,减少对环境的影响。
4. 可维护性原则:设计方便维护、检修和更换排水设备,减少维护成本和维护时间。
三、主要组成部分1. 井下水位监测系统:通过安装水位传感器,实时监测井下水位,将数据传输至控制中心。
2. 自动排水泵站:根据井下水位变化,自动启动、停止和调节排水泵的工作,确保井下水位始终在安全范围内。
3. 排水管道系统:包括井下主排水管道和支管,通过合理布置管道,将井下积水迅速排出矿井。
4. 控制中心:集中监控和控制整个自动化排水系统,实时接收井下水位数据,发出控制指令,保障系统的正常运行。
四、工作流程1. 水位监测与数据传输:水位传感器安装在井下关键位置,实时监测井下水位,并将数据传输至控制中心。
2. 控制中心数据处理:控制中心接收到井下水位数据后,通过数据处理系统对数据进行分析和处理,判断井下是否需要排水。
3. 自动排水泵控制:根据控制中心的指令,自动排水泵站启动、停止和调节排水泵的工作,以控制井下水位在安全范围内。
4. 排水管道系统运行:排水泵将井下积水抽出,通过排水管道系统迅速排出矿井,确保井下保持良好的工作环境。
5. 故障报警与维护:系统设有故障报警装置,一旦发生故障,控制中心将及时收到报警信息,并派遣维护人员进行处理。
五、系统优势1. 提高矿井安全性:通过自动化排水系统,及时控制井下水位,防止水灾事故的发生,保障矿工生命安全。
煤矿矿井排水系统的设计与管理随着煤矿市场需求的增加,煤矿矿井排水系统的设计与管理显得尤为重要。
良好的排水系统能够有效地降低矿井内的水位,确保矿工的安全,并促进煤矿生产的顺利进行。
本文将探讨煤矿矿井排水系统的设计原则、排水设备的选择与安装以及排水系统的管理,为煤矿矿井排水系统的设计与管理提供参考。
一、煤矿矿井排水系统的设计原则煤矿矿井排水系统的设计应根据矿井的地质条件、水文地质条件和矿井开采方式等因素进行综合考虑。
以下是几个设计原则:1. 安全性原则:排水系统应具备良好的安全性能,确保矿井内矿工的安全。
排水设备应经过合理布局,避免对未来矿井开采造成不利影响。
2. 经济性原则:排水系统的设计应在保证矿井安全的前提下,尽可能地减少成本。
合理选择排水设备,降低能源消耗和维护成本,提高排水效率。
3. 可靠性原则:排水系统应具备良好的可靠性和稳定性,能够适应矿井开采条件的变化。
排水设备应具备一定的备用和自动化控制功能,提高系统运行的稳定性和可维护性。
二、排水设备的选择与安装合适的排水设备的选择与安装对于煤矿矿井排水系统的性能至关重要。
以下是几种常见的排水设备及其特点:1. 排水泵:排水泵是煤矿矿井排水系统中最常用的设备之一。
通过抽水将矿井内的水排出地面,具有排水量大、抽水高度高等特点。
在选择排水泵时,应考虑泵的排水量、扬程和效率等性能指标,并合理选择泵的类型和型号。
2. 钻孔排水设备:钻孔排水设备可以通过打孔将矿井内的水导流到地下水层或者排放到地表水体。
钻孔排水设备适用于矿井水位较低,地质条件适宜的情况下,具有排水效率高、维护成本低等优点。
3. 排煤机:排煤机是煤矿矿井开采过程中常用的设备之一。
排煤机在挖掘煤炭的同时,也能够将矿井内的水一并排出。
在安装排煤机时,应确保其具备良好的密封性和排水性能,以提高排煤机的效益。
三、排水系统的管理煤矿矿井排水系统的管理对于矿井安全和生产的顺利进行都具有重要意义。
以下是几个排水系统的管理要点:1. 设备维护与检修:定期对排水设备进行维护和检修,及时处理设备故障和问题,确保排水设备的正常运行。
第一章 矿井概况 .................................................................................................................................... - 3 -一、水文地质 .................................................................................................................................. - 3 -第二章 矿井主排水设备选择计算 ........................................................................................................ - 4 -一、固定排水设备的要求 .............................................................................................................. - 4 -二、设计依据 .................................................................................................................................. - 4 -三、 排水系统的确定 .................................................................................................................... - 5 -四、水泵的确定 .............................................................................................................................. - 6 -1、工作水泵的排水能力 ........................................................................................................ - 6 -2、水泵所需扬程的估算 ........................................................................................................ - 6 -3、初选水泵的型号 ................................................................................................................ - 7 -五、 排水管路的确定 .................................................................................................................... - 7 -1、管路趟数 ............................................................................................................................ - 7 -2、选择排水管 ........................................................................................................................ - 8 -3、验算壁厚 ............................................................................................................................ - 9 -4、选择吸水管 ........................................................................................................................ - 9 -5、计算管路特性 .................................................................................................................. - 10 -①管路布置 .................................................................................................................... - 10 -②估算管路长度 ............................................................................................................ - 10 -③阻力系数t R 计算 ...................................................................................................... - 10 -④管路特性方程 ............................................................................................................ - 13 -⑤绘制管路特性曲线,确定工况点, ........................................................................ - 13 -六、 校验计算 .............................................................................................................................. - 14 -1、由旧管工况点验算排水时间旧管状态时,每台水泵的流量最小: .................. - 14 -2、经济性校核...................................................................................................................... - 15 -3、稳定性校核...................................................................................................................... - 15 -4 、计算允许吸水高度........................................................................................................ - 15 -七、电动机功率计算.................................................................................................................... - 16 -八、电耗计算................................................................................................................................ - 16 -1、全年排水电耗.................................................................................................................. - 16 -2、吨水百米电耗校验.......................................................................................................... - 17 -第三章水泵房及水仓.......................................................................................................................... - 18 -一、泵房位置................................................................................................................................ - 18 -二、泵房尺寸................................................................................................................................ - 18 -1、泵房的长度:.................................................................................................................. - 18 -2、泵房的宽度...................................................................................................................... - 19 -3、泵房的高度...................................................................................................................... - 19 -三、水仓的确定............................................................................................................................ - 20 -四、水仓容量的确定.................................................................................................................... - 20 -第四章排水设备的组成...................................................................................................................... - 21 -1、离心泵...................................................................................................................................... - 21 -2、滤水器和底阀.......................................................................................................................... - 22 -3、闸阀.......................................................................................................................................... - 22 -4、逆止阀...................................................................................................................................... - 24 -5、水介质电液球阀...................................................................................................................... - 24 -6.压力表........................................................................................................................................ - 25 -7.真空表........................................................................................................................................ - 25 -结束语............................................................................................................................................ - 25 -致谢.............................................................................................................................................. - 32 -参考文献.......................................................................................................................................... - 33 -第一章矿井概况一、水文地质本工作面水文地质条件简单,充水源主要为上覆地层层间裂隙水下渗,预计最大涌水量825m3/h,正常涌水量425m3/h,队组需在巷道低洼处备泵排水。
第5期 2011年5月工矿自动化Industry and M ine A uto matio nNo .5 M ay 2011 文章编号:1671-251X (2011)05-0015-04 DOI :CNKI :32-1627/TP .20110428.1723.004煤矿井下主排水系统工艺流程及其自动控制系统设计李亚哲(中煤科工集团常州自动化研究院,江苏常州 213015) 摘要:介绍了煤矿井下主排水系统的相关工艺流程,总结了煤矿井下主排水系统的特点,设计了一套煤矿井下主排水自动控制系统,详细介绍了该系统的组成和软件控制策略。
该系统通过井下控制主站的决策控制对排水设备的运行过程和运行状态进行自动控制与监测,使排水设备达到最佳工作状态;同时可根据峰谷分时电价、水仓水位及涌水量情况控制水泵的启停,从而达到有效节约能源、降低劳动强度、延长设备使用寿命的目的。
关键词:矿井排水;水泵;工艺流程;自动控制;传感器 中图分类号:TD636 文献标识码:B 网络出版时间:2011-04-2817:23 网络出版地址:http ://w w w .cnki .ne t /kcm s /detail /32.1627.TP .20110428.1723.004.htm lTechnical Process of Coal Mine M ain Drainage System and Desig n ofIts Automatic Control Sy stemLI Ya -zhe(Changzhou A utom ation Re sea rch Institute of China Coal Technolog y and EngineeringG roup Co rpo ration ,Changzhou 213015,China ) A bstract :The paper intro duced related technical pro cess o f coal mine main drainage system ,summarized characteristics o f coal mine main drainage sy stem ,designed autom atic control sy stem of coal mine main drainage ,and introduced composition and softw are contro l strategy of the sy stem in details .The system can control and m onito r operation pro cess and state of drainage devices autom atically w ith decisio n -making o f m ain contro l station to m ake drainage devices achieve the best w o rking condition .Meanw hile ,the sy stem can co ntrol start and sto p of w ater pump acco rding to TOU tariff ,w ater level of w ater sump and w ater inflo w condition to save energy effectively ,reduce labo r intensity and ex tend service life o f drainage devices .Key words :mine drainage ,w ater pum p ,technical pro cess ,automatic control ,senso r 收稿日期:2011-01-12基金项目:科技部科研院所技术开发研究专项资金项目(2008EG122185)作者简介:李亚哲(1980-),男,陕西渭南人,工程师,现主要从事煤矿自动化产品的研制工作,已发表文章2篇。
主排水泵选型计算设计一、概述本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,副立井、回风立井井口标高均为+1195m,副立井、回风立井落底标高均为+220m,主斜井与暗主斜井斜交,暗主斜井落底标高为+206m,初期大巷最低点标高为+205m;根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行煤矿防治水规定,属水文地质条件复杂矿井;按照现行煤矿防治水规定及煤矿安全规程要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统;根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统;二、矿井主排水一设计依据地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量857m3/h,最大涌水量为1284m3/h计算;矿井水处理所需要增加15m扬程;二排水系统方案根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较:方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站;该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m,年排水电费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高;方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷→主斜井井筒敷设,将矿井涌水排至主井场地;该方案虽然排水管路较长,管路损失较大,但主井较副立井井口低273m,排水设备工况扬程低,水泵级数少,设备投资省,电耗低;经上述综合分析比较,设计推荐本矿井排水系统采用布置合理,综合运营费用低的方案二,即主排水泵房设置在初期大巷最低点,井下涌水由主井排出方案;三矿井主排水泵房排水设备1、设计依据根据确定的排水系统方案,本矿井主排水泵房设置在+205m水平副立井井底车场附近的初期大巷最低点,排水管路经管子道、沿主斜井井筒敷设至地面;地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆渗水增加水量50m3/h,因此在设备选型时按正常涌水期排水量857m3/h,最大涌水期排水量为1284m3/h计算;初期大巷最低点标高+205m,主斜井井口标高+922m,排水垂高715m,考虑矿井水处理所需要增加的15m扬程后,排水总垂高为732m,排水管路敷设长度约5800m;2、排水设备方案水泵及管路的初选1泵应具有的排水能力:=×857=1028.4m3/h;正常涌水量 Q1=×1284=1540.8m3/h最大涌水量 Q2排水扬程 H=×717+5=830.3m2排水设备初选MDS420-96系列矿用耐磨离心式排水泵,其额定扬程应不小于830.3m;3排水管路初选D=4×420/××36001/2 =0.287m 取 DN=0.30m即DN300mm排水管路选用D325型复合钢管,吸水管路选用D377型复合钢管;4排水系统阻力系数排水管阻力损失:式中:ϕ--速度压头系数,1;1ϕ--直管阻力系数,2ϕ--弯管阻力系数,~;3ϕ--闸阀阻力系数,~;45ϕ--逆止阀阻力系数,5~14; 6ϕ--管子焊缝阻力系数,;3n --弯管数量,个; 4n --闸阀数量,个; 5n --逆止阀数量,个; 6n --管子焊缝数量,个;λ--水与管壁的阻力系数;d L --排水管路总长度,m ;d V --排水管流速,m/s ;旧管时:吸水管路及局部水头损失之和sfH ': 式中:'2ϕ--直管阻力系数, '3ϕ--弯管阻力系数,~; '4ϕ--滤水器阻力系数,2~3; '5ϕ--偏心异径管阻力系数,~;'3n --弯管数量,个;λ--水与管壁的阻力系数;s L --吸水管路总长度,m ; s V --吸水管流速,m/s ;旧管时:'1.7 1.70.3350.57sf sf H H m '==⨯=旧排水系统阻力系数则排水系统Q-H 特性曲线方程为H=722+×10-4Q 2 3、水泵及管路的计算机优化根据矿井排水系统和参数,经我院通过部级鉴定的矿井排水设备选型优化设计计算程序设计计算,选出了适合本矿井主排水泵房的3个排水设备方案,其技术经济参数详见表7-3-1;从方案表中可以看出,方案三所选排水系统设备,排水能力大,但水泵运行工况效率低,年电耗高,基建投资多,年综合营运费用也较高,故设计不予推荐;方案二所选排水系统设备,虽然电动机容量较小,但水泵台数多,年电耗较高,基建投资也较多,因水泵运行工况效率低、综合营运费用也较高,设计也不予推荐;方案一所选排水系统设备,基建投资低,水泵运行工况点效率高,年电耗少,年综合运行费用最低;故设计推荐方案一作为本矿井主排水设备方案;矿井主排水设备选型方案比较表表7-3-11排水管路壁厚按下式计算:式中:δ--排水管路管壁计算厚度,cm;P--管路最大工作压力,设计取为;--管路管材外径,cm;DWψ--管路焊缝系数,无缝钢管取1;σ--管材需用应力,MPa;本公式已计入管材的制造误差及腐蚀附加厚度;代入各参数后:则排水管路壁厚选择为21mm;排水管路选用2趟D325×21型聚乙烯复合钢管基材为无缝钢管,分段选择壁厚;排水管路由+205m水平主排水泵房→管子道→主斜井井筒敷设至地面;正常涌水期3泵3管运行,最大涌水期4泵4管运行;2选定方案的设备及运行工况经计算机优化,并结合前期可研设计时专家的评审建议,本矿井主排水系统设备选用MDS420-96×9型矿用耐磨离心式主排水泵7台,每台水泵配套1台YB2系列4极 10kV 1600kW矿用隔爆电动机;正常涌水期3台工作,3台备用,1台检修,最大涌水期4台水泵工作;鉴于本矿井的涌水水质较差,考虑到延长排水管路的使用寿命,减小管路维护工作量,主排水管路选用4趟D325矿用聚乙烯复合钢管基材为无缝钢管,分段选择壁厚;排水管路经管子道、主斜井井筒敷设至地面;正常涌水期3泵3管运行,最大涌水期4泵4管运行;矿井排水设备运行特性曲线详见图7-3-1;矿井排水系统布置详见图7-3-2;矿井排水设备运行工况详见表7-3-2;水泵运行工况点参数表表7-3-2水泵运行时,日排水时间均<20h,排水能力满足要求;水泵所需轴功率计算轴功率均小于所配电动机容量1600kW,所选电动机容量满足水泵要求;为了节约能源,设计选用ZPB-G型高压气液两用射流装置,使水泵实现无底阀运行;射流泵接井下压缩空气管路作为备用能源;745X-100设计选用MZ941H-100型矿用电动隔爆闸阀,实现水泵房自动化控制;选用JD型多功能水泵控制阀,减小水垂对排水系统的冲击;泵房内设置起重梁,配置手动单轨小车和环链手拉葫芦,以便于设备安装和维修;根据本矿井开拓方式及井下辅助运输无轨化的特点,传统的人工挖掘,清仓绞车清运水仓淤泥方法,效率低、劳动强度大,不适合本矿井高产高效的要求,同时煤泥含有水运输也不方便,还影响井下环境;为此,设计考虑选用国内近几年开发的ZQ-ⅢY型水仓自动清挖系统1套,用于井下水仓清理;该系统含有淤泥搅拌设备、MQB-Ⅱ型泥浆抽排泵、脱水设备、浓缩设备及装车系统,能将水仓淤积的煤泥转化为煤饼,装载到井下无轨胶轮车上,运到地面,操作方便,使用可靠,己在多对矿井中成功应用,反应较好;ZQ-ⅢY型水仓自动清挖系统总装机容量约35kW;四矿井主排水设备的供配电与控制根据现行矿山电力设计规范、煤矿安全规程要求,井下主排水泵为一级负荷,主排水泵电机由井下中央变电所一对一供电,10kV高压电源线路采用MYJV-10kV 3×70煤矿用交联聚乙烯电力电缆;井下主排水泵电机,采用高压软起动;同时,在水泵房设有就地操作箱;主排水泵供电系统图详见附图C1361G1-261·2-1;为了实现矿井井下主排水自动化,设计有自动化排水系统;该系统采用防爆PLC控制,能根据井下水仓水位自动起停水泵,工作泵故障时,备用水泵自动投入;现场控制器采用S7系列PLC,完成数据采集与控制功能;并配置工业智能图形工作站,作为数据显示和操作监控设备;系统控制点设于井下中央变电所中,为二合一控制站,即井下排水三遥系统和中央变电所三遥系统共用硬件平台;1、操作方式:系统控制具有自动、半自动和手动检修3种工作方式;2、程控功能:PLC主要实现主排水系统的数据采集、动态显示及主排水泵自动启停、自动倒换等顺序控制功能;3、监控功能:具有故障自诊断、流量、压力、设备运行工况和在线设备性能等参数、控制系统状态、高、低压配电及MCC系统等的连续实时显示以及报表打印、数据存储功能;4、水泵监控系统与井下控制网联网,实现在矿调度室进行三遥;五、抗灾潜水电泵排水系统一概述本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,对照现行煤矿防治水规定,水文地质类型为复杂,涌水量在西北地区较大,对采掘工程、矿井安全构成一定水害威胁;为此设计考虑在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统;鉴于本矿井井下水压大于6MPa,高压水闸门尚无定型设计产品,超高压防水闸门也还在研究阶段,考虑实际抗灾需要,以及目前潜水电泵设备发展状况,采用增加潜水电泵排水系统以增强矿井的抗灾排水能力,设计在井底车场主排水泵房水仓附近设潜水电泵系统,排水管路沿回风立井井筒敷设至地面;二 设计依据本矿井回风立井井口标高为+1195m ,井底车场主排水泵房水仓附近的标高为+205m,排水垂高990m;在主排水泵房水仓附近设置潜水电泵硐室,潜水电泵硐室标高为+205m,排水管路沿西回风大巷转回风石门至回风立井井底,由回风立井井筒敷设至地面,井下水排出后留有3m 水头;矿井最大涌水量1234m 3/h,总排水高度993m,排水管路长度1880m; 三 抗灾潜水电泵选型 1、抗灾潜水电泵选型根据排水能力要求、估算水泵扬程,本矿井抗灾潜水电泵排水系统选用3台BQ550-1105/13-2500/W-S 型,额定流量550m 3/h,额定扬程1105m 的矿用隔爆卧式潜水电泵,当井下突水或涌水量增大时,3台水泵同时工作,每台水泵配用1台4极、10kV 、2500kW 矿用潜水泵专用隔爆型电动机;2、排水管路选择 排水管路直径:0.304()D m ===,取D=0.30m,公称直径为DN300mm;式中:d V —设计排水管流速,m/s;结合所选水泵台数、水泵扬程,排水管路选用3趟外径为D325mm 的聚乙烯复合钢管基材为无缝钢管,分段选择壁厚;当井下突水或涌水量增大时,3趟管路同时工作;排水管路由卧式潜水泵硐室→管子道→回风大巷→回风石门→回风立井井筒敷设至地面;3、管路阻力系数计算 1 排水系统阻力系数① 排水管路中阻力损失af H 按下式计算: 式中:1ϕ—速度压头系数,取1ϕ=1;2ϕ—直管阻力系数,λ—水与管壁的阻力系数,对于DN300mm 管路,λ=;dL—排水管路总长度,本矿井抗灾排水系统为1880m;D—排水管路公称直径,本矿井抗灾排管路管径为0.30m;3ϕ—弯管阻力系数,~;3n—弯管数量,个,本矿井抗灾排水管路系统为2个;4ϕ—闸阀阻力系数,~;4n—闸阀数量,个,本矿井抗灾排水管路系统为2个;5ϕ—逆止阀阻力系数,5~14;dV—排水管流速,m/s;则,抗灾排水泵排水管路阻力损失:抗灾排水管路旧管淤积时阻力损失:②吸水管路及局部水头损失之和sfH',因潜水泵无吸水管,故可不考虑;③排水系统阻力系数新管管路未淤积时:旧管管路未淤积时:则排水系统新管管路未淤积时阻力特性方程为:H=Ht+RQ2=993+×10-4Q2旧管管路未淤积时阻力特性方程为:H=Ht+R’Q2=993+×10-4Q2式中:Ht —吸水面至排水口几何高差,m;本排水系统Ht=993m;4、水泵运行工况按新管管路未淤积时阻力特性方程和旧管管路未淤积时阻力特性方程,在BQ550-1105/13型水泵特性曲线上绘出管路阻力特性曲线,得出水泵运行工况点;矿井抗灾排水设备运行工况点详见表7-3-3;抗灾水泵运行工况点参数表矿井抗灾潜水电泵运行特性曲线见图7-3-3;由水泵运行工况点参数表可知,在排水新管管路未淤积时,潜水电泵工况流量593m3/h,工况扬程1061m,计算轴功率2204kW<2500 kW,抗灾排水潜水电泵配用的电动机容量满足水泵排水要求;所选水泵采用高压软启动器起动,起动能力能够满足2500kW水泵电动机起动要求;按抗灾排水管路系统最大工作压力状况,计算管路壁厚:故所选外径D325 mm、壁厚23mm的聚乙烯复合钢管基材为D325×23型无缝钢管满足排水要求;5、电动机容量、管路壁厚及排水能力校验由水泵运行工况点参数表可知,当井下突水或涌水量增大时,3趟 D325×23型排水管路配合3台BQ550-1105/13-2500型潜水电泵工作;管路淤积后潜水电泵工况流量559 m3/h,工况扬程1098m,计算日排水时间,小于24h,抗灾排水潜水电泵的排水能力满足要求;四抗灾潜水电泵的供配电与控制根据现行矿山电力设计规范、煤矿安全规程要求,抗灾潜水泵为一级负荷,抗灾潜水泵电机,采用电气软起动方式,其10kV高压电源由地面抗灾潜水泵高压配电室一对一供电;抗灾排水监控系统采用PLC完成数据采集与控制功能,能根据水害危险在地面控制点进行操控;在潜水泵的出口管路安装有电动闸阀,总出水管路上安装压力与流量传感器;抗灾潜水泵控制点设于地面抗灾潜水泵高压配电室,井下潜水泵自带的压力、流量等保护参数,通过4~20mA模拟量信号接入地面PLC中;抗灾潜水泵10kV配电室供电系统图详见附图1361G;。
2201工作面排水设计1煤矿工作面排水设计工作面排水设计在煤矿开采中具有重要意义,它主要是为了排除工作面地下水和采煤过程中产生的水分,以保证矿井的安全生产和工作面的正常运转。
本文将详细介绍2201工作面排水设计的相关内容。
首先,工作面排水设计需要针对具体的工作面情况,包括工作面的长度、宽度、采高、采煤方法等进行综合考虑。
根据矿井水文地质条件和采煤工艺要求,确定工作面排水的目标和要求,如排水能力、排水泵站的选址和配置等。
其次,进行工作面排水系统的设计。
一般而言,工作面排水系统包括井下系统和井上系统两部分。
井下系统主要包括排水巷道、排水井和排水管道。
排水巷道是连接采煤面和排水井的通道,需要确保足够的排水能力。
排水井是将井下的积水抽到地面的设施,井的位置和数量应尽量合理。
排水管道用于将井下积水输送到地面,管道的材质和直径需要根据井下水量和距离来确定。
井上系统主要包括排水泵站和相关设备,用于将井下排出的水排到矿井外部。
在具体的设计过程中,需要考虑以下几个因素:首先是工作面的地质条件,包括地下水位、水文地质类型、水文地质参数等。
这些参数可以通过地质勘探和水文地质调查来获取。
其次是采煤工艺和生产情况,包括采煤速度、回采率、采煤工艺等。
这些因素直接影响工作面的排水情况。
最后是排水系统的可靠性和经济性,需要综合考虑设备的选型、设施的布局和投资的成本等因素。
完成工作面排水设计后,需要进行系统的施工和调试。
在施工过程中,需要注意施工工艺和施工质量,确保工作面排水系统的正常运转。
在调试过程中,需要检查设备的性能和运行情况,并进行必要的调整和优化。
综上所述,2201工作面排水设计是煤矿开采中不可或缺的一部分,它对保证矿井的正常生产和工作面的安全运行起着重要作用。
在设计过程中,需要充分考虑工作面的地质条件、采煤工艺和排水系统的可靠性与经济性,以确保排水设计的有效性。
同时,在施工和调试过程中,需要严格按照设计方案进行操作,确保工作面排水系统的正常运行。
煤矿矿井供水与排水系统设计与优化煤矿是我国重要的能源产业,然而,由于煤矿开采过程中会产生大量的废水和矿井涌水,因此矿井供水与排水系统的设计与优化显得尤为重要。
本文将探讨煤矿矿井供水与排水系统的设计原则、优化方法以及相关技术的应用。
一、矿井供水系统的设计与优化矿井供水系统的设计应考虑以下几个方面的因素:供水量、供水质量、供水方式以及供水管道的布置。
首先,供水量需要根据矿井的开采规模和用水需求进行合理的估计。
其次,供水质量要求高,因为水质不合格会影响矿井生产和工人的健康,所以供水系统应包括水源的选择、水质的处理和监测等环节。
再次,供水方式可以选择地下水泵送或者地表水引入,根据矿井地质条件和水资源状况来确定。
最后,供水管道的布置要合理,以减少能耗和维护成本。
为了优化矿井供水系统的运行,可以采用以下措施:首先,建立完善的供水管理制度,包括供水计划、供水设备的维护和检修等。
其次,引入先进的供水技术,如自动化控制系统和远程监测系统,提高供水的稳定性和可靠性。
再次,加强供水设备的维护和管理,定期进行设备检修和更换,确保供水系统的正常运行。
此外,还可以利用节能技术和水资源回收利用技术,减少能耗和水资源的浪费。
二、矿井排水系统的设计与优化矿井排水系统的设计与优化是煤矿安全生产的重要环节。
排水系统的设计应考虑以下几个方面的因素:排水量、排水方式、排水管道的布置以及排水设备的选择。
首先,排水量需要根据矿井的涌水量和地下水位来确定,以保证矿井的正常生产。
其次,排水方式可以选择抽水排水或者引水排水,根据矿井地质条件和排水需求来确定。
再次,排水管道的布置要合理,以减少能耗和维护成本。
最后,排水设备的选择要考虑设备的性能和可靠性,以及设备的维护和管理。
为了优化矿井排水系统的运行,可以采用以下措施:首先,建立完善的排水管理制度,包括排水计划、排水设备的维护和检修等。
其次,引入先进的排水技术,如自动化控制系统和远程监测系统,提高排水的稳定性和可靠性。
目录第一章设计的原始资料 (2)第一节原始资料任务 (2)第二章选型设计的步骤和方法 (2)第一节水泵的选型 (2)第二节管路的选择 (4)第三节校验计算 (9)第四节计算经济指标 (11)参考文献 (12)第一章设计的原始资料和任务第一节原始资料任务某竖井正常涌水量:110m³/h,最大涌水量130m³/h,井筒垂直高度:H h=243,水处理池高度:H c=8m,最大涌水期65d,矿水中性,涌水密度1000N/m³,试选择一个可行的排水方案。
第二章选型设计的步骤和方法本设计根据煤炭部制定的《煤矿安全规程》及《煤矿工业设计规范》,在保证及时排除矿井涌水的前提下。
使排水总费用最小,选择最优方案。
第一节水泵的选型根据《煤矿安全规程》的要求,水泵必须有工作、备用和检修水泵,其中工作水泵应能在20h内排出24h的正常涌水量(包括充填水及其它用水)。
备用水泵的排水能力应不小于工作水泵排水能力的70%。
工作和备用水泵的总排水能力,应能在20h内排出矿井24h的最大涌水量。
检修水泵的排水能力应不小于工作水泵排水能力的25%。
水文地质条件复杂或有突水危险的矿井,可根据具体情况,在主水泵房内预留安装一定数量水泵的位置,或另外增加排水能力。
1、水泵最小排水能力的确定根据《煤矿安全规程》的要求,工作水泵的能力应能在20h内排出矿井24h的正常涌水量(包括充填水及其他用水)。
因此正常涌水时,工作水泵最小排水能力应为Q B=24/20q z=1.2q z=1.2×110m³/h=132m³/h在最大涌水期,工作和备用水泵必须的排水的排水能力为Q B m ax=24/20q max=1.2q max=1.2×130m³/h=156m³/h式中 Q B—工作水泵具备的总排水能力,m³/h;Q Bmax—工作和备用水泵具备的总排水能力,m³/h;q z—矿井正常涌水量,m³/h;q max—矿井最大涌水量,m³/h。
2、水泵所需扬程的计算H B =H sy/ηg=(243+8+5)/0.9=284.4mH sy—排水高度,H sy=h h+h c+H xH x—吸水高度,初选H x=5~5.5m;此处取H x=5ηg—管道效率,与排水管敷设倾角a角有关,一般为:当a=90°时,ηg=0.9~0.89;当a>30°时,ηg=0.83~0.8;a=30°~20°时,ηg=0.8~0.77;a<20°时,ηg=0.77~0.74。
3、水泵型号及台数选择根据计算的 QB、HB,从水泵的技术规格表中初选效率较高的150DM30型水泵。
该水泵额定流量Qe=155m³/h,单级额定扬程He=30m,最高效率77%,对应的允许吸上真空度为6.9m。
(a)正常涌水时水泵工作台数n1=Q B/Q e≥132/155=0.85 取n1=1台(b)水泵级数i=H B/He=284.4/30=9.48 取i=10级(c)备用水泵台数n2=0.7Q B/Q e=0.7×132/155=0.595 取n2=1台(d)检修水泵台数n3=0.25Q B/Q e=0.25×132/155=0.2125 取n3=1台(e)最大涌水时工作水泵台数n4= Q Bmax/Q e=156/155=1.01 取n4=2台因为n1+n2=1+1=2 所以n1+n2>n4(f)水泵总台数n=n1+n2+n3=1+1+1=3台第二节管路的选择1、管路趟数及泵房内管路布置形式。
根据泵的总台数,选用典型的三泵两趟管路系统,一条管路工作,一条管路备用。
正常涌水时,一台水泵向一趟管路供水,最大涌水时,只要两台泵工作就能达到在20h内排出24h的最大涌水量,故从减少能耗的角度可采用两台泵向两趟管路供水,从而可知每趟管内流量Qe等于泵的流量。
2、管路系统管路布置参照图如图1所示的方案。
这种管路布置方式任何一台水泵都可以经过两趟管路中任意一趟排水。
泵房内管路布置图 3、管路材料。
由于井深大于200m ,确定采用无缝钢管。
4、排水管内径排水管直径d ´p=0.0188vpQe =0.01882155=0.166m式中 vp ——排水管内的流速,通常取经济流速vp =1.5~2.2(m/s )来计算。
此处选vp =2m/s查表2-1,因井深小于400m ,选管壁最薄的无缝钢管,外径180mm ,壁厚5mm ,则排水管内径dp=(180-2×5)mm=170mm 。
5、吸水管直径:d ´x=d ´p+0.025=0.166+0.025=0.191mm选标准无缝钢管外径194mm ,壁厚5mm ,内径x d 为184mm 。
表2-1热轧无缝钢管(YB231-70)外径/mm 壁厚/mm外径/mm壁厚/mm外径/mm壁厚/mm89 3.5~24.0 146 4.5~36.0 273 7.0~50.0 95 3.5~24.0 152 4.5~36.0 299 8.0~75.0 102 3.5~28.0 159 4.5~36.0 325 8.0~75.0 108 3.5~28.0 168 5.0~45.0 351 8.0~75.0 114 4.0~28.0 180 5.0~45.0 377 9.0~75.0 121 4.0~32.0 194 5.0~45.0 402 9.0~75.0 127 4.0~32.0 203 6.0~50.0 426 9.0~75.0 133 4.0~32.0 219 6.0~50.0 459 9.0~75.0 140 4.5~36.02457.0~50.04809.0~75.0常用壁厚尺寸系列 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 11 12 13 14 15 16 17 18 19 20 22 25 28 30 32 36 40 50 56 60 63 70 756、吸水管阻力损失:g2x v x x d xl xwx h ⎪⎪⎭⎫ ⎝⎛+=∑ζλg2x v 90x d xl x⎪⎪⎭⎫ ⎝⎛+++=异底ζζζλ =8.92262.11.037.02.5184.070.0349⨯⎪⎭⎫ ⎝⎛+++⨯=0.94m 查表12-2,因dx=184,故底ζ=5.2,90ζ=0.37,异ζ=0.1x λ=0.0349,取x l =7m允许吸水高度[][]wx h 2gx2v s x --=H H查150DM30性能曲线,工业区最大流量时的[]s H =5.8m ,故[]x H =5.8-8.92262.1⨯-0.94=4.73m 7、排水管阻力损失计算 估算管路长度 排水管长度可估算为:L p =H sy +(40~50)m=243+8+5+(40~50)m=(296~306)m 取L p =305m ,吸水管长度可估算为L x =7m 。
8、管路阻力系数R 的计算 沿程阻力系数吸水管 λx = 0.3x d 021.0=3.0184.0021.0 =0.0349排水管 λp ==0.3x d 021.0=3.017.0021.0 =0.0357局部阻力系数 吸、排水管及其阻力系数分别列于表2-2、表2-3中表2-2吸水管附件及局部阻力系数 附件名称 数量 局部阻力系数 底阀 1 5.2 90。
弯头 1 0.37 异径管 1 0.167.5x =∑ζ表2-3排水管附件及局部阻力系数附件名称 数量 局部阻力系数 闸阀 2 2×0.08=0.16 逆止阀15.5 转弯三通 1 1.590。
弯头 4 4×0.37=1.48 异径管10.1 直流三通 4 4×0.1=0.430。
弯头 2 2×0.37×30/90=0.2539.9x =∑ζ9、排水管阻力损失:g 2p 2v p p d pl p wp h ⎪⎪⎭⎫ ⎝⎛+=∑ζλ 异直通转通逆闸ζζζζζζζζ++++++=∑3029042p查表12-2,闸ζ=0.08,逆ζ=5.5,转通ζ=1.5,直通ζ=0.1,90ζ=0.37,30ζ=0.125,异ζ=0.1∑p ζ=2×0.08+5.5+1.5+4×0.37+0.1+4×0.1+2×0.37×30/90=9.39=⨯⎪⎭⎫ ⎝⎛+⨯=8.9229.139.90.17305 0.0357wp h 13.5m 10、水泵所需总扬程H=H p +H x +1.7⎪⎪⎭⎫ ⎝⎛++2g p 2v wp h wx h=(251+4.73)+1.7(0.94+13.5+1.92)/19.6=279.14m<300m第三节 校验计算1、验算水泵级数 i=e H H =3014.279=9.30 取i=10级 2、排水时间的验算正常涌水时,工作水泵n 1台同时工作时每天的排水小时数e1n zq 24z Q T ==24×110/155=17h ≤20h 最大涌水期,工作水泵1n 、2n 台同时工作时每天的排水小时数e2n 1n maxq 24max Q T )(+==24×130/2×155=10h ≤20h3、经济性校核 效率应满足6375.075.085.0max 85.077.0=⨯≥≥=ηη 满足经济性要求。
max η=0.754、稳定性校核。
H sy =256≤0.9iHo=0.9×340m=306m 满足稳定性要求。
当流量为0m ³/h 时查150DM30性能曲线得H O =340m5、经济流速的校核。
吸水管内流速 v x ==x2d 900e πQ =⨯⨯2184.014.39001551.62m/s排水管内流速 v p ==p2d 900e πQ =⨯⨯217.014.39001551.90m/s吸、排水管中水的流速都在经济流速之内,满足要求。
注:吸、排水管中的流速通常取1.5-2.2m/s 6、电动机功率计算。
N ´d =K dηγ⨯⨯36001000e BH Q=1.1×10000×155×284.4/1000×3600×0.77=175KW式中 d K ——电动机容量富余系数,一般当水泵轴功率大于100KW 时,取d K =1.1;当水泵轴功率为10~100KW 时,取d K =1.1~1.2。