发酵过程中工艺参数控制及检测
- 格式:ppt
- 大小:6.07 MB
- 文档页数:121
第七章发酵工艺过程控制11. 发酵工艺过程控制2. 温度对发酵的影响及其控制3. pH值对发酵的影响及其控制4. 溶解氧对发酵的影响及其控制5. 泡沫对发酵的影响及其控制6. 补料(基质浓度)控制7. 发酵过程中的参数检测8. 高密度发酵21.发酵工艺过程控制3发酵过程控制的重要性•过程控制的内容:最佳工艺条件的优选(即最佳工艺参数的确定)以及在发酵过程中通过过程调节达到最适水平的控制。
•过程控制的目的:就是要为生产菌创造一个最适的环境,使所需要的代谢活动得以最充分的表达,以最经济、最大限度地获得发酵产物。
决定发酵水平的因素外部环境因素生物因素:菌株特性(营养要求、生长速率、产物合成速率)设备性能: 传递性能工艺条件物理:T 、Ws化学:pH 、DO 、基质浓度4工业微生物发酵过程52.温度对发酵的影响及其控制影响发酵温度变化的因素温度对微生物生长的影响温度对基质消耗的影响温度对产物合成的影响最适温度的选择与控制62.1 影响发酵温度的因素发酵热就是发酵过程中所产生的净热量Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射产热因素:生物热机械搅拌热散热因素:蒸发热辐射热7(1)生物热Q生物生物热是生产菌在生长繁殖过程中产生的热能。
在发酵过程中,菌体不断利用培养基中的营养物质,将其分解氧化产生能量,一部分用于合成ATP提供细胞代谢产物合成需的能量,另一部分以热的形式散发,这散发出来的热就叫生物热。
影响生物热的因素:菌株发酵类型、培养基、发酵时期8生物热与发酵类型有关微生物进行有氧呼吸产生的热比厌氧发酵产生的热多。
和水一摩尔葡萄糖彻底氧化成CO2好氧:产生287.2千焦耳热量,–183千焦耳转变为高能化合物–104.2千焦以热的形式释放厌氧:产生22.6千焦耳热量,–9.6千焦耳转变为高能化合物–13千焦以热的形式释放9培养过程中生物热的产生具有强烈的时间性细胞呼吸量强弱与生物热的大小有关:1.在培养初期,菌体处于适应期,菌数少,呼吸作用缓慢,产生热量较少。
发酵工艺的控制发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。
反映发酵过程变化的参数可以分为两类:一类是可以直接采用特定的传感器检测的参数。
它们包括反映物理环境和化学环境变化的参数,如温度、压力、搅拌功率、转速、泡沫、发酵液粘度、浊度、pH、离子浓度、溶解氧、基质浓度等,称为直接参数。
另一类是至今尚难于用传感器来检测的参数,包括细胞生长速率、产物合成速率和呼吸嫡等。
这些参数需要根据一些直接检测出来的参数,借助于电脑计算和特定的数学模型才能得到。
因此这类参数被称为间接参数。
上述参数中,对发酵过程影响较大的有温度、pH、溶解氧浓度等。
1、温度温度对发酵过程的影响是多方面的,它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制。
除这些直接影响外,温度还对发酵液的理化性质产生影响,如发酵液的粘度、基质和氧在发酵液中的溶解度和传递速率、某些基质的分解和吸收速率等,进而影响发酵的动力学特性和产物的生物合成。
最适发酵温度是既适合菌体的生长,又适合代谢产物合成的温度,它随菌种、培养基成分、培养条件和菌体生长阶段不同而改变。
理论上,整个发酵过程中不应只选一个培养温度,而应根据发酵的不同阶段,选择不同的培养温度。
在生长阶段,应选择最适生长温度,在产物分泌阶段,应选择最适生产温度。
但实际生产中,由于发酵液的体积很大,升降温度都比较困难,所以在整个发酵过程中,往往采用一个比较适合的培养温度,使得到的产物产量最高,或者在可能的条件下进行适当的调整。
发酵温度可通过温度计或自动记录仪表进行检测,通过向发酵罐的夹套或蛇形管中通人冷水、热水或蒸汽进行调节。
工业生产上,所用的大发酵罐在发酵过程中一般不需要加热,因发酵中释放了大量的发酵热,在这种情况下通常还需要加以冷却,利用自动控制或手动调整的阀门,将冷却水通人夹套或蛇形管中,通过热交换来降温,保持恒温发酵。
2、pH值pH值对微生物的生长繁殖和产物合成的影响有以下几个方面:①影响酶的活性,当pH值抑制菌体中某些酶的活性时,会阻碍菌体的新陈代谢;②影响微生物细胞膜所带电荷的状态,改变细胞膜的通透性,影响微生物对营养物质的吸收及代谢产物的排泄;③影响培养基中某些组分和中间代谢产物的离解,从而影响微生物对这些物质的利用;④PH值不同,往往引起菌体代谢过程的不同,使代谢产物的质量和比例发生改变。
发酵工艺控制概述一. 发酵体系的主要特征1. 细胞内部结构和代谢反应的复杂性2. 细胞所处环境的复杂性3. 过程系统状态的时变性及参数的多样性和复杂性影响因素多,有的因素未知,主要影响因素变化。
发酵水平主要取决于:生产菌种的特性;对工艺条件的控制(适合程度)必须了解:菌体的生理代谢规律工艺条件对发酵过程的影响及其控制发酵过程的有关变化规律常规发酵的工艺控制参数:温度、pH、搅拌转速与功率、空气流量、罐压、液位、补料速率及补料量等。
二. 发酵过程的参数检测1.直接状态参数指能直接反映发酵过程中微生物生理代谢状况的参数包括:pH、DO、溶解CO2、尾气O2、尾气CO2 、黏度、基质和产物浓度、菌体浓度(OD、DCW、湿重)等参数的检测在线检测各种传感器:pH电极、DO电极、温度电极、液位电极、泡沫电极尾气分析仪:测尾气O2和CO2含量离线检测分光光度计、pH 计、温度计、气相色谱(GC)、液相色谱(HPLC)、色质连用(GC-MS)等2.间接状态参数指利用直接状态参数计算求得的参数包括:比生长速率μ、摄氧率OUR、CO2释放率CER、呼吸商RQ、氧的得率系数YX/O 、氧体积传质系数KLa、基质比消耗速率QS、产物比生成速率Qp等综合各种状态参数,获得代谢过程的各种信息,从而对发酵过程做出相应的调整和控制,以获得最经济的发酵生产。
三. 发酵过程的代谢调控和优化1. 代谢调控以代谢(流)的调节最重要调节酶的合成量,称为“粗调”调节酶的催化活性,称为“细调”工艺控制和过程优化的实质,就是利用各种方法和手段,使细胞的外部和内部环境最适合基质和能量流向产物合成的生物途径,以获得最大的产量。
2. 发酵过程优化的一般步骤确定反映发酵过程的各种理化参数及其检测方法研究这些参数的变化对发酵过程的影响及其机制,获得最佳的范围和最适的水平建立数学模型定量描述个参数间随时间的变化关系,为过程优化控制提供依据通过计算机实施在线自动检测和控制,验证各种控制模型的可行性及其适用范围,实现发酵过程的最优控制基质浓度对发酵的影响及其控制先进的培养基组成是充分支持高产、稳产和经济的发酵过程的关键因素之一。
发酵工艺控制—— pH对发酵的影响及控制发酵过程中培养液的pH值是微生物在一定环境条件下代谢活动的综合指标,是一项重要的发酵参数。
它对菌体的生长和产品的积累有很大的影响。
因此,必须掌握发酵过程中pH的变化规律,及时监测并加以控制,使它处于最佳的状态。
尽管多数微生物能在3~4个pH单位的pH范围内生长,但是在发酵工艺中,为了达到高生长速率和最佳产物形成,必须使pH在很窄的范围内保持恒定。
一、PH对发酵的影响微生物生长和生物合成都有其最适和能够耐受的pH范围,大多数细菌生长的最适pH 范围在6.3~7.5,霉菌和酵母生长的最适pH范围在3~6,放线菌生长的最适pH范围在7~8。
有的微生物生长繁殖阶段的最适pH范围与产物形成阶段的最适pH范围是一致的,但也有许多是不一致的。
表7-1列举了几种生长最适pH范围与产物形成最适pH范围不一致的例子。
pH还会影响菌体的形态。
例如,产黄青霉细胞壁的厚度随pH的增加而减小;当pH低于6时,菌丝的长度缩短,直径为2~3μm,当pH=7或>7时,直径为2~18μm,酵母状膨胀菌丝的数目增加。
pH下降后,菌丝形态又恢复正常。
pH还影响细胞膜的电荷状态,引起膜的渗透性发生改变,进而影响菌体对营养物质的吸收和代谢产物的形成。
对产物的稳定性同样有影响。
除此之外,pH对某些生物合成途径有显著影响。
例如,丙酮丁醇发酵中,细菌增殖的pH范围是5.5~7.0为好,发酵后期pH=4.3~5.3时积累丙酮丁醇,pH升高则丙酮丁醇产量减少,而丁酸、乙酸含量增加。
又如,黑曲霉在pH=2~3时产生柠檬酸,pH近中性时,积累草酸和葡萄糖酸。
谷氨酸发酵中,pH=7或微碱时形成谷氨酸,pH酸性时产生N—乙酰谷酰胺。
从以上看出,为要更有效地控制生产过程,必须充分了解微生物生长和产物形成的最适pH范围。
二、影响发酵pH的因素发酵过程中,pH的变化是微生物在发酵过程中代谢活动的综合反映,其变化的根源取决于培养基的成分和微生物的代谢特性。
发酵过程中工艺参数的检测和控制引言发酵是许多生物过程中的重要步骤,广泛应用于食品工业、制药工业以及生物燃料生产等领域。
在发酵过程中,工艺参数的检测和控制对于保证产品质量和提高生产效率起着关键作用。
本文将介绍发酵过程中常见的工艺参数,以及如何通过检测和控制这些参数来优化发酵过程。
1. 温度的检测和控制温度是发酵过程中最基本也是最重要的工艺参数之一。
不同的微生物对温度的要求不同,因此在发酵过程中,需要准确地检测和控制温度以满足微生物的生长和代谢需求。
1.1 温度的检测方法常用的温度检测方法包括使用温度计、红外线测温仪以及温度传感器等。
温度计适用于小规模的发酵过程,能够直接测量液体中的温度。
红外线测温仪可以通过测量光谱的方式非接触地测量物体表面的温度,适用于大规模发酵过程中的温度检测。
温度传感器可以安装在发酵罐内,通过测量发酵液的温度来得到准确的温度数据。
1.2 温度的控制方法温度的控制可以通过调节加热或冷却系统来实现。
在小规模的发酵过程中,可以使用加热器和冷却器来控制温度。
温度传感器监测到的温度与设定的目标温度进行比较,然后通过调节加热器或冷却器的电流或气流来调整温度。
在大规模发酵过程中,还可以使用冷却水循环系统或蒸汽加热系统来控制温度。
2. pH值的检测和控制pH值是指溶液酸碱程度的指标,对于许多微生物的生长和代谢过程也起着重要作用。
在发酵过程中,pH值的检测和控制对于调节微生物的生长环境、抑制有害菌的生长以及促进产品产生等方面起着重要作用。
2.1 pH值的检测方法常用的pH值检测方法包括使用酸碱度试纸、玻璃电极pH计以及电化学传感器等。
酸碱度试纸是一种简单易用的检测方法,通过试纸的颜色变化来判断溶液的pH值范围。
玻璃电极pH计可以直接测量溶液的pH值,并给出精确的数值结果。
电化学传感器也可以被用于连续监测pH值的变化。
2.2 pH值的控制方法pH值的控制可以通过添加酸或碱来实现。
根据pH值的变化情况,通过自动控制系统来准确地调节加酸或加碱的量。
发酵过程的精准调控与工艺优化方法发酵是一种生物技术,通过合理控制发酵过程,可以实现对产物的精确调控和工艺优化。
发酵过程的精准调控和工艺优化方法主要包括生物学和工程学两个方面。
生物学方面,精准调控发酵过程首先需要深入了解微生物的生理特性和代谢途径。
微生物的生理特性包括生长速率、酸碱耐受性、温度耐受性等,可以通过调整发酵条件,如温度、酸碱度等来实现微生物的生长和代谢的调控。
代谢途径是微生物产生所需要产物的关键,可以通过基因工程和代谢工程的方法,通过改造微生物的基因组和调控基因表达,调控微生物的代谢途径,实现对产物的精确调控。
例如,某些微生物产生的酒精是由酵母菌通过糖类的发酵产生的,而糖类的发酵需要酵母菌产生特定的酶来催化,因此可以通过改变酵母菌产生这些酶的酶的表达量或者改变酵母菌的酶的特异性,可以实现对酵母菌发酵产生酒精的精确调控。
而在工程学方面,精准调控发酵过程需要考虑的主要是发酵设备和生物反应系统。
发酵设备的优化可以提高发酵过程中的物质传质和热量传递效率,提高微生物的生长速率和代谢活性。
例如,可以通过设计合适的搅拌装置和气体供应系统等,提高微生物的生长环境和营养供应,从而提高发酵的产量和效率。
生物反应系统是指发酵过程中微生物和底物之间的相互作用系统。
通过优化生物反应系统,可以实现对微生物代谢和产物合成的精确调控。
例如,可以通过控制底物的添加速率和浓度,调控微生物的生长速率和代谢途径,从而实现对产物合成的精确调控。
除了生物学和工程学方面,发酵过程的精准调控和工艺优化还需要考虑监测和控制系统。
监测系统可以实时监测发酵过程中的各项参数,如温度、酸碱度、底物浓度、产物浓度等,以便及时调整发酵条件。
控制系统可以根据监测结果,自动调整发酵设备和生物反应系统的操作参数,实现对发酵过程的精确调控和工艺优化。
总之,发酵过程的精准调控和工艺优化方法需要从生物学和工程学两个方面进行综合考虑。
通过深入了解微生物的生理特性和代谢途径,利用基因工程和代谢工程的方法进行微生物的改造,可以实现对产物的精确调控。
微生物发酵工艺及其控制简述罗宗学(云南大学生命科学学院云南昆明 650091)摘要:根据操作方式不同,发酵工艺分为间歇发酵,连续发酵和流加发酵三种类型,其中流加发酵在生产和科研上应用最为广泛。
在发酵工艺中反映发酵过程变化的参数分为物理参数、化学参数和生物学参数三大类,这些参数的变化直接影响到发酵工业的生产率和产物品质。
本文从对发酵工艺过程影响较大的发酵温度、pH值、溶解氧、泡沫、菌体浓度和基质、发酵时间等6个方面阐述如何进行发酵工艺的控制,为实现发酵产业的经济效益最大化提供必要的理论依据。
关键字:发酵工艺变化参数影响和控制发酵是指通过微生物(或动植物细胞)的生长培养和化学变化,大量产生和积累专门的代谢产物的过程。
早在2000多年前,我国就有了酿酒、制醋的发酵技术,那时候发酵完全属于天然发酵。
20 世纪40年代中期,美国抗菌素工业兴起,大规模生产青霉素,建立了深层通气发酵技术。
1957年,日本微生物生产谷氨酸盐(味精)发酵成功,大大推动了发酵工程的发展。
70年代开始,随着基因工程、细胞工程等生物过程技术的开发,以石油为原料生产单细胞蛋白,使发酵工程从单一依靠碳水化合物(淀粉)向非碳水化合物过渡,从单纯依靠农产品发展到利用矿产资源,如天然气、烷烃等原料的开发。
80年代,随着学科之间的不断交叉和渗透,微生物学家开始用数学、动力学、化工工程原理、计算机技术对发酵过程进行综合研究,人们能按需要设计和培育各种工程菌,在大大提高发酵工程的产品质量的同时,节约能源,降低成本,使发酵技术实现新的革命。
发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。
影响发酵过程发的因素很多,包括物理的(如温度、搅拌转速、空气压力、空气流量、表观粘度、浊度、料液流量等),化学的(如质浓度、pH、产物浓度、溶解氧浓度、氧化还原电位、废气中氧及二氧化碳浓度、核酸量等)和生物的(如菌丝形态、菌浓度、菌体比生长速率、基质消耗速率、关键酶活力等)三大类。