带点粒子在电场中运动轨迹分析
- 格式:doc
- 大小:74.00 KB
- 文档页数:2
带电粒子在匀强电场中的运动(一)一、知识点击:1.带电粒子的加速(或减速)运动(1)从运动状态分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做匀加(减)速直线运动,可以用牛顿第二定律求解。
(2)从功能观点分析:粒子动能的变化量等于电场力所做的功(电场可以是匀强电场或非匀强电场,即:qU mv mv t =-2022121 2.带电粒子的偏转(仅限于匀强电场)运动(1)从运动状态分析:带电粒子以速度垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力的作用而做匀变速曲线运动,其轨迹一定是一条抛物线,是类平抛运动。
此时可用平抛运动的相关公式求解。
(2)运动的几个特点:①运动过程中速度的偏转角度的正切为位移偏转角度正切的两倍;②带电粒子飞出电场好像是从电场的中点飞出一样;3.平衡带电粒子在电场中处于平衡状态,则一定所受合力为零,mg=qE=qU/d 。
二、能力激活:题型一:电场力做功是粒子动能增加的原因:示例1:氢核(质子)和氦核(α粒子)由静止开始经相同的电压加速后,则有( )A .α粒子速度较大,质子的动能较大;B .α粒子动能较大,质子的速度较大;C .α粒子速度和动能都较大;D .质子的速度和动能都较大。
题型二:以用动力学方法解决:示例2:一个质量为m 电量为e 的电子,以初速度v 0与电场线平行的方向射入匀强电场,经过t 秒时间,电子具有的电势能与刚好入射到电场的动能相同(取电子刚进入电场时的位置为零电势能处),则此匀强电场的电场强度E =_____________;带电粒子在电场中所通过的总路程是__________。
题型三:用平抛的运动规律解决: 示例3:水平放置的两块平行金属板A 、B 、,板长L ,相距为d ,使它们分别带上等量的异种电荷,两板间的电压为U ,有一质量为m ,带电量为-q 的粒子以速度v 0沿水平方向紧靠着B 板射入电场,如图所示,在电场中,粒子受的电场力F =___,方向___,带电粒子在电场中做____,在水平方向上做____运动,在竖直方向上做___运动,加速度a =_____,方向_____,带电粒子飞越电场的时间t =______,水平方向的分速度v x =_________带电粒子离开电场时在竖直方向上的分速度v y =_____,带电粒子离开电场时的速度v =______,其方向与水平方向的夹角θ=_______,带电粒子离开电场时在竖直方向的侧位移y=__________。
带电粒子在电场中运动轨迹问题
已知等势面(线)画出电场线已知电场线判断电势的变化在电场线与粒子运动轨迹的交点处画出电场力的方向根据力的方向确定电荷的电性或电场线的方向判断电势的变化
判断电势能的变化结合运动轨迹和电场力的方向判断电场力做功的正负判断电势能的变化
判断动能的变化判断速度的变化由疏密程度比较场强大小比较电场力大小比较加速度大小 知电场线方向的前提下,沿电场线方向电势降低粒子受电场力方向与电荷电性和场强方向有关,且力应指向运动轨迹的内侧力与运动方向夹角大小看做功正负动能定理:W =电E −k 2E k 1动能表达式:E =k mv 2
12W =电E −p 1E p 2
,但要注意
正电荷受电场力与场强方向相同,反之F =qE 沿电场线方向电势降低,注意各物理量都要考虑正负号E =p qφ电场线或等差等势面(线)的疏密程度表示场强的大小F =qE qE =ma 注意等势线与所画电场线应处处垂直。
带电粒子在电场中的运动一、带电粒子在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =U d,v 2-v 02=2ad . 3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 02 非匀强电场中:W =qU =E k2-E k1●带电粒子在匀强电场中的直线运动【例1】如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )图6A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点【答案】A【解析】根据平行板电容器的电容的决定式C = εr S 4πkd 、定义式C =Q U和匀强电场的电压与电场强度的关系式U =Ed 可得E = 4πkQ εr S,可知将C 板向右平移到P ′点,B 、C 两板间的电场强度不变,由O 点静止释放的电子仍然可以运动到P 点,并且会原路返回,故选项A 正确.【变式1】 两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射入,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edh U B .edUh C.eU dh D.eUh d【答案】D【解析】由动能定理得:-e U d h =-E k ,所以E k =eUh d,故D 正确. 二、带电粒子在交变电场中的直线运动【例2】 匀强电场的电场强度E 随时间t 变化的图象如图所示.当t =0时,在此匀强电场中由静止释放一个带电粒子(带正电),设带电粒子只受电场力的作用,则下列说法中正确的是( )A .带电粒子将始终向同一个方向运动B .2 s 末带电粒子回到原出发点C .3 s 末带电粒子的速度不为零D .0~3 s 内,电场力做的总功为零【答案】D【解析】由牛顿第二定律可知带电粒子在第1 s 内的加速度和第2 s 内的加速度的关系,因此粒子将先加速1 s 再减速0.5 s ,速度为零,接下来的0.5 s 将反向加速……,v -t 图象如图所示,根据图象可知选项A 错误;由图象可知前2 s 内的位移为负,故选项B 错误;由图象可知3 s 末带电粒子的速度为零,故选项C 错误;由动能定理结合图象可知0~3 s 内,电场力做的总功为零,故选项D 正确.●带电粒子在电场力和重力作用下的直线运动问题【例3】如图所示,在竖直放置间距为d 的平行板电容器中,存在电场强度为E 的匀强电场.有一质量为m 、电荷量为+q 的点电荷从两极板正中间处静止释放.重力加速度为g .则点电荷运动到负极板的过程( )A .加速度大小为a =Eq m+g B .所需的时间为t =dm Eq C .下降的高度为y =d 2D .电场力所做的功为W =Eqd 【答案】B【解析】点电荷受到重力、电场力的作用,所以a =(Eq )2+(mg )2m ,选项A 错误;根据运动独立性,水平方向点电荷的运动时间为t ,则d 2=12Eq mt 2,解得t =md Eq ,选项B 正确;下降高度y =12gt 2=mgd 2Eq,选项C 错误;电场力做功W =Eqd 2,选项D 错误. 【例4】如图所示,一带电液滴在重力和匀强电场对它的作用力作用下,从静止开始由b 沿直线运动到d ,且bd 与竖直方向所夹的锐角为45°,则下列结论不正确的是( )A .此液滴带负电B .液滴的加速度大小为2gC .合力对液滴做的总功等于零D .液滴的电势能减少【答案】C【解析】带电液滴由静止开始沿bd 做直线运动,所受的合力方向必定沿bd 直线,液滴受力情况如图所示,电场力方向水平向右,与电场方向相反,所以此液滴带负电,故选项A 正确;由图知液滴所受的合力F =2mg ,其加速度为a =F m =2g ,故选项B 正确;因为合力的方向与运动的方向相同,故合力对液滴做正功,故选项C 错误;由于电场力所做的功W 电=Eqx bd sin 45°>0,故电场力对液滴做正功,液滴的电势能减少,故选项D 正确.三、带电粒子在电场中的偏转1.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 02 y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1l mdv 02得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l 2. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =U dy ,指初、末位置间的电势差.【例5】 质谱仪可对离子进行分析.如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生电荷量为q 、质量为m 的正离子,自a 板小孔进入a 、b 间的加速电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器(可上下移动).已知a 、b 板间距为d ,极板M 、N 的长度和间距均为L ,a 、b 间的电压为U 1,M 、N 间的电压为U 2.不计离子重力及进入a 板时的初速度.求:(1)离子从b 板小孔射出时的速度大小;(2)离子自a 板小孔进入加速电场至离子到达探测器的全部飞行时间;(3)为保证离子不打在极板上,U 2与U 1应满足的关系.【答案】 (1)2qU 1m (2)(2d +L )m 2qU 1(3) U 2<2U 1 【解析】(1)由动能定理qU 1=12mv 2,得v =2qU 1m (2)离子在a 、b 间的加速度a 1=qU 1md 在a 、b 间运动的时间t 1=v a 1=2m qU 1·d 在MN 间运动的时间:t 2=Lv =L m 2qU 1离子到达探测器的时间:t =t 1+t 2=(2d +L )m 2qU 1; (3)在MN 间侧移:y =12a 2t 22=qU 2L 22mLv 2=U 2L 4U 1由y <L2,得 U 2<2U 1. 【变式2】 如图所示,电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相同的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则下列说法不正确的是( )A .A 和B 在电场中运动的时间之比为1∶2B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1【答案】D【解析】粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2;竖直方向由h =12at 2得a =2h t 2,它们沿竖直方向运动的加速度大小之比为a A ∶a B =4∶1;根据a =qE m 得m =qE a ,故m A m B =112,A 和B 的位移大小不相等,故选项A 、B 、C 正确,D 错误.【变式3】 如图所示,喷墨打印机中的墨滴在进入偏转电场之前会带上一定量的电荷,在电场的作用下带电荷的墨滴发生偏转到达纸上.已知两偏转极板长度L =1.5×10-2 m ,两极板间电场强度E =1.2×106 N/C ,墨滴的质量m =1.0×10-13 kg ,电荷量q =1.0×10-16 C ,墨滴在进入电场前的速度v 0=15 m/s ,方向与两极板平行.不计空气阻力和墨滴重力,假设偏转电场只局限在平行极板内部,忽略边缘电场的影响.(1)判断墨滴带正电荷还是负电荷?(2)求墨滴在两极板之间运动的时间;(3)求墨滴离开电场时在竖直方向上的位移大小y .【答案】(1)负电荷 (2)1.0×10-3 s (3)6.0×10-4 m【解析】(1)负电荷.(2)墨滴在水平方向做匀速直线运动,那么墨滴在两板之间运动的时间t =L v 0.代入数据可得:t =1.0×10-3 s(3)离开电场前墨滴在竖直方向做初速度为零的匀加速直线运动,a =Eq m代入数据可得:a =1.2×103 m/s 2离开偏转电场时在竖直方向的位移y =12at 2 代入数据可得:y =6.0×10-4 m.。
重点、难点分析1.带电粒子和质点在三场中运动时,所受重力、电场力和洛仑兹力的特点.2.带电粒子和质点在三场中运动时,重力、电场力和洛仑兹力做功的特点以及能量变化的特点.3.对复杂运动过程的分析,以及如何从实际问题中建立物理模型.一、带电粒子在电场和磁场中运动1.带电粒子通常指电子、质子、氚核和α粒子等微观粒子,一般可不计重力.2.处理带电粒子在电场和磁场中运动问题的方法.(1)带电粒子在匀强电场和匀强磁场共存区域内运动时,往往既要受到电场力作用,又要受到洛仑兹力作用.这两个力的特点是,电场力是恒力,而洛仑兹力的大小、方向随速度变化.若二力平衡,则粒子做匀速直线运动.若二力不平衡,则带电粒子所受合外力不可能为恒力,因此带电粒子将做复杂曲线运动.解决粒子做复杂曲线运动问题时,必须用动能定理或能量关系处理.这里要抓住场力做功和能量变化的特点,即电场力做功与电势能变化的特点,以及洛仑兹力永远不做功.(2)若匀强电场和匀强磁场是分开的独立的区域,则带电粒子在其中运动时,分别遵守在电场和磁场中运动规律运动,处理这类问题时要注意分阶段求解.[例1]空间存在相互垂直的匀强电场E和匀强磁场B,其方向如图3-7-1所示.一带电粒子+q以初速度v0垂直于电场和磁场射入,则粒子在场中的运动情况可能是A.沿初速度方向做匀速运动B.在纸平面内沿逆时针方向做匀速圆周运动C.在纸平面内做轨迹向下弯曲的匀变速曲线运动D.初始一段在纸平面内做轨迹向上(或向下)弯曲的非匀变速曲线运动问题:1.应根据哪些物理量的关系来判定粒子的运动情况?2.分析粒子的受力及其特点.判断选择并说明理由.3.若欲使带电粒子在此合场中做匀速运动,对该粒子的电性、带电量多少、质量大小、入射初速度大小有无限制?分析:粒子在场中要受到电场力和洛仑兹力作用.其中电场力为方向竖直向下的恒力;洛仑兹力方向与速度方向垂直且在垂直磁场的纸面内,初态时其方向为竖直向上,随速度大小和方向的变化,洛仑兹力也发生变化.若初态时,电场力和洛仑兹力相等,即qE=Bqv0,则粒子所受合外力为零,粒子做匀速运动.若初态时,电场力和洛仑兹力不相等,则粒子所受合外力不为零,方向与初速度方向垂直(竖直向上或竖直向下),粒子必做曲线运动.比如粒子向下偏转,其速度方向变化,所受洛仑兹力方向改变;同时电场力做正功,粒子动能增加,速度增大,洛仑兹力大小也变化.此时粒子所受合外力大小、方向均变化,则粒子所做曲线运动为非匀变速曲线运动.解:选项A、D正确.讨论与小结:1.判断带电粒子在电场和磁场共存区域内的运动形式,要根据其所受合外力的情况和合外力方向与初速度方向的关系来确定.2.若带电粒子在该合场中做匀速运动,根据qE=Bqv0可知,只要入射粒子的初速度v0=E/B,就可以做匀速运动.与粒子的电性、带电量的多少、质量的大小无关.这一点很重要,很多电学仪器的工作原理都涉及到这方面知识,比如离子速度选择器、质谱仪、电磁流量计等.[例2]如图3-7-2所示为一电磁流量计的示意图,截面为正方形的非磁性管,其边长为d,内有导电液体流动,在垂直液体流动方向加一指向纸里的匀强磁场,磁感应强度为B.现测得液体a、b两点间的电势差为U,求管内导电液体的流量Q为多少?问题:1.液体中的离子在磁场中怎样运动;为什么液体a、b两点间存在电势差?2.简述电磁流量计的工作原理.分析:流量是指单位时间内流过某一横截面的液体的体积.导电液体是指液体内含有正、负离子.在匀强磁场中,导电液体内的正、负离子在洛仑兹力作用下分别向下、上偏转,使管中上部聚积负电荷,下部聚积正电荷.从而在管内建立起一个方向向上的匀强电场,其场强随聚积电荷的增高而加强.后面流入的离子同时受到方向相反的洛仑兹力和电场力作用.当电场增强到使离子所受二力平衡时,此后的离子不再偏移,管上、下聚积电荷不再增加a、b两点电势差达到稳定值U,可以计算出流量Q.解:设液体中离子的带电量为q,因为[例3]如图3-7-3所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里的匀强磁场.一电子从两板左侧以速度v0沿金属板方向射入,当两板间磁场的磁感应强度为B1时,电子从a点射出两板,射出时的速度为2v.当两板间磁场的磁感应强度变子从b点射出时的速率.问题:1.依据力和运动关系,分析电子在合场中为什么会偏转,电子所做的运动是匀变速曲线运动吗?2.因为电子所做运动为非匀变速曲线运动,无法用牛顿运动定律解决,应该考虑用什么方法解决?3.若用动能定理解决,则各场力做功有什么特点?若用能量守恒定律解决,各场的能量有什么特点?分析:电子在合场中受到电场力和洛仑兹力,初态时电子所受二力不平衡,电子将发生偏转.因为洛仑兹力的大小、方向均变化,电子所受合力为变力,做非匀变速曲线运动.若用动能定理处理问题,则需知:电场力做功与路径无关,与带电量和初、末两位置的电势差有关.洛仑兹力永远不做功.若用能量守恒定律处理问题,则需知:电子在磁场中只有动能,没有势能;电子在电场中不仅有动能,而且还有势能,因此要规定零电势面.解一:设aO两点电势差为U,电子电量为e,质量m.依据动能定理可知:解二:设O点所在等势面为零电势面,其余同上.依据能量守恒定律可知:电子从a点射出,其守恒方程为:电子从b点射出,其守恒方程为:小结:1.处理带电粒子在电场和磁场共存区域内运动的另一种方法是应用动能定量,或能量守恒定律.2.应用动能定理时要注意,洛仑兹力永远不做功;应用能量守恒定律时注意,若只有电场力做功,粒子的动能加电势能总和不变,计算时需设定零电势面,同时注意电势能的正、负.[例4]如图3-7-4所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B,在X轴下方有沿y轴负方向的匀强电场,场强为E.一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出.射出之后,第三次到达X轴时,它与点O的距离为L.求此粒子射出时的速度V和运动的总路程(重力不计).问题:带电粒子在电场和磁场中分别做什么运动?你能画出它的轨迹示意图吗?分析:本题与前两个例题不同,它的电场和磁场区域是分开的.带电粒子在x轴上方运动只受洛仑兹力作用,做匀速圆周运动,又因为x轴是磁场的边界,粒子入射速度方向与磁场垂直,所以粒子的轨迹为半圆.带电粒子在x轴下方运动只受电场力作用,速度方向与力在一条直线上,粒子做匀变速直线运动.即当粒子从磁场中以速度v垂直于x轴向下射出时,因电场力作用先匀减速到0,再反向加速至v,并垂直射入磁场(粒子在电场中做类平抛运动).因为只要求讨论到粒子第三次到达x轴,所以粒子运动轨迹如图3-7-5所示.解:如图所示,有L=4R设粒子进入电场做减速运动的最大路程为l,加速度为a,则由前面分析知,粒子运动的总路程为S=2rR+2l小结:本题带电粒子的运动比较复杂,要根据粒子运动形式的不同分阶段处理.这是解决同类问题常用的方法.在动笔计算之前,一定要依据力和运动关系认真分析运动规律,分阶段后再个个击破.二、带电质点在电场和磁场中运动1.带电质点是指重力不能忽略,但又可视为质点的带电体.2.处理带电质点在匀强电场和匀强磁场中运动问题的方法(1)讨论带电质点在复合场中运动问题时,要先弄清重力、电场力、洛仑兹力的特点.根据质点受力情况和初速度情况判定运动形式.请学生回答(2)讨论带电质点在复合场中运动问题时,还须清楚重力、电场力做功和重力势能、电势能变化关系.注意洛仑兹力不做功的特点.若带电质点只受场力作用,则它具有的动能、重力势能和电势能总和不变.请学生回答.[例5]如图3-7-6所示,在匀强电场和匀强磁场共存的区域内,场强E的方向竖直向下,磁感应强度B的方向垂直纸面向里.有三个带有等量同种电荷的油滴M、N、P在该区域中运动,其中M向有做匀速直线运动,N在竖直平面内做匀速圆周运动,P向左做匀速直线运动,不计空气阻力,则三个油滴的质量关系是A.m M>m N>m PB.m P>m N>m MC.m N>m P>m MD.m P>m M>m N问题:1.物体做匀速圆周运动的条件是什么?油滴N在场中的受力情况怎样?其电性如何?2.请对油滴P、M进行受力分析,并选出正确答案.分析:油滴在合场中要同时受到重力、电场力和洛图3-7-6仑兹力作用,其中重力、电场力是恒力,洛仑兹力随速度的变化而变化.若油滴N欲做匀速圆周运动,则其所受重力和电场力必然等大、反向,所受合力表现为洛仑兹力.这样才能满足合外力大小不变,方向时刻与速度方向垂直的运动条件.油滴一定带负电.三油滴的受力分析如图3-7-7所示.因它们所受的电场力和洛仑兹力大小分别相同,所以可知油滴P的质量最大,油滴M的质量最小.解:选项B正确.小结:1.若带电质点在三场共存区域内运动,一般会同时受到重力、电场力、洛仑兹力作用,若电场和磁场又为匀强场,则重力、电场力为恒力,洛仑兹力与速度有关,可为恒力也可为变力.2.若电场和磁场均是匀强场,且带电质点仅受三场力作用.则:(1)若重力与电场力等大、反向,初速度为零,带电质点必静止不动.(2)若重力与电场力等大、反向,初速度不为零,带电质点必做匀速圆周运动,洛仑兹力提供向心力.(3)若初速度不为零,且三力合力为零,带电质点必做匀速直线运动.(4)若初速度不为零,初态洛仑兹力与重力(或电场力)等大、反向,合外力不为零,带电质点必做复杂曲线运动.[例6]如图3-7-8所示,在xOy平面内,有场强E=12N/C,方向沿x轴正方向的匀强电场和磁感应强度大小为B=2T、方向垂直xOy平面指向纸里的匀强磁场.一个质量m=4×10-5kg,电量q=2.5×10-5C带正电的微粒,在xOy平面内做匀速直线运动,运动到原点O时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点.求:(1)P 点到原点O的距离;(2)带电微粒由原点O运动到P点的时间.问题:1.微粒运动到O点之前都受到哪些力的作用?在这段时间内微粒为什么能做匀速直线运动?2.微粒运动到O点之后都受到哪些力的作用?在这段时间内微粒做什么运动?说明原因.分析:(1)微粒运动到O点之前要受到重力、电场力和洛仑兹力作用,如图3-7-9所示.在这段时间内微粒做匀速直线运动,说明三力合力为零.由此可得出微粒运动到O点时速度的大小和方向.(2)微粒运动到O点之后,撤去磁场,微粒只受到重力、电场力作用,其合力为一恒力,与初速度有一夹角,因此微粒将做匀变速曲线运动,如图3-7-9所示.可利用运动合成和分解的方法去求解.解:因为mg=4×10-4NF=Eq=3×1O-4N(Bqv)2=(Eq)2+(mg)2所以 v=10m/s所以θ=37°因为重力和电场力的合力是恒力,且方向与微粒在O点的速度方向垂直,所以微粒在后一段时间内的运动为类平抛运动.可沿初速度方向和合力方向进行分解.设沿初速度方向的位移为s1,沿合力方向的位移为s2,则因为s l=vt所以 P点到原点O的距离为15m; O点到P点运动时间为1. 2s.[例7]如图3-7-10所示,一对竖直放置的平行金属板长为L,板间距离为d,接在电压为U的电源上,板间有一与电场方向垂直的匀强磁场,磁场方向垂直纸面向里,磁感强度为B,有一质量为m,带电量为+q的油滴,从离平行板上端h高处由静止开始自由下落,由两板正中央P点处进入电场和磁场空间,油滴在P点所受电场力和磁场力恰好平衡,最后油滴从一块极板的边缘D处离开电场和磁场空间.求:(1)h=?(2)油滴在D点时的速度大小?问题:油滴的运动可分为几个阶段?每个阶段油滴做什么运动?每个阶段应该用什么方法来求解?分析:油滴的运动可分为两个阶段:从静止始至P点,油滴做自由落体运动;油滴进入P点以后,要受到重力、电场力和洛仑兹力作用,且合力不为零,由前面的小结知,油滴将做复杂曲线运动并从D点离开.第一个阶段的运动,可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.第二个阶段的运动只能依据能量关系求解,即重力、电场力做功之和等于油滴动能变化.或油滴具有的重力势能、电势能、动能总和不变.当然这一能量关系对整个运动过程也适用.解:(1)对第一个运动过程,依据动能定理和在P点的受力情况可知:(2)对整个运动过程,依据动能定理可知:小结:由例6、例7可以看出,处理带电质点在三场中运动的问题,首先应该对质点进行受力分析,依据力和运动的关系确定运动的形式.若质点做匀变速运动,往往既可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.若质点做非匀变速运动,往往需要用能量关系求解.应用能量关系求解时,要特别注意各力做功的特点以及重力、电场力做功分别与重力势能和电势能变化的关系.。
由粒子的轨迹为曲线, 合力(只受电场力) 指向轨迹凹的一侧, 又要沿电场线切线方向, 可知粒子所受电场力的方向偏向右,因粒子带负电,故 电场线方向偏向左,由沿电场线方向电势降低,可知 φN <φM,E pM <E pN 。
N 点电场线比 M 点密,故场强 E M <E N , 由加速度 a = qE/m 可知 a M <a N 。
粒子若从 N 点运动到 M 点,电场力做正功,动能增加,故v M >v N ,电势能减小E pM <E pN ,综上所述,选项 D 正确。
例 2. 如图所示,虚线 a 、b 、c 代表某一电场中的三个等势面,相邻等势面之间的电势差 相等,实线为一带正电的粒子仅在电场力作用下通过该区域时的运动轨迹,P 、 R 、Q 是 这条轨迹上的三点, 其中 R 在等势面 b 上。
下列判断正确的是 (A. 三个等势面中, c 的电势最低 静电场专题|带电粒子在电场中运动轨迹与电场线、等势面类问题1. 曲线运动合力的方向指向轨迹凹的一侧, 正电荷受电场力方向与场强方向相同, 负电荷 受电场力方向与场强方向相反(电场线的切线方向,与等势面垂直)。
直线运动的合力 方向与运动方向在同一直线上。
2. 同一电荷在电场线(或等势面)密集处场强大,受到的电场力大,产生的加速度大, 反之亦然。
3. 假设带电粒子从一点到另一点, 看电场力的方向与速度方向的夹角, 判断电场力做功情 况,电场力做正功,电势能减少,动能增加 ;电场力做负功,电势能增加,动能减少。
4. 沿电场线的方向,电势降低。
例 1. (2018·天津卷 ·3)如图所示,实线表示某电场的电场线 ( 方向未标出 ),虚线是一带负电的粒子只在电场力作用下的运动轨迹, 设 M 点和 N 点的电势分别为 φM 、φN ,粒子在 M和 N 时加速度大小分别为 列判断正确的是( )a M 、a N ,速度大小分别为 A.v M <v N , a M <a NB. v M < v N , φM <φNC.φM < φN , E p M < E pND.a M <a N , E pM < E pN )B. 带电粒子在P 点的电势能比在Q 点的大C. 带电粒子在P 点的动能与电势能之和比在Q 点的小D. 带电粒子在R 点的加速度方向垂直于等势面b由粒子的轨迹为曲线,合力(只受电场力)指向轨迹凹的一侧,又要垂直于等势面,可知粒子所受电场力的方向偏向下,因粒子带正电,电场线垂直于等势面,故加速度垂直于等势面电场线方向从上到下,由沿电场线方向电势降低, c 的电势最低, a 的电势最高。
带电粒子在电场中运动轨迹类问题知识回顾:1、由运动轨迹分析可知:(1)带电粒子的速度方向为该点轨迹的切线方向;(2)带电粒子的受力方向指向轨迹凹侧;(3)加减速的判断:力与速度的夹角若为锐角,则加速;若为钝角,则减速。
2、电场线和等势面的特点(1)电场强度的强弱判断。
A. 电场线:越密越强B. 等差等势面:越密越强(2)粒子电性和电场方向的判断。
A.正电荷受力方向沿电场线方向,负电荷受力方向逆着电场线方向。
B.沿电场线方向电势降低。
3、功能转化关系电场力做正功则动能增加,速度增加,电势能减小;电场力做负功则动能减少,速度减少,电势能增加。
4、从电势高低角度来判断电势能的高低关系式:P E q ϕ=正电荷电势越高,电势能越大;负电荷电势越高,电势能越低。
练习题一、单选题1、如图所示,实线表示某电场的电场线(方向未标出),虚线是一带负电的粒子只在电场力作用下的运动轨迹,粒子在M 点和N 点时加速度大小分别为M a 、N a ,速度大小分别为M v 、N v ,下列判断正确的是( )A.M N a a <,M N v v <B.M N a a <,M N v v >C.M N a a >,M N v v <D.M N a a >,M N v v >1、答案:B解析:N 点的电场线比M 点的密,故N 点的场强大于M 点的场强,粒子在N 点的加速度大于在M 点的加速度,即M N a a <,做曲线运动的粒子受到的合外力指向曲线的凹侧,粒子受到的电场力指向曲线的右下方,因为粒子带负电,场强方向沿左上方,粒子由M 到N ,电场力做负功,所以M N v v >,故B 正确;ACD 错误。
故选B 。
2、一个电子只在电场力作用下从a 点运动到b 点的轨迹如图中虚线所示,图中一组平行实线可能是电场线也可能是等势面,则以下说法正确的是( )A.如果实线是等势面,a 点的场强比b 点的场强小B.如果实线是电场线,a 点的场强比b 点的场强小C.如果实线是电场线,电子在a 点的速率一定大于在b 点的速率D.如果实线是等势面,电子在a 点的速率一定大于在b 点的速率2、答案:D3、如图所示,虚线a b c 、、代表电场中的三条电场线,实线为一带负电的粒子仅在电场力作用下通过该区域时的运动轨迹,P R Q 、、是这条轨迹上的三点,由此可知( )A.带电粒子在R 点时的速度大小大于在Q 点时的速度大小B.带电粒子在R 点时的速度大小等于在Q 点时的速度大小C.带电粒子在R 点时的动能与电势能之和比在Q 点时的小,比在P 点时的大D.带电粒子在R 点时的动能与电势能之和比在Q 点时的大,比在P 点时的小3、答案:A解析:AB.电荷做曲线运动,电场力指向曲线的内侧,所以电场力的方向向右;若粒子从P 经过R 运动到Q ,电场力做负功,动能减小,可知P 点的动能最大,即速度最大,其次为R 点,而Q 点速度最小,故A 正确,B 错误;CD.根据能量守恒定律可知带电粒子运动过程中电势能与动能的和不变,故CD 错误。
电场中带电粒子的运动轨迹和能量变化一、电场的基本概念3.电场强度二、带电粒子在电场中的受力1.电荷在电场中的受力2.电场力的大小和方向3.电场力的作用点三、带电粒子的运动轨迹1.电场中的直线运动–匀速直线运动–加速直线运动–减速直线运动2.电场中的曲线运动–匀速圆周运动–非匀速圆周运动–抛物线运动四、带电粒子的能量变化•电势能的定义•电势能的变化规律•电势能与电场力的关系•动能的定义•动能的变化规律•动能与电场力的关系3.势能与动能的转化–势能转化为动能–动能转化为势能五、常见电场问题分析•静电力做功与电势能变化2.恒定电场3.非恒定电场–带电粒子的加速与减速六、实验与应用1.电场实验–电场线的描绘–电场强度的测量2.带电粒子在电场中的应用–电子束聚焦知识点总结:电场中带电粒子的运动轨迹和能量变化是物理学中的重要内容,涉及电场的基本概念、带电粒子的受力分析、运动轨迹的判断、能量变化的计算以及实验与应用。
掌握这些知识点对于理解电场的本质和带电粒子在电场中的行为具有重要意义。
习题及方法:1.习题:一个正电荷在电场中受到的电场力为2N,求该电荷的电量。
方法:根据电场力的定义,电场力F=qE,其中q为电荷量,E为电场强度。
将已知数据代入公式,得q=F/E=2N/1N/C=2C。
2.习题:一个带电粒子在电场中做匀速直线运动,已知电场强度为5N/C,求粒子的电荷量。
方法:根据电场力的定义,电场力F=qE,其中q为电荷量,E为电场强度。
由于粒子做匀速直线运动,所以电场力等于零,即F=0。
因此,q=F/E=0/5N/C=0C。
3.习题:一个带电粒子在电场中做加速直线运动,已知电场强度为10N/C,粒子的电荷量为2C,求粒子的加速度。
方法:根据牛顿第二定律,F=ma,其中F为电场力,m为粒子的质量,a为加速度。
电场力F=qE,将已知数据代入公式,得ma=qE,即ma=2C*10N/C=20N。
因此,a=F/m=20N/m。
电场中带点粒子的运动轨迹分析
授课教师:梁继奎
指导教师:张有松
知识整理
一、电场线的性质
1、电线的疏密程度表示电场的强弱,切线方向是电场力的方
向
2、沿着电场线,电势降低得最快
二、公式
三、例题如图所示,实线表示某一电场的电场线,一带电粒子
(不计重力)从A点进入电场,在电场力的作用下沿虚线轨迹到达B点,
试判断:1、粒子带______电?
2、粒子在______点的加速大;
3、粒子在______点点的加速大
4、粒子在______点的电势能大
5、A、B两点相比______点的电势高.
例题2如图所示,虚线表示真空中一点电荷Q的电场中的两个等势面,实线表示一个带负电的电荷q的粒子的运动轨迹,不考虑重力,
1、Q是正电荷还是负电荷?
2、A , B , C 点电势的大小
3、该粒子在A , B , C 点动能的大小关系
4、该粒子在A , B , C 点电势能的大小关系
受力分析
1假设 2 凹面 3 正交分解
动能
1 做功观点
2 运动的观点能量守恒
电势能
1 电场线
2 做功
3 能量守恒。