磁流变阻尼器 ppt
- 格式:ppt
- 大小:2.91 MB
- 文档页数:43
磁流变阻尼器简介磁流变阻尼器(Magneto-Rheological Damper,简称MR阻尼器)是一种利用电磁效应来调节阻尼力的装置。
它由磁流变液、激磁线圈、控制系统等组成。
MR阻尼器在汽车、建筑物、桥梁等工程领域中广泛应用,可以实现对结构物或装置的精确控制和调节。
原理MR阻尼器的工作原理基于磁流变液的特殊性质。
磁流变液是一种具有磁致变色性的特殊材料,在无磁场作用下呈流动性,而在磁场作用下则呈现出高阻尼特性。
利用这一特性,MR阻尼器可以通过控制磁场的强弱来调节阻尼力。
在MR阻尼器中,激磁线圈产生磁场,使得磁流变液发生磁致变色。
当有外力作用于结构物或装置时,磁流变液的微粒间会发生相互碰撞和摩擦,产生阻尼力,从而减缓结构物或装置的振动或运动。
通过调节激磁线圈的电流,可以控制磁场的强度,进而达到调节阻尼力的目的。
优势快速响应由于磁流变液具有快速响应的特性,MR阻尼器的响应速度非常快。
它可以在毫秒级别内调节阻尼力,以适应不同的振动频率和振幅变化。
调节范围广MR阻尼器的阻尼力可以进行广泛的调节,可以实现从低阻尼到高阻尼的连续变化。
这使得它在不同应用场景下都有良好的适应性。
精确控制通过电流的控制,可以精确地操控MR阻尼器的阻尼力。
这种精确控制性能使得MR阻尼器在需要精确控制和调节的场景中具有优势。
高可靠性MR阻尼器由于不使用机械可动部件,因此没有摩擦、磨损问题,具有较高的可靠性和耐久性。
同时,它的结构简单,易于维护。
应用领域汽车工业在汽车悬挂系统中,MR阻尼器可以调节车辆的悬挂刚度和减震效果,提升行驶的舒适性和稳定性。
它可以根据路况的变化来实时调节悬挂系统,提供更好的悬挂效果。
建筑工程在高层建筑或桥梁结构中,MR阻尼器可以减少结构物的振动幅度,提高结构的抗风、抗地震能力。
它可以根据外部风力或地震波的变化来调节阻尼力,实现对结构物的精确控制。
航空航天在航空航天领域,MR阻尼器可以用于飞机的减振系统,减少机身的振动,提高乘客的舒适感。
磁流变阻尼器磁流变阻尼器又称MR阻尼器。
一、基本介绍MR阻尼器是近十年出现的一种新型的结构半主动控制装置。
这种阻尼器具有结构简单、阻尼力连续逆顺可调并目_可调范围大、响应快、良好的温度稳定性以及可与微机控制结合等优良特性}fu受到广泛关注。
目前,MR 阻尼器已在车辆悬挂系统、斜拉桥拉索振动控制、海洋平台结构的减振及高层建筑的隔振等方面得到了初步的应用,展现出了良好的应用前景。
MR阻尼器是一种问世不久的新型阻尼器,具有阻尼力大小可控、体积小、响应快的优点。
目前市场上供应的MR阻尼器均为电流调节式,如美国LORD公司的RD-1005型MR阻尼器,该阻尼器由磁流变液、活塞、线圈、外缸等组成,作用在阻尼器两端的往复外力推动活塞,活塞两端的磁流变液通过活塞上的节流孔往复流动。
二、分类磁流变液在MR阻尼器内的运动,一般可近似等同一个无限大平行平板间的几种不同形式。
根据流体的受力状态和流动特点的不同,MR阻尼器主要分为阀式、剪切式、剪切阀式和挤压流动式。
(1)阀式:这种阻尼器的特点是通过迫使磁流变液通过一对固定极板间隙Ifu产生阻尼。
(2)剪切式:这种装置在工作过程中,上下极板以相对速度v平行运。
(3)剪切阀式:剪切阀式MR阻尼器内的磁流变液既像阀式MR阻尼器内的磁流变液那样受到挤压被迫通过两极板,又像剪切式MR阻尼器内的磁流变液那样受到两极板相对运动时产生的剪切作用。
(4)挤压流动式:磁流变液装置还可以设计成两极板以相对速度v作接近或拉开运动形式的挤压流动式MR阻尼器,它迫使流体向与极板运动速度垂直的方向流动。
不过由于这种类型的减振设备存在一些缺点受到一定的限制,如磁路设计比较复杂和此类设备的工作原理决定了磁路间隙受场强设计的限制不可能太大等。
因此,这种减振器只适合十振幅不大的减振对象。
三、工作原理当线圈内的电流增大,节流孔内磁场就会增强,磁流变液流过节流孔的阻力随之增大,使得阻尼器输出的阻尼力增大,反之,电流减小,阻尼力也减小。
第二章磁流变阻尼器的基本原理和结构2.1 磁流变阻尼器的工作模式磁流变技术研究的一个重要目标是利用磁流变液在外磁场作用下改变流变特性这一特点,开发各种用途的磁流变阻尼器,MR阻尼器的工作模式有下列几种:(1)压力驱动模式或流动模式。
如图 2.1(a)所示,这是目前应用最多的一种工作模式。
其原理,磁流变液在压力作用下通过固定的磁极,磁流变液流动的方向与磁场方向垂直,可通过改变励磁线圈的电流控制磁场的变化,使得磁流变液的流动性能发生变化,从而使磁流变阻尼器的阻尼力发生变化。
该系统可用于伺服控制阀,阻尼器和减震器。
(2)直接剪切模式。
如图 2.1(b)所示,只有一个磁极固定,另一个磁极作平行于固定磁极的运动或绕固定磁极旋转,磁流变液在可移动磁极的作用下通过可控磁场,同样磁场方向垂直于磁流变流体流动,适合于磁极运动的使用场合。
这种系统可用于离合器,制动器,锁紧装置和阻尼器等磁流变器件。
(3)挤压模式。
如图 2.1(c)所示,磁极移动方向与磁场方向相同,磁场方向与磁流变液的流动方向垂直,磁流变液在磁极运动时同时受到挤压和剪切作用。
磁流变液在磁极压力的作用下向四周流动磁极移动位移较小,磁流变液产生的阻尼力较大,可应用于低速小位移(一般少于lmm )、大阻尼力的磁流变阻尼器和减振设备等。
这一模式中不均匀磁场导致悬浮颗粒聚集,阻尼力随时间不断增长,无法实现对振动的稳定控制[10]。
(a). 压力驱动或流动模式(b). 剪切模式(c). 挤压模式图2.1磁流变流体的基本工作模式Fig.2.1 Basic working modes for MR fluid2.2 磁流变阻尼器的基本结构2.2.1 磁流变阻尼器的结构分析磁流变阻尼器是通过改变控制装置的参数来实现对结构的可调控制,其主要特点是所需外加能量很少、装置简单、不易失稳,摒弃了被动控制和主动控制的缺点,兼顾了它们的优点。
磁流变阻尼器可在一定的范围内通过调整磁场强度来调整减振器的阻尼系数,实现振动的半主动控制。
安徽机电职业技术学院毕业论文浅析磁流变阻尼器工作原理系别专业班级姓名学号2013 ~ 2014 学年第一学期目录摘要 (Ⅰ)第一章绪论 (1)1.1课题背景 (2)1.2磁流变技术的研究与发展 (4)第二章磁流变阻尼器工作原理及结构模式 (7)2.1磁流变阻尼器的工作模式 (7)2.2磁流变阻尼器的基本结构 (7)2.3磁流变减震器的构造及工作原理图 (11)第三章磁流变阻尼器的设计 (13)3.1磁流变阻尼器设计准则 (13)3.2磁流变阻尼器的结构参数的计算 (13)3.3磁流变阻尼器的优化设计 (15)第四章磁流体阻尼器在车辆上的具体应用 (18)4.1磁流变阻尼器在悬架系统中的应用和发展情况 (18)4.2磁流体阻尼器在车辆半主动悬架上的应用 (19)4.3可调磁流体阻尼器的发展 (19)摘要磁流变液(Magnetorheological Fluid简称MRF)是一种智能材料。
在磁场作用下,它能在液态和类固态之间进行快速转化。
同时转化的过程是可控、可逆的。
具有在外加磁场作用下快速可逆地改变流体性能的特点。
磁流变液与过去常用的电流变液相比,具有许多优点: (1)屈服应力更大(2)温度范围宽(3)稳定性好(4)在装置中用量较小,使用装置紧凑、质量更轻(5)安全性高,因而可以广泛应用于航空航天、机械工程、汽车工程、精密加工工程、控制工程等领域。
本文研究了磁流变磁流变液材料的组成、磁流变液效应及其主要特征、磁流变液的主要性能的基础上,在根据阻尼力的要求和机械设计基本理论,确立了磁流变阻尼器的基本结构参数尺寸及主要部件的选用,并以此为基础进行了磁路设计,得出了活塞的磁路结构。
在机械设计基本理论的指导下,计算得出磁流变阻尼器的结构参数尺寸,并应用AutoCAD制图软件,画出了磁流变阻尼器的装配图,分析影响磁流变阻尼器工作性能的主要因素。
本文同时研究了磁流变阻尼器的工作原理,先对磁流变液和磁流变阻尼器的发展及应用趋势及其在汽车悬架控制技术中的应用发展情况进行研究。
磁流变阻尼器拟静力力学特性及力学模型磁流变阻尼器(MR阻尼器)是一种利用磁流变技术实现阻尼控制的装置,具有实时响应性、快速调节性和可靠性强等特点,广泛应用于各种工程领域。
磁流变阻尼器的工作原理是利用磁流变液在外加磁场作用下的流变特性,通过改变磁场强度来调节磁流变液的黏度,从而实现对系统阻尼特性的调节。
本文旨在研究磁流变阻尼器的拟静力力学特性及力学模型,为磁流变阻尼器的设计和应用提供理论支持。
磁流变阻尼器的拟静力力学特性是指在外加静载荷作用下,磁流变阻尼器的力学特性表现为阻尼力与位移之间的关系。
磁流变阻尼器在拟静力状态下的力学特性是其工作性能的重要指标,直接影响其在各种工程领域的应用效果。
研究磁流变阻尼器的拟静力力学特性对于其设计和优化具有重要意义。
在研究磁流变阻尼器的拟静力力学特性时,首先需要建立磁流变阻尼器的力学模型。
磁流变阻尼器的力学模型包括结构模型和磁流变液的流变特性模型。
结构模型用于描述磁流变阻尼器的外部形态和内部结构,包括磁流变液的容器、橡胶密封圈、磁场产生器等各个组成部分。
磁流变液的流变特性模型用于描述磁流变液在磁场作用下的流变行为,包括黏度随磁场强度的变化规律。
建立完整的磁流变阻尼器力学模型是研究其拟静力力学特性的基础。
在建立磁流变阻尼器的力学模型后,可以通过理论分析和数值模拟的方法研究其拟静力力学特性。
理论分析可以利用经典的弹性力学理论和流变学理论,推导出磁流变阻尼器在拟静力状态下的力学特性模型,包括阻尼力与位移之间的函数关系。
数值模拟通常采用有限元分析方法,通过建立磁流变阻尼器的有限元模型,对其在不同工况下的力学特性进行仿真计算,得到阻尼力-位移曲线等重要参数,为磁流变阻尼器的设计和应用提供参考。
研究磁流变阻尼器的拟静力力学特性还可以通过实验手段进行。
实验可以利用加载试验机等设备,对磁流变阻尼器在拟静力状态下的力学特性进行测试,获得阻尼力-位移曲线、阻尼力-速度曲线等实验数据,验证理论分析和数值模拟结果,为磁流变阻尼器的设计和应用提供可靠的实验基础。
磁流变阻尼器工作原理
磁流变阻尼器是一种利用磁流变效应来控制阻尼力的装置。
其工作原理是通过改变流体中的磁场强度来改变流体的流变性质,从而控制阻尼器的阻尼力。
磁流变阻尼器由外壳、流体、电磁线圈和磁芯等部分组成。
当通过电磁线圈中通电时,会在磁芯中产生一个磁场。
流体中的磁流变材料是由微小的磁性粒子悬浮在流体中构成的,通过调节电磁线圈的电流,可以改变流体中的磁场强度,进而改变磁流变材料的排列结构和相互作用力。
当磁流变阻尼器不通电时,流体中的磁流变材料呈现出自由流动状态,阻尼器的阻尼力较小。
而当电磁线圈通电时,磁流变材料会在磁场的作用下排列成链状结构,形成各粒子间的相互作用力,使流体的流变性质发生变化,从而使阻尼器的阻尼力增加。
阻尼力的大小可以通过调节电磁线圈的电流来控制。
磁流变阻尼器通过改变磁场强度来调节阻尼力的特性,可以广泛应用于工程领域,例如汽车制动系统、建筑结构减震装置、振动控制设备等。
它具有响应快、阻尼力可调、无污染等特点,因此在许多应用场景中得到了广泛应用。
磁流变阻尼器拟静力力学特性及力学模型磁流变阻尼器是一种利用磁流变材料特性制造的延伸装置,它主要通过加磁场对磁流变材料施加电磁力,进而改变其粘滞特性,达到提高机械系统阻尼性能的目的.磁流变阻尼器具有结构简单、响应快速、阻尼可调和瞬态特性好等优点,因此被广泛应用于航空航天、汽车、建筑和机械控制等领域.磁流变阻尼器的拟静力力学特性主要是指在静态或准静态加载条件下,阻尼器所施加的力与其位移之间的关系.考虑到磁流变阻尼器的实际应用,主要关注的力学特性有两个方面:力位移曲线和力施加模式.力位移曲线是指在静态加载条件下,阻尼器所施加的力与其位移之间的关系.磁流变阻尼器的力位移曲线通常是非线性的,这是因为磁流变材料的粘滞特性随其受力的大小和速度而变化.在小位移范围内,磁流变阻尼器的力位移曲线可以近似为线性,但在大位移范围内,由于磁流变材料的饱和效应和非线性特性,力位移曲线将呈现出明显的非线性特点.力施加模式是指磁流变阻尼器施加力的方式和方式的变化.磁流变阻尼器一般可以分为两种工作模式:恒力模式和恒位移模式.在恒力模式下,磁流变阻尼器所施加的力保持不变,可以通过改变磁场的强度来调节阻尼力的大小.在恒位移模式下,磁流变阻尼器所施加的力与其位移成正比,可以通过改变机械系统的位移来调节阻尼力的大小.根据以上描述,可以得出磁流变阻尼器的力学模型.磁流变阻尼器的力学模型可以基于两个基本原理建立:流变阻尼原理和磁场对磁流变材料施加的电磁力原理.在流变阻尼原理方面,可以采用新观察流变阻尼模型进行建模,该模型将阻尼力与变形速度和变形位移相关联.在磁场对磁流变材料施加的电磁力原理方面,可以采用磁导率模型来描述磁流变材料的磁感应强度与磁场强度之间的关系.将这两个模型结合起来,可以得到磁流变阻尼器的力学模型.总而言之,磁流变阻尼器的拟静力力学特性包括力位移曲线和力施加模式.力位移曲线表达了阻尼器所施加的力与其位移之间的关系,力施加模式则表达了阻尼器施加力的方式和方式的变化.力学模型则用于描述磁流变阻尼器的力学行为.这些特性和模型的研究对于磁流变阻尼器的设计和应用具有重要意义.。