武汉理工-材料物理学课件(2)
- 格式:ppt
- 大小:141.50 KB
- 文档页数:33
第四章固体的表面与界面固体的接触界面可一般可分为表面、界面和相界面:1)表面:表面是指固体与真空的界面。
2)界面:相邻两个结晶空间的交界面称为“界面”。
3)相界面:相邻相之间的交界面称为相界面。
有三类: S/S;S/V; S/L。
产生表面现象的根本原因在于材料表面质点排列不同于材料内部,材料表面处于高能量状态⏹ 4.1 固体的表面及其结构♦ 4.1.1固体的表面1.理想表面2.清洁表面(1)台阶表面(2)弛豫表面(3)重构表面3.吸附表面4. 固体的表面自由能和表面张力5. 表面偏析6. 表面力场固体表面的结构和性质在很多方面都与体内完全不同。
所以,一般将固体表面称为晶体三维周期结构和真空之间的过渡区域。
这种表面实际上是理想表面,此外还有清洁表面、吸附表面等。
1、理想表面没有杂质的单晶,作为零级近似可将清洁表面理想为一个理想表面。
这是一种理论上的结构完整的二维点阵平面。
它忽略了晶体内部周期性势场在晶体表面中断的影响,忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外界对表面的物理化学作用等。
这种理想表面作为半无限的晶体,体内的原子的位置及其结构的周期性,与原来无限的晶体完全一样。
2、清洁表面清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。
这种清洁表面的化学组成与体内相同,但周期结构可以不同于体内。
根据表面原子的排列,清洁表面又可分为台阶表面、弛豫表面、重构表面等。
(1)台阶表面台阶表面不是一个平面,它是由有规则的或不规则的台阶的表面所组成(2)弛豫表面 –在垂直于表面的方向上原子间距不同于该方向上晶格内部原子间距的表面由于固体体相的三维周期性在固体表面处突然中断,表面上原子的配位情况发生变化,相应地表面原子附近的电荷分布将有所改变,表面原子所处的力场与体相内原子也不相同。
为使体系能量尽可能降低,表面上的原子常常会产生相对于正常位置的上、下位移,结果表面相中原子层的间距偏离体相内原子层的间距,产生压缩或膨胀。
第一章一、基本概念1.塑性形变及其形式:塑性形变是指一种在外力移去后不能恢复的形变。
晶体中的塑性形变有两种基本方式:滑移和孪晶。
2.蠕变:当对粘弹性体施加恒定压力σ0时,其应变随时间而增加,这种现象叫做蠕变。
弛豫:当对粘弹性体施加恒定应变ε0时,其应力将随时间而减小,这种现象叫弛豫。
3.粘弹性:一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性,称为粘弹性,所有聚合物差不多都表现出这种粘弹性。
4.滞弹性:对于理想的弹性固体,作用应力会立即引起弹性应变,一旦应力消除,应变也随之消除,但对于实际固体这种弹性应变的产生与消除需要有限时间,无机固体和金属这种与时间有关的弹性称为滞弹性。
二、基本理论1.金属材料和无机非金属材料的塑性变形机理:○1产生滑移机会的多少取决于晶体中的滑移系统数量。
○2对于金属,金属键没有方向性,滑移系统多,所以易于滑移而产生塑性形变。
对于无机非材料,离子键和共价键有明显的方向性,同号离子相遇,斥力极大,只有个别滑移系统才能满足几何条件与静电作用条件。
晶体结构越复杂,满足这种条件就越困难,所以不易产生滑移。
○3滑移反映出来的宏观上的塑性形变是位错运动的结果,无机材料不易形成位错,位错运动也很困难,也就难以产生塑性形变,材料易脆断。
金属与非金属晶体滑移难易的对比金属非金属由一种离子组成组成复杂金属键物方向性共价键或离子键有方向性结果简单结构复杂滑移系统多滑移系统少2.无机材料高温蠕变的三个理论○1高温蠕变的位错运动理论:无机材料中晶相的位错在低温下受到障碍难以发生运动,在高温下原子热运动加剧,可以使位错从障碍中解放出来,引起蠕变。
当温度增加时,位错运动加快,除位错运动产生滑移外,位错攀移也能产生宏观上的形变。
热运动有助于使位错从障碍中解放出来,并使位错运动加速。
当受阻碍较小时,容易运动的位错解放出来完成蠕变后,蠕变速率就会降低,这就解释了蠕变减速阶段的特点。
如果继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来,引起最后的加速蠕变阶段。
第一章答案2、解:(1)h:k:l=1/2:1/3:1/6=3:2:1,∴该晶面的米勒指数为(321);(2)(321)5、解:MgO为NaCl型,O2-做密堆积,Mg2+填充空隙。
r O2- =0.140nm,r Mg2+=0.072nm,z=4,晶胞中质点体积:(4/3×πr O2-3+4/3×πr Mg2+ 3)×4,a=2(r++r-),晶胞体积=a3,堆积系数=晶胞中MgO体积/晶胞体积=68.5%,密度=晶胞中MgO质量/晶胞体积=3.49g/cm3。
6、解:体心:原子数2,配位数8,堆积密度55.5%;面心:原子数4,配位数6,堆积密度74.04%;六方:原子数6,配位数6,堆积密度74.04%。
7、解:u=z1z2e2N0A/r0×(1-1/n)/4πε0,e=1.602×10-19,ε0=8.854×10-12,N0=6.022×1023,NaCl:z1=1,z2=1,A=1.748,n Na+=7,n Cl-=9,n=8,r0=2.81910-10m,u NaCl=752KJ/mol;MgO:z1=2,z2=2,A=1.748,n O2-=7,n Mg2+=,n=7,r0=2.1010m,u MgO=392KJ/mol;∵u MgO> u NaCl,∴MgO的熔点高。
9、解:设球半径为a,则球的体积为4/3πa3,求的z=4,则球的总体积(晶胞)4×4/3πa3,立方体晶胞体积:(2a)3=16a3,空间利用率=球所占体积/空间体积=74.1%,空隙率=1-74.1%=25.9%。
10、解:ρ=m/V晶=1.74g/cm3,V=1.37×10-22。
11、解:Si4+ 4;K+ 12;Al3+ 6;Mg2+ 6。
12、略。
13、解:MgS中a=5.20?,阴离子相互接触,a=2r-,∴rS2-=1.84?;CaS中a=5.67?,阴-阳离子相互接触,a=2(r++r-),∴rCa 2+=0.95?;CaO中a=4.80?,a=2(r++r-),∴r O2-=1.40?;MgO中a=4.20?,a=2(r++r-),∴r Mg2+=0.70?。
第二章晶体结构2.1 结晶学基础1、概念:晶体:晶体是内部质点在三维空间成周期性重复排列的固体,即晶体是具有格子构造的固体。
晶胞:晶胞是从晶体结构中取出来的反映晶体周期性和对称性的最小重复单元。
晶胞参数:胞的形状和大小可以用6个参数来表示,此即晶格特征参数,简称晶胞参数。
七大晶系:布拉菲依据晶胞参数之间关系的不同,把所有晶体划归为7类,即7个晶系。
晶面指数:结晶学中经常用(hkl)来表示一组平行晶面,称为晶面指数。
数字hkl是晶面在三个坐标轴(晶轴)上截距的倒数的互质整数比。
晶面族:晶体结构中原子排列状况相同但不平行的两组以上的晶面,构成一个晶面族。
晶向指数:用[uvw]来表示。
其中u、v、w三个数字是晶向矢量在参考坐标系X、Y、Z轴上的矢量分量经等比例化简而得出。
晶向族:晶体中原子排列周期相同的所有晶向为一个晶向族,用〈uvw〉表示。
2、晶面指数和晶向指数的计算2.2 结合力与结合能按照结合力性质不同分为物理键和化学键化学键包括离子键、共价键、金属键物理键包括范德华键、氢键晶体中离子键共价键比例估算(公式2.16)式中x A、x B分别为A、B元素的电负性值。
离子晶体晶格能:1摩尔离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释放出的能量。
2.3 堆积(记忆常识)1、最紧密堆积原理:晶体中各离子间的相互结合,可以看作是球体的堆积。
球体堆积的密度越大,系统的势能越低,晶体越稳定。
此即球体最紧密堆积原理。
适用范围:典型的离子晶体和金属晶体。
原因:该原理是建立在质点在电子云分布呈球形对称以及无方向性的基础上2、两种最紧密堆积方式:面心立方最紧密堆积ABCABC密排六方最紧密堆积ABABAB系统中:每个球周围有6个八面体空隙 8个四面体空隙N个等径球体做最紧密堆积时系统有2N个四面体空隙N个八面体空隙八面体空隙体积大于四面体空隙3、空间利用率:晶胞中原子体积与晶胞体积的比值(要学会计算)两种最紧密堆积方式的空间利用率为74.05﹪(等径球堆积时)4、影响晶体结构的因素内因:质点相对大小(决定性因素)配位数。
武汉理工大学《材料科学基础》考试试卷第二套试卷一、填空题(共20分,每个空1分)1、材料按其化学作用或基本组成可分为()、()、高分子材料、复合材料四大类。
2、晶胞是从晶体结构中取出来的反应晶体()和()的重复单元。
3、热缺陷形成的一般规律是:当晶体中剩余空隙比较小,如NaCl型结构,容易形成()缺陷;当晶体中剩余空隙较大时,如萤石CaF2型结构等,容易产生()缺陷。
4、根据外来组元在基质晶体中所处的位置不同,可分为()固溶体和间隙型固溶体:按照外来组元在基质晶体中的固溶度,可分为()固溶体和有限固溶体。
5、硅酸盐熔体中,随着Na2O含量的增加,熔体中聚合物的聚合度(),熔体的粘度()。
6、当熔体冷却速度很快时,()增加很快,质点来不及进行有规则排列,晶核形成和晶体长大难以实现,从而形成了()。
7、粉体在制备过程中,由于反复地破碎,所以不断形成新的表面,而表面例子的极化变形和重排,使表面晶格(),有序性()。
8、非稳态扩散的特征是空间仟意一点的()随时间变化,()随位置变化。
9、动力学上描述成核生长相变,通常以()、()、总结晶速率等来描述。
10、温度是影响固相反应的重要外部条件。
一般随温度升高,质点热运动动能(),反应能力和扩散能力()。
二、判断题(共10分,每个题1分)1、()位错的滑移模型解释了晶体的实际切变应力与晶体的理论切变强度相差悬殊的内在原因。
2、()空位扩散机制适用于置换型固溶体的扩散,3、()一般来说在均匀晶体中引入杂质,都将使扩算系数增加4、()-般来说,扩散粒子性质与扩散成指性质间差异越大,扩散系数也越大。
5、()成核生长相变中晶体的生长速*与界面结构和原子迁移密切相关,当析出晶体和熔体组成相同时,晶体长大由扩散控制。
6、()对于许多物理或化学步骤综合而成的在相反应中,反应速度由反应速度最快的步骤控制。
7、()在烧结过程中,发生的初次再结晶使大鼎粒长大而小晶粒消失,气孔进入晶粒内部不易排出,烧结速度降低甚至停止。
第二章晶体结构【例2-1】计算MgO和GaAs晶体中离子键成分的多少。
【解】查元素电负性数据得,则,,,MgO离子键%=GaAs离子键%=由此可见,MgO晶体的化学键以离子键为主,而GaAs则是典型的共价键晶体。
【提示】除了以离子键、共价键结合为主的混合键晶体外,还有以共价键、分子间键结合为主的混合键晶体。
且两种类型的键独立地存在。
如,大多数气体分子以共价键结合,在低温下形成的晶体则依靠分子间键结合在一起。
石墨的层状单元内共价结合,层间则类似于分子间键。
正是由于结合键的性质不同,才形成了材料结构和性质等方面的差异。
从而也满足了工程方面的不同需要。
【例2-2】 NaCl和MgO晶体同属于NaCl型结构,但MgO的熔点为2800℃, NaC1仅为80l℃,请通过晶格能计算说明这种差别的原因。
【解】根据:晶格能(1)NaCl晶体:N0=6.023×1023 个/mol,A=1.7476,z1=z2=1,e=1.6×10-19 库仑,,r0===0.110+0.172=0.282nm=2.82×10-10 m,m/F,计算,得:EL=752.48 kJ/mol (2)MgO晶体:N0=6.023×1023 个/mol,A=1.7476,z1=z2=2,e=1.6×10-19库仑,r0==0.080+0.132=0.212 nm=2.12×10-10 m,m/F,计算,得:EL=3922.06 kJ/mol则:MgO晶体的晶格能远大于NaC1晶体的晶格能,即相应MgO的熔点也远高于NaC1的熔点。
【例2-3】根据最紧密堆积原理,空间利用率越高,结构越稳定,但是金刚石的空间利用率很低,只有34.01%,为什么它也很稳定?【解】最紧密堆积的原理只适用于离子晶体,而金刚石为原子晶体,由于C-C共价键很强,且晶体是在高温和极大的静压力下结晶形成,因而熔点高,硬度达,很稳定。
[材料物理专业最好的20所大学]大学材料物理专业排名材料物理专业最好的20所大学材料物理专业最好的20所大学材料物理专业最好的20所大学名单1、武汉理工大学2、西北工业大学3、东北大学4、西安交通大学5、南京大学6、哈尔滨工业大学7、山东大学8、四川大学9、复旦大学10、吉林大学11、燕山大学12、太原理工大学13、南开大学14、武汉大学15、河北工业大学16、大连理工大学17、武汉科技大学18、湘潭大学19、合肥工业大学20、中国科学技术大学材料物理专业介绍材料物理专业提供物理学、材料科学、材料化学和材料物理的基本理论、基本知识和基本技能的系统学习,材料探索、制备与合成的思维与技能等方面的基本训练,以及材料加工、材料结构与性能测定及材料应用等方面的专业训练,旨在帮助学生掌握材料物理及其相关的基础知识、基本原理和实验技能,具备运用物理学和材料物理的基础理论、基本知识和实验技能进行材料探索和技术开发的基本能力,能发展成为在材料科学与工程及其相关交叉学科继续深造或在相应领域从事材料物理研究、教学、应用开发等方面的创新性人才。
本专业培养较系统地掌握材料科学的基本理论与技术,具备材料物理相关的基本知识和基本技能,能在材料科学与工程及与其相关的领域从事研究、教学、科技开发及相关管理工作的材料物理高级专门人才。
本专业学生主要学习材料科学方面的基本理论、基本知识和基本技能,受到科学思维与科学实验方面的基本训练,具有运用物理学和材料物理的基础理论、基本知识和实验技能进行材料研究和技术开发的基本能力。
材料物理专业方向物理学、材料科学、材料化学、材料物理材料物理专业课程材料科学基础、工程材料学、材料的力学性能、功能材料、微电子材料、材料的相与相变基础物理、近代物理、固体物理等。
材料物理专业怎么样(学长学姐评价) 青岛科技大学:这个专业太理论了,毕业之后不好找工作,如果以后想搞科研的话还可以。
反正我梦般找工作基本都找不着对口的。