RF Circuit design(Topic 7)_放大器稳定性判定
- 格式:ppt
- 大小:1.58 MB
- 文档页数:50
电路中的放大器稳定性分析放大器是电子电路中常见的设备,用于放大电信号的幅度。
在电路设计中,放大器的稳定性是一个重要的考虑因素。
稳定性指的是电路在各种运行条件下保持稳定的能力。
本文将详细介绍电路中的放大器稳定性分析。
一、引言在电子电路中,放大器是一种关键组件。
它可以将电信号的弱信号放大至足够大的幅度,以便进行后续的处理或传输。
放大器的稳定性对电路的整体性能至关重要。
二、放大器的稳定性问题放大器的稳定性问题主要涉及到两个方面:反馈环路和频率响应。
在放大器中,反馈环路是一个常见的设计策略,它可以控制放大器的增益,并提高放大器的稳定性。
然而,反馈环路也可能引入稳定性问题,例如振荡。
1. 反馈环路的稳定性反馈环路可以分为正反馈和负反馈两种类型。
正反馈会增加放大器的输出,而负反馈则会减小放大器的输出。
负反馈可以增加放大器的稳定性,但过多的负反馈可能导致放大器的带宽减小。
因此,在设计反馈环路时,需要平衡增益和稳定性的要求。
2. 频率响应的稳定性频率响应是衡量放大器性能的一个重要指标,它描述了放大器在不同频率下的增益特性。
放大器的频率响应可能受到电容、电感、阻抗等元件的影响。
在分析放大器的频率响应时,需要考虑这些元件的特性,并选择合适的组件以保持系统的稳定。
三、放大器稳定性分析的方法在电路设计中,有几种常用的方法可以用来分析放大器的稳定性。
以下是一些常见的方法:1. Nyquist准则Nyquist准则是一种通过绘制频率响应曲线上的虚线轨迹来评估放大器的稳定性的方法。
当轨迹穿过-1点(点(-1,0)表示的是相位延迟为180度,增益衰减为1的状态),放大器就处于稳定状态。
如果轨迹围绕-1点多次,则放大器可能会产生振荡。
2. 极点分析法极点是放大器传递函数中的根,通过分析极点的位置和数量,可以得出放大器的稳定性。
通常情况下,放大器的极点应该位于开环增益曲线上,并且具有负实部。
如果放大器的极点位于稳定区域之外,那么它可能是不稳定的。
电路结构建议采用典型电路形式和厂商提供的电路,许多电路结构都是经过很多工程师们反复实验和验证过的。
采用OP构成的放大器电路的精度主要与外部元器件参数有关,例如放大倍数与外接的电阻有关。
解决放大器的稳定性就比较复杂了,涉及到放大器的电路结构、PCB布局、电源供给、以及放大器所在的系统环境等等、等等。
一些建议如下:与分立器件相比,现代集成运算放大器(op amp)和仪表放大器(in-amp)为设计工程师带来了许多好处。
虽然提供了许多巧妙、有用并且吸引人的电路。
往往都是这样,由于仓促地组装电路而会忽视了一些非常基本的问题,从而导致电路不能实现预期功能——或者可能根本不工作放大器电路设计:如何避免常见问题。
(1)最常遇到的一个应用问题是在交流(AC)耦合运算放大器或仪表放大器电路中没有提供偏置电流的直流(DC)回路。
在图1中,一只电容器与运算放大器的同相输入端串联以实现AC耦合,这是一种隔离输入电压(VIN)的DC分量的简单方法。
这在高增益应用中尤其有用,在那些应用中哪怕运算放大器输入端很小的直流电压都会限制动态范围,甚至导致输出饱和。
然而,在高阻抗输入端加电容耦合,而不为同相输入端的电流提供DC通路,会出现问题。
图1 运算放大器AC耦合输入错误的连接形式(2)在仪表放大器的输出端和ADC的输入端之间通常接一个简单的RC低通抗混叠滤波器以减少带外噪声。
RC低通滤波器的典型值:R = 50Ω~ 200Ω,C = 1/(2πR F),按电路的-3 dB带宽设置C的取值。
(3)当从电源电压利用分压器为放大器提供参考电压时应保证PSR性能一个经常忽视的问题是电源电压VS的任何噪声、瞬变或漂移都会通过参考输入按照分压比经过衰减后直接加在输出端。
实际的解决方案包括旁路滤波以及甚至使用精密参考电压IC 产生的参考电压,例如ADR121,代替Vs分压。
当设计带有仪表放大器和运算放大器的电路时,这方面的考虑很重要。
电源电压抑制技术用来隔离放大器免受其电源电压中的交流声、噪声和任何瞬态电压变化的影响。
干货小议运放构成的放大器的频响与稳定性首先要说明,本帖只针对电压反馈型运放构成的放大器,电流反馈型运放不适合本帖讨论的所有结论。
为了简单,文中用“增益”字样描述电压放大倍数。
先简单描述一下电压反馈型运放运放的开环幅频特性。
通常这种运放在频率相对较低的位置有一个主极点,当频率远低于主极点频率时,运放的增益是A0;在接近主极点频率时增益下降,在主极点频率处大约下降3dB;频率高于主极点后,增益趋于按照-20dB/dec斜率滚降,将此斜率一直延长到增益为0dB处的频率被称为增益带宽积(GBP)。
由于运放存在高阶极点和可能的零点,开环频率特性在接近0dB处的斜率通常要改变(常见的是低于-20dB/dec),所以开环频率特性经过0dB的频率通常并不与GBP相同,尤其是非完全补偿型运放更是相差很大。
运放的开环相频特性是:在远低于主极点频率处,相位为0度;在主极点处约为-45度;高于主极点频率后趋于-90度;在幅频特性接近0dB附近由于高阶极点的影响,相位再次下降,通常全补偿型运放在0dB处约为-140度到-150度左右(也有超出此范围的,但肯定不到-180度),非全补偿型运放在0dB处的相位接近-180度甚至低于-180度。
如果不考虑高阶极点等影响,只用一个主极点描述运放的开环频率特性,那么其表达式是A(jf)=A0/(1+jf/fp),其中fp就是主极点频率。
另外,还有一个重要表达式是GBP=A0*fp.下面考虑运放加入反馈后的闭环情况。
为了避免混淆,用Ac表示闭环后放大器的频响。
先考虑一个最简单的情况:反馈网络全部由电阻构成,此时反馈系数F是一个实数。
令反馈电阻为RF,运放反相输入端对地电阻为RG,则F=RG/(RG+RF).根据负反馈理论,闭环后放大器的频率特性是Ac(jf)=A(jf)/[1+A(jf)*F]可以证明,在F较小(即放大器增益较大)的条件下,运放的高阶零极点对于闭环后放大器的影响很小,可以忽略,因此用前面只考虑主极点的运放开环频率特性代入上述关系,得到Ac(jf)=(1/F)*{1/[1+jf/(F*GBP)]}所以,闭环后放大器的幅频特性是Ac(f)=(1/F)*{1/sqr[1+(f/(F*GBP))^2]}由这个关系就可以推导在F较小时放大器的幅频特性,以及Ac、f 与GBP三者的关系。
--放大器的精度和稳定性电路结构建议采用典型电路形式和厂商提供的电路,许多电路结构都是经过很多工程师们反复实验和验证过的。
采用OP构成的放大器电路的精度主要与外部元器件参数有关,例如放大倍数与外接的电阻有关。
解决放大器的稳定性就比较复杂了,涉及到放大器的电路结构、PCB布局、电源供给、以及放大器所在的系统环境等等、等等。
一些建议如下:与分立器件相比,现代集成运算放大器(op amp)和仪表放大器(in-amp)为设计工程师带来了许多好处。
虽然提供了许多巧妙、有用并且吸引人的电路。
往往都是这样,由于仓促地组装电路而会忽视了一些非常基本的问题,从而导致电路不能实现预期功能——或者可能根本不工作放大器电路设计:如何避免常见问题。
(1)最常遇到的一个应用问题是在交流(AC)耦合运算放大器或仪表放大器电路中没有提供偏置电流的直流(DC)回路。
在图1中,一只电容器与运算放大器的同相输入端串联以实现AC耦合,这是一种隔离输入电压(VIN)的DC分量的简单方法。
这在高增益应用中尤其有用,在那些应用中哪怕运算放大器输入端很小的直流电压都会限制动态范围,甚至导致输出饱和。
然而,在高阻抗输入端加电容耦合,而不为同相输入端的电流提供DC通路,会出现问题。
图1 运算放大器AC耦合输入错误的连接形式(2)在仪表放大器的输出端和ADC的输入端之间通常接一个简单的RC低通抗混叠滤波器以减少带外噪声。
RC低通滤波器的典型值:R = 50Ω~ 200Ω, C = 1/(2πR F),按电路的-3 dB带宽设置C的取值。
(3)当从电源电压利用分压器为放大器提供参考电压时应保证PSR性能一个经常忽视的问题是电源电压VS的任何噪声、瞬变或漂移都会通过参考输入按照分压比经过衰减后直接加在输出端。
实际的解决方案包括旁路滤波以及甚至使用精密参考电压IC 产生的参考电压,例如ADR121,代替Vs分压。
当设计带有仪表放大器和运算放大器的电路时,这方面的考虑很重要。
运算放大器的稳定性第1部分(共15部分):环路稳定性基础作者:Tim Green ,TI 公司Burr-Brown 产品战略发展经理1.0 引言本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。
为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE 仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。
尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz 的电压反馈运放。
选择增益带宽小于20MHz 的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板 (PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。
我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz 的运放、实际设计并构建真实世界电路中得来的。
本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。
9Data Sheet Info 9Tricks 99Tina SPICE Simulation9TestingGoal:EASILY Tricks & Rules-Of-Thumb apply for Voltage FeedbackOp Amps, Unity Gain Bandwidth <20MHzTo learn how to analyze and design Op Amp circuits for guaranteed Loop Stability using Data Sheet Info, Tricks, Rules-Of-Thumb, Tina SPICE Simulation, and Testing.Note:图1.0 稳定性分析工具箱图字(上、下):数据资料信息、技巧、经验、Tina SPICE 仿真、测试;目的:学习如何用数据资料信息、技巧、经验法则、Tina SPICE 仿真及测试来“更容易地”分析和设计运放,以确保环路稳定性;注:用于统一增益带宽小于20MHz 的电压反馈运放的技巧与经验法则。
放大电路稳定性分析放大电路是电子设备中常见的一种电路结构,用于增强输入信号的幅度。
然而,在实际的电路设计中,放大电路往往面临着稳定性的挑战。
本文将对放大电路的稳定性进行分析,并探讨稳定性影响因素及相关解决方法。
一、稳定性影响因素1. 必要条件:放大电路的稳定性首先要满足稳定的必要条件,即回路增益(Av)大于或等于1。
否则,输入信号的放大倍数将大于输出信号的放大倍数,导致电路不稳定。
2. 负载特性:放大电路的负载特性对稳定性有较大的影响。
负载特性包括负载电阻、负载电容等,当负载特性改变时,放大电路的频率响应也会发生变化,从而影响稳定性。
3. 回路放大器的参数:回路放大器中的元器件参数对稳定性有直接影响。
例如,误差放大器中的增益(Ao)和带宽(BW)决定了回路放大器的频率特性,当这些参数与其他元器件匹配不良时,会导致放大电路的稳定性下降。
4. 温度变化:温度变化会使放大电路中的元器件参数发生变化,进而影响放大电路的稳定性。
尤其是在高温环境中,电子器件的性能非常敏感,需要特别注意温度对稳定性的影响。
二、稳定性分析方法1. 极点分析法:通过求解放大电路的传输函数,找出系统的极点位置,并判断这些极点是否位于单位圆内。
若极点全部位于单位圆内,则放大电路是稳定的;若极点有一个或多个位于单位圆外,放大电路将是不稳定的。
2. Nyquist稳定性判据:通过绘制Nyquist稳定图,将放大电路的传输函数映射到复平面上,根据图形的形状判断系统的稳定性。
若Nyquist曲线不围绕点(-1, 0),则放大电路是稳定的;若Nyquist曲线围绕点(-1, 0)时穿过右半平面,放大电路将是不稳定的。
三、稳定性改善方法1. 添加补偿网络:当放大电路的频率特性不稳定时,可以通过添加补偿网络来改善稳定性。
补偿网络通常包括电容、电阻等元器件,用于调整回路的频率响应。
2. 负反馈控制:负反馈是一种常用的稳定性改善手段,通过在放大电路中引入反馈路径,将一部分输出信号与输入信号相减,实现对放大倍数的精确控制。