F (x 1 ,L ,x n ,u , x u 1,L , x u n,L , x 1 m 1 x 2 m m 2 u L x n m n) 0(1.1)
4
方程(1.1)是在自变量x1,x2, …的n维空间Rn 中的一个适 当的区域D内进行考察的,我们要求能找出在D内恒 满足方程(1.1)的那些函数u。如果这种函数存在,那
和时间无关。弦是柔软有弹性的,即它不能抵抗弯矩, 因此在任何时刻弦的张力T总是沿着弦的切线方向。
u
F
△x
Q T
P
a
T
N
O
x
N'
x+△x
x
13
或
综合上述分析,由牛顿第二定律可得
a T si T n si F n x x ttu( 1 . 3 )
又 tanaux ,故 sia n taan ux 1ta2na 1ux2
,薄膜所形成的曲面方程为u=u(x,y)。
5. 拟线性偏微分方程:若非线性方程中未知多元函 数的所有最高阶偏导数都是线性的,而其系数含有 未知多元函数或其低阶偏导数,则称为拟线性偏微 分方程。如书中例1.8
6. 非齐次项和非齐次方程:在线性偏微分方程中, 不含未知函数及其偏导数的非零项称为非齐次项, 而含有该非齐次项的方程称之为非齐次方程。如书 中例1.1
3. 线性偏微分方程:如果一个偏微分方程对于未知 函数及它的所有偏导数来说都是线性的,且方程中 的系数都仅依赖于自变量,那么这样的偏微分方程 就称为线性偏微分方程。
例如: 书中例1.1、1.2
y2u2xy2uu1
x2
y2
(二阶线性偏微分方程)
否则称之为非线性偏微分方程。 书中例1.5
6
4. 半线性偏微分方程:若非线性方程中未知多元函 数的所有最高阶偏导数都是线性的,而其系数不含 有未知多元函数及其低阶偏导数,则称为半线性偏 微分方程。如书中例1.6