- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即A可由1,2,3线性表出。所以 Dim(V)=3
注: (1)若把线性空间V 看作无穷个向量组成的向 量组,那么 V 的基就是向量组的极大无关组, V 的 维数就是向量组的秩. (2)个数与线性空间 V 的维数相等的线性无 关组都是 V 的基.
例1.3.1 线性空间 C 是实数域 R 上的二维空间, 其基可取为 {1, i } ,即C中任一复数k=a+bi a (a,bR)都有a+bi=(1,i)( ),所以(a,b) T即为k的坐 b 标。
(或值域),记为R(A)或Im(A)。
即R(A)={y|y=Ax,xRn}
注:判定非空集合是否为线性空间,要验算
运算的封闭性,以及8条运算律,相当地麻烦。
至于判定线性空间的子集是否为线性子空间,
则很方便.
下面考虑两个子空间的运算:
注意:线性空间V的两个子空间的V1,V2并一般不是V 的子空间;
1, , n m,则
2
V1 span(1,,m , 1,n1 m ),
V2 span(1,,m , 1, n2 m ),
求 V1 V2 、V1 V2 的基与维数。
解 设 V1 V2
所以可令 解关于
,则
V1, V2
k11 k22 = l11 l2 2
k1 , k2 , l1 , l2 的齐次方程组,得
5 2 k1 0, k2 l2 , l1 l2 3 3 5 = k1 1 k2 2 l2 2 . 3
空间,所以V1 V2也是有限维的。设 dim(V1 ) n1 , dim(V2 ) n2 , dim(V1 V2 ) m. 取V1 V2的一组基1 , , m,把它扩充成 V1的一组基1 , , m,1, , n1 m,并且 把1 , , m也扩充成V2的一组基1 , , m,
例1.4.4 设 V1 , V2 是线性空间 V 的子空间,且
V1 span(1 , , s ), V2 span( 1 , , t ),
则
V1 V2 span(1 ,, s , 1 ,, t )
证明
由子空间和的定义,有
V1+V2=span(1,2…s)+span(1, 2…t) ={(k11+k22…+kss)+(l11+l2 2…+ ltt)| ki,lj P}
向量的线性相关性:
线性代数中关于向量的线性组合、线性表示、 线性相关、线性无关、秩等定义和结论都可以推 广到一般线性空间。
证明:取k1 ,k2 ,k3∈R,
令 k11+k22+k33
1 0 1 0 0 0 0 0 k1 0 0 k2 1 1 k3 1 1 0 0
由题, 在基 1 , 2 , 3 下的坐标为
1 2 4 P 0 1 4 1 0 0
x (3, 2,4)
T
而且,基 1 , 2 , 3 到基 1 , 2 , 3 的过渡矩阵为
所以
1 1 yP x 0 0
例 1.3.2
实数域 R上的线性空间R [x]n中的向量组 1,x, x2 ,… xn-1
是 基底, R [x]n的维数为 n。
例1.3.3 实数域 R上的线性空间
nn,标准基为Eij:(i=1,2…n;j=1,2…n) 第i行第j列的元素为1,其它的都为0。
R
nn
的维数为
例1.3.4 在线性空间 P[ x] 中,显然 3
1 1, 2 x, 3 x
是 P[ x]3 的一组基,此时多项式
2
3 2x 4 x2
在这组基下的坐标就是
(3, 2, 4)T .
2
证明 1 1, 2 ( x 2), 3 ( x 2) 也是 P[ x]3 的基,并求 1 , 2 , 3 及 在此基下的坐标。
0 A3 1
1 E12 E21 0
0 A4 1
1 E12 E21 0
0 1 ( E11 , E12 , E21 , E22 ) 1 0
则基 ( III ) 到基 ( I ) 的过渡矩阵为
注意:
通过上面的例子可以看出线性空间的基底并不
唯一,但是维数是唯一确定的。由维数的定义,
线性空间可以分为有限维线性空间和无限维线性 空间。目前,我们主要讨论有限维的线性空间。
N(A)称为矩阵A的零子空间或核空间,也记为Ker(A);
例1.4.1
对于任意一个有限维线性空间 V ,它必
有两个平凡的子空间,即由单个零向量构成的子空
间{0}和V本身。
实数域 R上的线性空间 R nn 中全体上
例1.4.2
三角矩阵集合,全体下三角矩阵集合,全体反对 称矩阵集合分别都构成
R
nn
的子空间。
例1.4.3 设ARmn,记A={a1,a2,…an},其中aiRm,则
k1a1+k2a2…+knan是Rm的子空间,称为矩阵A的列空间
( III )
显然
1 A1 0 0 E11 E22 1 1 0 ( E11 , E12 , E21 , E22 ) 0 1
类似地,
1 A2 0 0 E11 E22 1 1 0 ( E11 , E12 , E21 , E22 ) 0 1 0 1 ( E11 , E12 , E21 , E22 ) 1 0
矩
阵
论
教学目的:
理解线性空间和内积空间的概念 掌握子空间与维数定理 了解线性空间和内积空间同构的含义 掌握正交基及子空间的正交关系 掌握Gram-Schmidt正交化方法
线性空间是线性代数最基本的概念之一,
是矩阵论中极其重要的概念之一。它是向量空
间在元素和线性运算上的推广和抽象。
线性空间中的元素可以是向量、矩阵、 多项式、函数等,线性运算可以是我们熟悉的 一般运算,也可以是各种特殊的运算。
例1 所有 n维实(复)向量按向量的加法和数乘,
构成线性空间Rn(Cn) 。
例2 所有 m n 阶的实(复)矩阵按矩阵的加法和 数乘,构成线性空间 Rmn (C mn ) 。 例3
因此
所以
V1 V2 的基为 2 ,维数为 dim(V1 V2 ) 1.
由例1.4.4 由前得
V1 V2 span(1 , 2 , 1 , 2 )
5 2 0 1 l2 2 l 2 1 l 2 2 3 3 5 2 即 2 0 1 2 1 3 3 然而 1 , 2 , 1 线性无关,这样 1 , 2 , 1 是
2 1 0
4 3 4 2 1 4
23 18 4
例1.3.5 已知矩阵空间 R 2 2 的两组基:
(I ) 1 A1 0 0 A3 1 1 B1 1 0 , 1 1 , 0 1 , 1 0 1 A2 , 0 1 1 0 A4 1 0 1 1 B2 , 1 0 1 0 B4 0 0
1 0 C1 0 1 1 0 0 1 0 1 1 0 0 1 1 0
而基 ( III ) 到基 ( II ) 的过渡矩阵为
1 1 C2 1 1 1 1 1 0 1 1 0 0 1 0 0 0
所以
(A 1, A 2, A 3, A 4 ) ( E11 , E12 , E21 , E22 )C1 ( B1 , B2 , B3 , B4 ) ( E11 , E12 , E21 , E22 )C2
T
一个线性空间。因为加法不封闭。
例6
线性非齐次方程组 b 的解集
n mn
V { R | C11 Cnrnr , A R
组 Ax 的一个基础解系, 个特解。
}
不构成线性空间,这里 1 ,, n r 是对应齐次方程
为 Ax b 的一
( II )
1 1 B3 , 0 0 求基 ( I ) 到基 ( II ) 的过渡矩阵。
解
引入 R 22 的标准基:
E11 E 21 1 0 0 1 0 , 0 0 , 0 E12 E 22 0 0 0 0 1 , 0 0 1
1 , 2 , 1 , 2
的极大无关组,所以它也是
V1 V2 的基,故 dim(V1 V2 ) 3.
注意到例 1.4.5 中
dim(V1 V2 ) dim(V1 V2 ) dim(V1 ) dim(V2 ).
这并不是偶然的。 定理1.4.7(维数公式) 设 都是有限维的,并且
从而
( B1 , B2 , B3 , B4 ) ( E11 , E12 , E21 , E22 )C2
1 (A , A , A , A ) C 1 2 3 4 1 C2
因此基 ( I ) 到基 ( II ) 的过渡矩阵为
2 0 1 1 C C1 C2 22 0 1 1 2 0 1 1 1 1 1 1 . 0 0
闭区间 [a , b] 上的所有实值连续函数按通常函 数的加法和数与函数的乘法,构成线性空间 C[a, b]
例4 次数 小于n 的所有实系数多项式添上0多项式按
通常多项式加法和数与多项式的乘法,构成线性空
间 R[ x]n
例5
集合 V { x x [ x1 , x2 ,1] , x1 , x2 R} 不是