(完整版)六年级下册抽屉原理习题答案版
- 格式:pdf
- 大小:175.64 KB
- 文档页数:5
-教育精选-抽屉原理练习题习题精选一:------找“抽屉”,找“苹果”1、三个小朋友同行,其中必有两个小朋友性别相同,为什么?两种性别:2个“抽屉”三个小朋友:3个“苹果”3÷2=1(个)···1(个)1+1=2(个)2、六年级一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
1年有52周:52个“抽屉”53个学生:53个“苹果”53÷52=1(个)···1(个)1+1=3(个)3、从电影院里任意找来13个观众,至少有两个人属相相同,为什么?12个属相:12个“抽屉”13个观众:13个“苹果”13÷12=1(个)···1(个)1+1=2(个)4、用五种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂色相同。
五种颜色:5个“抽屉”六个面:6个“苹果”6÷5=1(个)···1(个)1+1=2(个)5、六年级四个班去春游,自由活动时,有6个同学聚在一起,那么这6个同学中至少有几人是同一班的?四个班:4个“抽屉”6个同学:6个“苹果”6÷4=1(个)···2(个)1+1=2(个)6、一张扑克牌有四种花色,从中任意抽牌,问:至少要抽出多少张牌,才能保证有两张牌是同一花色的?四种花色:4个“抽屉”抽牌:“苹果”4+1=5(张)习题精选二:-------求至少数=商(苹果数÷抽屉数)+11、大家玩过“剪刀、石头、布”的游戏吗?如果两个同学出17次,至少有几次手势是相同的?列式:17÷3=5(次)···2(次)5+1=6(次)(分析:把剪刀、石头、布看做3个抽屉,把17次平均放入3个抽屉中,至少有一个抽屉里有5+1次,所以至少有6次手势是相同的。
第五讲抽屉原理二本讲知识点汇总:一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标.二、抽屉原理:形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里.例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是 1 73名运动员.练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有 4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法.练习2、高思运动会共有 4 个项目,每个学生至多参加3项,至少参加 1 项.那么至少有多少个学生,才能保证至少有 5 个人参加的活动完全相同?例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?「分析」思考一下:哪两个数的和是50?练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34?例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪?练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是5 的倍数,至少要取多少个?例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数?「分析」从余数角度思考一下:什么样的两个数的和或差是100?例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于「分析」通过把正六边形均分,来构造“抽屉”1.四大发明之印刷术印刷术是中国古代的四大发明之一,是中国古代汉族劳动人民经过长期实践和研究才发明的.活字印刷的方法是先制成单字的阳文反文字模,然后按照稿件把单字排列在字盘内涂墨印刷.自从汉朝发明纸以后,书写材料比起过去用的甲骨、简牍、金石和缣帛要轻便、经济多了,但是抄写书籍还是非常费工的,远远不能适应社会的需要.至迟到东汉末年的熹平年间(公元172~178 年),出现了摹印和拓印石碑的方法.大约在公元600 年前后的隋朝,人们从刻印章中得到启发,在人类历史上最早发明了雕版印刷术.雕版印刷是在一定厚度的平滑的木板上,粘贴上抄写工整的书稿,薄而近乎透明的稿纸正面和木板相贴,字就成了反体,笔划清晰可辨.雕刻工人用刻刀把版面没有字迹的部分削去,就成了字体凸出的阳文,和字体凹入的碑石阴文截然不同.印刷的时候,在凸起的字体上涂上墨汁,然后把纸覆在它的上面,轻轻拂拭纸背,字迹就留在纸上了.到了宋朝,雕版印刷事业发展到全盛时期.雕版印刷对文化的传播起了重大作用,但是也存在明显缺点:第一,刻版费时费工费料;第二,大批书版存放不便;第三,有错字不容易更正.北宋平民发明家毕昇总结了历代雕版印刷的丰富的实践经验,经过反复试验,在宋仁宗庆历年间(公元1041~1048)制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命.毕昇的方法是这样的:用胶泥做成一个个规格一致的毛坯,在一端刻上反体单字,字划突起的高度象铜钱边缘的厚度一样,用火烧硬,成为单个的胶泥活字.为了适应排版的需要,一般常用字都备有几个甚至几十个,以备同一版内重复的时候使用.遇到不常用的冷僻字,如果事前没有准备,可以随制随用.为便于拣字,把胶泥活字按韵分类放在木格子里,贴上纸条标明.排字的时候,用一块带框的铁板作底托,上面敷一层用松脂、蜡和纸灰混合制成的药剂,然后把需要的胶泥活字拣出来一个个排进框内.排满一框就成为一版,再用火烘烤,等药剂稍微熔化,用一块平板把字面压平,药剂冷却凝固后,就成为版型.印刷的时候,只要在版型上刷上墨,覆上纸,加一定的压力就行了.为了可以连续印刷,就用两块铁板,一版加刷,另一版排字,两版交替使用.印完以后,用火把药剂烤化,用手轻轻一抖,活字就可以从铁板上脱落下来,再按韵放回原来木格里,以备下次再用.毕昇还试验过木活字印刷,由于木料纹理疏密不匀,刻制困难,木活字沾水后变形,以及和药剂粘在一起不容易分开等原因,所以毕昇没有采用.毕昇的胶泥活字版印书方法,如果只印二三本,不算省事,如果印成百上千份,工作效率就极其可观了,不仅能够节约大量的人力物力,而且可以大大提高印刷的速度和质量,比雕版印刷要优越得多.现代的凸版铅印,虽然在设备和技术条件上是宋朝毕昇的活字印刷术所无法比拟的,但是基本原理和方法是完全相同的.活字印刷术的发明,为人类文化做出了重大贡献.这中间,中国的平民发明家毕昇的功绩是不可磨灭的.可是关于毕昇的生平事迹,我们却一无所知,幸亏毕昇创造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里.但是除开西夏文字的几本推测为活字印刷的佛经外,中原地区无发现活字印刷的中文印刷品!作业1. (1) 一个班有37个人,那么至少有多少人是同一星座的?(2) 一副扑克牌,共54张,那么至少从中摸出多少张牌,才能保证至少有6张牌的花色相同?2. 动物王国举行运动会,共有101位运动员,有短跑、跳高、跳远、10米跳台、3米跳板五个项目,每位运动员最多选三个项目,最少选一个项目. 那么至少有多少位运动员所选的项目都相同?3. 1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?4. 1至40这40个自然数中,最多可以取出多少个数,使得其中每两个数的和都不是4的倍数?5. 在半径为1的圆内,画13个点,其中任意3点不共线?请证明:一定存在3个点,以6它们为顶点的三角形面积小于6第五讲抽屉原理二例7.答案:12.解答:共有C6215种不同的选择方式,而173 15 11L 8 ,所以至少有12 个人买的饮料完全相同.例8.答案:46.解答:共有C52C5115 种参加方法,所以至少15 3 1 46 人.例9.答案:27.解答:可构造出26个组数:(1 , 49)、( 2, 48)、…、(24, 26)、(25)、( 50).所以至少要取27个数才能保证取到一组和为50 的数.例10.答案:46, 37.解答:由题意可知,如果取出的数没有两个数的和是7的倍数,则:除以7余 1 的数与除以7余6的数不能共存,除以7 余 2 的数与除以7 余 5 的数不能共存,除以7 余 3 的数与除以7 余 4 的数不能共存.而除以7余0的数只能取1个,且100 14 7L 2,所以最不利的情况是取尽余1、余2、余3和一个余0的数, 共45 个数, 所以至少选出46个数才可满足要求.同理至少选出37个数才能保证是 6 的倍数.(注意此时除以 6 余 3 和余0 的数都只能选 1 个)例11 .答案:52.解答:可构造出51 个组数:(1 , 8)、( 2 , 9)-( 7, 14 ); (15, 22 )、(16, 23 )???( 21, 28);……(85, 92)、(86 , 93)-( 91, 98); (99)、(100).每组数中的两数的差为7 ?只取出每个数组中较小的数显然不能满足要求,所以至少要取出52 个数,这时由抽屉原理知必定能取到某一个数组的两个数.例12.解答:先将正六边形分割成 6 个边长为 2 的正三角形,再将每个三角形等分成 4 个边长为 1 的正三角形,这样就把正六边形分割成24 个边长为 1 的正三角形,则由抽屉原理知,必有 3 点在一个等边三角形中,以它们为顶点的三角形面积显然不大于1.(边长是 1 的等边三角形面积小于1)练习1、答案:14.简答:共有C426种不同的选择方式,而83 6 13 5 ,所以至少有14 个人买的饮料完全相同.练习2、答案:57.简答:共有C43C42C4114 种参加方法,所以至少14 4 1 57 人.练习3、答案:20.简答:可构造出19个组数:(1, 33)、( 2, 32)、…、(16,18)、(17)、(34)、( 35).所以至少要取20个数才能保证取到一组和为34的数.练习4、答案:42.简答:1~99这99 个数中除以5余 1 的有20个,余 2 的有20个,余3的有20个,余4的有20个, 余0 的有19 个,选出余 1 和余 2 的数,再选一个余0 的数,再任选一个数一定符合题意,20 20 1 1 42 个.作业6. 答案:(1)4个;(2)23 张.简答:(1)抽屉原理;(2)最不利原则.7. 答案:5位.简答:首先运动员的项目有C5 Cf c3 25种可能,根据抽屉原理,至少有5位运动员的项目相同.8. 答案:36个.简答:每12个数中最多取出6个.9. 答案:12个.简答:将1~40按照除以4的余数分为四组:A 组:{1 , 5,…,37};B 组:{2 , 6,…,38};C组:{3,7,…,39};D 组:{4 , 8,…,40}.首先,B、D组最多取一个?取了A组就不能取C组.所以最多能取12个.10. 证明:将半径为1的圆六等分,分为六个扇形,每个扇形的面积是在同一部分中,这三个点组成的三角形不会大于所在的扇形,即-6 根据抽屉原理,至少有三个点6。
第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。
抽屉原理知识框架一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.重难点抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题;(4)利用最不利原则进行解题;(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
例题精讲(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【例 2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。
抽屉原理练习题习题精选一:-找“抽屛”找“苹果”三个小朋友同行,其中必有两个小朋友性别相同,为什么?两种性别:2个“抽屉”三个小朋友:3个“苹果”3^2=1 (个)1 (个) 1 + 1=2 (个)2、六年级一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友岀生在同一周。
1年有52周:52个“抽屉” 53个学生:53个“苹果”53 ^52=1 (个)1 (个)1+1=3 (个)3、从电影院里任意找来13个观众,至少有两个人属相相同,为什么?12个属相:12个“抽屉”13个观众:13个“苹果”13^12=1 (个)1 (个) 1 + 1=2 (个)4、用五种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂色相同。
五种颜色:5个“抽屉”六个面:6个“苹果”6^5=1 (个)1 (个) 1 + 1=2 (个)5、六年级四个班去春游,自由活动时,有6个同学聚在一起,那么这6个同学中至少有几人是同一班的?四个班:4个“抽屉”6个同学:6个“苹果”6^4=1 (个)2 (个) 1 + 1=2 (个)6、一张扑克牌有四种花色,从中任意抽牌,问:至少要抽出多少张牌,才能保证有两张牌是同一花色的?四种花色:4个“抽屉”抽牌:“苹果”4+1=5 (张)习题术青选二:——求至少数二商(苹果数宁抽屉数)+11>大家玩过“剪刀、石头、布”的游戏吗?如果两个同学出17次,至少有几次手势是相同的?列式:17^3=5 (次)2 (次)5+仁6 (次)(分析:把剪刀、石头、布看做3个抽屉,把17次平均放入3个抽屉中,至少有一个抽屉里有5+1次,所以至少有6次手势是相同的。
)2、六年级有152人参加体育活动,安排跳绳、投篮、爬杆三项活动,每位同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人?列式:152 ^3=50 (人)2 (人)50+仁51 (人)(分析:把跳绳、投篮、爬杆三项活动看做3个抽屉,把152人平均放入3个抽屉中,至少有一个抽屉里有50+1人,所以参加相同活动种类最多的学生至少有51人。
抽屉原理例题讲解:板块一:基础题型1.将60个红球、8个白球排成一条直线,至少会有多少个红球连在一起?答案:7详解:60÷(8+1)=6……6,6+1=7个。
2.17名同学参加一次考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题目的答案.请问:至少有几名同学的答案是一样的?答案:3详解:答案的结果有23=8种情况,即8个抽屉。
17÷8=2……1,2+1=3名。
3.任意写一个由数字1、2组成的六位数,从这个六位数中任意截取相邻两位,可得一个两位数,请证明:在从各个不同位置上截得的所有两位数中,一定有两个相等.详解:两位数的情况共4种:12,21,11,22。
六位数可以截取出5个两位数,所以必有重复。
4.将1至6这6个自然数随意填在图2,图中的六个圆圈中,试说明:图中至少有一行的数字之和不小于8。
详解:1+2+3+4+5+6+7=21,21÷3=7,图形总共有3行,第一行只有一个数,最大填6,那么后两行至少有一行是大于7的整数,即不小于8。
5.从l,2,3,…,99,100这100个数中任意选出51个数,请说明:(1)在这51个数中,一定有两个数的差等于50;详解:构造差为50的抽屉:(1,51)、(2,52)、……、(50,100),共50个抽屉。
选出51个数,必有两数来自一组,即差为50.(2)在这51个数中,一定有两个数差1.详解:构造差为1的抽屉:(1,2)、(3,4)、……、(99,100),共50个抽屉。
必有两数来自一组,即差为1.6.从1,2,3,…,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?答案:12详解:构造差为4的抽屉:(1,5)、(2,6)、(3,7)、(4,8)、(9,13)、(10,14)、(11,15)、(12,16)、(17,21)、(18)、(19)、(20)共12个抽屉,最多取12个数。
小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。
点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。
解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。
(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
2023-2024学年下学期小学数学人教新版六年级专题练习之抽屉原理一.选择题(共5小题)1.在一副扑克牌中取出大小王,从剩余的52张牌中至少要抽出()张,才能保证其中有3张红桃.A.9B.13C.422.李叔叔给正方体的六个面涂上不同的颜色,结果至少有两个面的颜色一致,颜料的颜色至少有()种.A.3B.4C.53.把7本书放进2个抽屉,有一个抽屉至少放()本书.A.3B.4C.54.教室里有10名学生正在写作业,今天有语文、数学、英语和科学四科作业,至少有( )名学生在做同一科作业。
A.3B.4C.65.把红、黄、蓝、绿四种同样大小的小球各5个放在同一箱子里,一次至少要摸出()个球才能保证摸出2个红球.A.5B.20C.17二.填空题(共5小题)6.黑、白两种颜色的袜子各8只混在一起,闭上眼睛随便拿,至少要拿只,才能保证一定有一双同色袜子;至少要拿只才能保证有4只同色袜子。
7.英才小学六(2)班有29名男同学,20 名女同学,至少有名同学是同一个月过生日。
8.黑桃、梅花两种花色的扑克牌各8张混放在一起,从中至少取出张,才能保证取出的牌中一定有梅花。
9.盒子有相同大小的红和蓝球各4个,要摸出的球一定有2个同色,至少要摸出个。
10.用红、黄、蓝、白四种颜色的球各4个,把它们放在一个不透明的盒子里,至少摸出个球,可以保证摸到两个颜色相同的球。
摸到红球的概率为%。
三.解答题(共5小题)11.把16支铅笔最多放入几个铅笔盒里,才能保证至少有一个铅笔盒里的笔不少于6支?12.把5只兔子放进3个笼子里,可以怎样放?我发现:无论怎样放,总有一个笼子里至少放进只兔子。
13.盒子里有同样大小的红球和黄球各10个.(1)要想摸出的球一定有2种颜色,至少要摸出几个球?(2)要想摸出的球一定有3个颜色相同,至少要摸出几个球?(3)要想摸出的球一定有5个颜色相同,至少要摸出几个球?14.在一个盒子里有30个红色、30个蓝色和30个绿色的圆球,它们除颜色外都相同。
小学数学抽屉原理完整版题型训练+详细答案抽屉原理例题讲解:板块一:基础题型1.将60个红球、8个白球排成一条直线,至少会有多少个红球连在一起?答案:7详解:60÷(8+1)=6……6,6+1=7个。
2.17名同学参加一次考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题目的答案.请问:至少有几名同学的答案是一样的?答案:3详解:答案的结果有23=8种情况,即8个抽屉。
17÷8=2……1,2+1=3名。
3.任意写一个由数字1、2组成的六位数,从这个六位数中任意截取相邻两位,可得一个两位数,请证明:在从各个不同位置上截得的所有两位数中,一定有两个相等.详解:两位数的情况共4种:12,21,11,22。
六位数可以截取出5个两位数,所以必有重复。
4.将1至6这6个自然数随意填在图2,图中的六个圆圈中,试说明:图中至少有一行的数字之和不小于8。
详解:1+2+3+4+5+6+7=21,21÷3=7,图形总共有3行,第一行只有一个数,最大填6,那么后两行至少有一行是大于7的整数,即不小于8。
5.从l,2,3,…,99,100这100个数中任意选出51个数,请说明:(1)在这51个数中,一定有两个数的差等于50;详解:构造差为50的抽屉:(1,51)、(2,52)、……、(50,100),共50个抽屉。
选出51个数,必有两数来自一组,即差为50.(2)在这51个数中,一定有两个数差1.详解:构造差为1的抽屉:(1,2)、(3,4)、……、(99,100),共50个抽屉。
必有两数来自一组,即差为1.6.从1,2,3,…,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?答案:12详解:构造差为4的抽屉:(1,5)、(2,6)、(3,7)、(4,8)、(9,13)、(10,14)、(11,15)、(12,16)、(17,21)、(18)、(19)、(20)共12个抽屉,最多取12个数。
第九讲 抽屉原理1、知识点:1.把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一个抽屉中的苹果数大于等于几?2.把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一个抽屉中的苹果数大于等于几?上述两个结论你是如何计算出来的?★规律:用苹果数除以抽屉数,若余数不为零,则“答案”为商加1,若余数为零,则“答案”为商。
★抽屉原则一:把个以上的苹果放到个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。
★抽屉原则二:把多于×个苹果放到个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有(+1)个苹果。
2、基础知识训练(再蓝皮书)1、把98个苹果放到10个抽屉中,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少含有个苹果。
2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有只鸽子。
3、从8个抽屉中拿出17个苹果,无论怎么拿。
我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了个苹果。
4、从个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果。
3、 思路与方法:在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。
训 练 题1.六(1)班有49名学生。
数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。
”请问王老师说的对吗?为什么?2.从这100个数中任意挑选出51个数来,证明在这51个数中,一定:(1)有2个数互质;(2)有两个数的差为50;3.圆周上有2000个点,在其上任意地标上(每一点只标一个数,不同的点标上不同的数)。
求证:必然存在一点,与它紧相邻的;两个点和这点上所标的三个数之和不小于2999。