三年级奥数举一反三第3940周之抽屉原理一题多解
- 格式:pdf
- 大小:362.54 KB
- 文档页数:18
第35周巧求周长(一)举一反三11. 下图是一个楼梯的侧面,如果在阶梯上铺地毯,要计算地毯的长度,可以怎样测量2. 如下图所示,小明和小玲同时从学校走到少儿书店,小明沿A路线行走,小玲沿B路线行走,他们俩一共走了多少米学校BA110米200米少儿书店3.下图是由6个面积为1平方厘米的小正方形拼成的图形,它的周长是多少厘米举一反三21.下图是由5个边长为3厘米的正方形组成的图形,求此图形的周长。
2.下图是由6个边长为2厘米的正方形组成的图形,求此图形的周长。
举一反三31.把两个大小相同的正方形拼成一个长方形后,这个长方形的周长比原来两个正方形的周长的和减少了10厘米,原来一个正方形的周长是多少厘米2.把一个正方形剪成两个大小相同的长方形后,两个长方形周长的和比原来正方形的周长增加了28分米,原来正方形的周长是多少分米3.把边长是48厘米的正方形剪成三个同样大小的长方形。
每个长方形的周长是多少厘米举一反三41.把16个边长为3厘米的小正方形拼成一个大正方形。
这个拼成的大正方形周长是多少厘米2.把6个边长为4厘米的小正方形如下图拼成一个长方形。
这个长方形的周长是多少厘米3.把6个长为3厘米,宽为2厘米的小正方形如下图拼成一个大长方形。
这个大长方形的周长是多少厘米举一反三51.讲一张边长为12厘米的正方形纸,剪成4个完全一样的小正方形,那么这4个小正方形周长之和比原来的大正方形的周长增加了多少厘米2.把一个边长为20厘米的正方形,如下图剪成6个完全一样的小长方形,这6个小长方形周长的和与原来的正方形的周长相比增加了多少厘米3.将一个长为8分米、宽为6分米的长方形如下图剪成6个完全一样的小长方形,这6个小长方形周长之和比原来长方形的周长增加了多少分米第36周巧求周长(二)举一反三11.如右图所示,已知大长方形的周长为38厘米,阴影部分为正方形。
求小长方形的周长。
5厘米2.小华家给长方形的院子装饰了篱笆墙,由于门宽2米,所以篱笆墙共长16米,而这个长方形的宽是长的一半。
小学奥数教案——抽屉原理(解析版)第一篇:小学奥数教案——抽屉原理(解析版)教案抽屉原理一本讲学习目标初步抽屉原理的方法和心得。
二概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。
比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。
应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。
三例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
教案抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。
比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。
应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。
2、例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。
小学奥数-抽屉原理(一)抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
例1五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?【分析与解答】关键是构造合适的抽屉。
既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。
除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。
44÷21= 2……2,根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。
例2夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?【分析与解答】本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。
营员数已经有了,现在的问题是应当搞清有多少个抽屉。
因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。
2000÷6=333……2,根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。
例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?【分析与解答】这道题一下子不容易理解,我们将它变变形式。
因为是把书分给学生,所以学生是抽屉,书是物品。
2024最新小学奥数抽屉原理小学生奥数中的抽屉原理是指一种将物品分配到有限的空间中的方法。
这个原理是由数学家所提出的,因为它的应用广泛,并且在解决问题中非常有用。
抽屉原理简单来说就是:如果你有独立的n个抽屉,并且有n+1个物品要放入这些抽屉中,那么必然存在一个抽屉里至少放了两个物品。
这个原理的证明也很简单。
假设每个抽屉里最多只能放一个物品,那么最多只能放n个物品,因为有n个抽屉。
但是题目中说有n+1个物品要放入这些抽屉,所以最少会有一个抽屉里放了两个物品。
抽屉原理的应用非常广泛,包括组合数学、概率论等领域。
在小学奥数中,它通常用于解决物品分配、排列组合等问题。
以下是一些抽屉原理在小学奥数中的具体应用举例:1.分配问题:假设有10个苹果要分给5个人吃,那么必然有至少一个人吃到的苹果数量大于等于2个。
这是因为10个苹果无法平均分给5个人,所以必然有人会多吃一些。
2.字母出现次数问题:假设一个字符串中有11个字母,那么至少有两个字母出现的次数相同。
这是因为只有26个字母,无论如何排列,最多只能给每个字母分配到一个位置,所以肯定有至少两个字母分配到了同一个位置。
3.图形排列问题:假设有10个正方形图案要排列在5个位置上,那么必然有至少一个位置上排列了两个图案。
这是因为10个图案无法完全填满5个位置,所以必然会有至少一个位置上放置了两个图案。
总结起来,抽屉原理告诉我们,在一些有限的情况下,物品的分配不可能完全均匀,必然会有一些位置或者人会多分配到一些物品。
这个原理在解决问题时可以帮助我们快速找到可能的解答,避免不必要的计算和尝试。
所以,在小学奥数中,掌握抽屉原理可以帮助学生更好地理解和解决各种问题,提高问题解决能力和思维逻辑能力。
希望以上内容对您有所帮助。
第39讲抽屉原理一、专题简析:把12个苹果放到11个抽屉中去,那么,至少有一个抽屉中放有两个苹果,这个事实的正确性是非常明显的。
把它进一步推广,就可以得到数学里重要的抽屉原理。
用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。
二、精讲精练例1:敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?练习一1、学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本。
那么,至少应有几个同学,才能保证有两个或两个以上同学所选的书相同?2、布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块。
那么,至少有多少个小朋友,才能保证有两个或两个以上小朋友所选的木块相同?例2:幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个小朋友能得两件玩具?练习二1、小明家有5口人,小明妈妈至少要买几个苹果分给大家,才能保证至少有一人能得两个苹果?2、某学校共有15个班级,体育室至少要买几个排球分给各班,才能保证至少有一个班能得两个排球?例3:盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?练习三1、箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?2、书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的书,至少要拿出多少本书?例4:一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?练习四1、抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?2、书箱里放着4本故事书,3本连环画,2本文艺书。
一次至少取出多少本书,才能保证每种书至少有一本?例5:三(2)班有50个同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件。
三年级奥数之抽屉原理抽屉原理是一种非常有用的数学方法,它可以帮助我们解决许多实际问题。
在三年级奥数中,抽屉原理是一个非常重要的知识点,它涉及到组合数学的基础知识。
抽屉原理的基本思想是将多个元素放入几个抽屉中,如果每个抽屉中至少有一个元素,那么就可以通过抽屉原理得出一些有用的结论。
在三年级奥数中,我们通常使用抽屉原理来解决一些比较简单的问题,例如将一些物品放入几个盒子中,或者将一些数字放入几个分组中。
下面是一个简单的例子,它说明了如何使用抽屉原理来解决实际问题:假设我们有4个小朋友和3个苹果,我们想知道是否每个小朋友至少可以得到一个苹果。
我们可以使用抽屉原理来解决这个问题,我们将3个苹果放入3个抽屉中,每个抽屉中至少有一个苹果。
然后我们可以将4个小朋友放入这3个抽屉中,每个小朋友至少可以获得一个苹果。
因此,我们可以得出每个小朋友至少可以得到一个苹果。
这个例子说明了如何使用抽屉原理来解决实际问题,它也帮助我们理解了抽屉原理的基本思想。
在三年级奥数中,我们还会学习一些更复杂的组合数学问题,例如鸽巢原理、背包问题等等。
这些问题的解决方法都涉及到抽屉原理的基础知识,因此学习抽屉原理是非常重要的。
抽屉原理是一种非常有用的数学方法,它可以帮助我们解决许多实际问题。
在三年级奥数中,学习抽屉原理可以帮助我们更好地理解组合数学的基础知识,并且可以让我们更好地解决实际问题。
在四年级的奥数课程中,我们学习了一个非常重要的原理——抽屉原理。
抽屉原理是一种基本的计数原理,它能帮助我们理解和解决各种数学问题。
抽屉原理的内容是这样的:如果有n个抽屉和n+1个物品,那么至少有一个抽屉中包含两个或以上的物品。
这个原理可以用于解决各种问题,尤其是当我们需要找出某种可能的组合或分类时。
例如,如果我们有5本书和4个抽屉,我们可以将书放入抽屉中。
根据抽屉原理,至少有一个抽屉中包含两本书。
现在,如果我们有5个苹果和4个抽屉,那么我们可以将每个苹果放入一个抽屉中,这样每个抽屉中只有一个苹果。