昆明理工大学 线性代数 第4章 习题册答案
- 格式:doc
- 大小:584.50 KB
- 文档页数:11
第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。
矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。
第四章 线性方程组§4-1 克拉默法则一、选择题1.下列说法正确的是( C )A.n 元齐次线性方程组必有n 组解;B.n 元齐次线性方程组必有1n -组解;C.n 元齐次线性方程组至少有一组解,即零解;D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B )A 。
当0D ≠时,非齐次线性方程组只有唯一解;B 。
当0D ≠时,非齐次线性方程组有无穷多解;C 。
若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题1.已知齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ= 1 ,μ= 0 。
2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠,则方程组有唯一解i x =iD D. 三、用克拉默法则求解下列方程组 1.832623x y x y +=⎧⎨+=⎩解:832062D ==-≠123532D ==-,2821263D ==-所以,125,62D Dx y D D====- 2.123123123222310x x x x x x x x x -+=-⎧⎪+-=⎨⎪-+-=⎩解:213112112122130355011101r r D r r ---=--=-≠+---11222100511321135011011D r r ---=-+-=---,212121505213221310101101D r r --=-+-=-----, 3121225002112211511110D r r --=+=---所以, 3121231,2,1D D Dx x x D D D ======3.21241832x z x y z x y z -=⎧⎪+-=⎨⎪-++=⎩解:132010012412041200183583D c c --=-+-=≠-13110110014114020283285D c c -=-+=,2322112102112100123125D c c -=-+=--, 31320101241204120182582D c c =-=--所以, 3121,0,1D D Dx y z D D D ====== 4.12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩解:2131412131111111111214012322315053733121102181231235537013814222180514r r D r r r r r r r r ---=------------+=----=-+---3214212325111511102221422518231523528110121101005110010525182733214210252823522c c D c c c c c c --------=----------+=-----=----212314113231511151112140723222150123733021101518723230132123733031284315181518r r D r r r r r r r r -----=--------------=----=------12342213111512151031224522182325111132283101101002510200251521852974265211228115127c c D c c c c c c -------=---------+=-----=----12432322111152115312125252223121135231200100215215552502714251152604c c D c c r r r r --------=----------+=----=---所以, 312412341,2,3,1D D D Dx x x x D D D D========-§4-2 齐次线性方程组一、选择题1.已知m n ⨯矩阵A 的秩为1n -,12,αα是齐次线性方程组0AX =的两个不同的解,k 为任意常数,则方程组0AX =的通解为( D )。
第四章二 次 型练习4、11、写出下列二次型的矩阵(1)),,(321x x x f =32312221242x x x x x x -+-;(2)),,,(4321x x x x f =434131212222x x x x x x x x +++。
解:(1)因为),,(321x x x f =),,(321x x x ⎪⎪⎪⎭⎫ ⎝⎛---012110202⎪⎪⎪⎭⎫ ⎝⎛321x x x ,所以二次型),,(321x x x f 的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛---012110202。
(2)因为),,,(4321x x x x f =),,,(4321x x x x ⎪⎪⎪⎪⎪⎭⎫⎝⎛010*********1110⎪⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x , 所以二次型),,,(4321x x x x f 的矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛010*********1110。
2、写出下列对称矩阵所对应的二次型:(1)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2221202121211; (2)⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---121210210211212112101210。
解:(1)设T321),,(x x x X =,则),,(321x x x f =X TAX =),,(321x x x ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2221202121211⎪⎪⎪⎭⎫⎝⎛321x x x =323121232142x x x x x x x x -+-+。
(2)设T4321),,,(x x x x X =,则),,,(4321x x x x f =X T AX =),,,(4321x x x x ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---121210210211************⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x=434232312124222x x x x x x x x x x x x +++-++-。
练习4、21、用正交替换法将下列二次型化为标准形,并写出所作的线性替换。
线性代数练习册第四章习题及答案:篇一:线代第四章习题解答第四章空间与向量运算习题4.14-1-1、已知空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C??2,2,1? (1)求向量,,的坐标,并在直角坐标系中作出它们的图形;(2)求点A与B之间的距离.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB??4-1-2.利用坐标面上和坐标轴上点的坐标的特征,指出下列各点的特殊位置: A?3,4,0?; B?0,4,3? ; C?3,0,0? ;D?0,?1,0? 解: A (3,4,0) 在xoy面上 B(0,4,3)点在yoz面上C(3,0,0)在x轴上 D(0,-1,0)在y轴上 4-1-6. 设u?a?b?2c,v??3b?c,试用a、b、c表示3u?3v.解:3u-2v=3(a-b+2c)-2(-3b-c)=3a+3b+8c4-1-7. 试用向量证明:如果平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由已知AO=OC,DO=OB 因为AB =AO+OB=OC+DO=DC,AD=AO+OD=OC+BO=BC 所以ABCD为平行四边形。
4-1-8. 已知向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.?解:.prju?u)?4*cos60=4?r?rcos(r。
3=23 24-1-9. 已知一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为(x,y,z)prjxAB?(2?x0)?4prjyAB?(?1?y)??4 prjzAB?(7?z0)?7解得:x??2y?3z0?04-1-12. 求下列向量的模与方向余弦,并求与这些向量同方向的单位。
第四章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320;(3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022100343112423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102021 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶 子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等 于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫⎝⎛-------815073131223123⎪⎪⎪⎭⎫ ⎝⎛---------152********117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫ ⎝⎛-----r r .二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------023010********071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000010*******002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x xx x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1) 0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2) )()(B R A R < ⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ, 得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解 ⎪⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1) ⎪⎪⎪⎭⎫⎝⎛323513123; (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023. 解 (1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267100010001~故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267(2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001~ 故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------1061263111010421112.(1) 设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX =;(2) 设⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---=132321,433312120B A ,求X 使B XA =. 解 (1) ()⎪⎪⎪⎭⎫ ⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫ ⎝⎛--412315210100010001 ⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X (2) ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛132321433312120B A 初等列变换~⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---474112100010001 ⎪⎪⎭⎫ ⎝⎛---==∴-4741121BA X .。
第4章1.(1)是;(2)是;(3)是;(4)否.2. 证:(1)假设零向量不唯一,即存在两个零向量120,0,但1200≠,则由10αα+=和20αα+=推出1200=,这与假设矛盾. (2)类似(1)中证明. (3)0()0k k k k αααα=-=-=, (1)(01)01ααααα-=-=-=-, 0()0k k k k αααα=-=-=. 3.(1)是;(2)是;(3)否;(4)否. 4. 证:设11223344k A k A k A k A O +++=,则有12341234123412340,0,0,0,k k k k k k k k k k k k k k k k ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩系数矩阵11111111111101011111001111110001A --⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥--⎢⎥⎢⎥----⎣⎦⎣⎦,则()4r A =, 故12340k k k k ====,即1234,,,A A A A 线性无关.又对任意一个11122122a a A a a ⎡⎤=⎢⎥⎣⎦,若11223344k A k A k A k A A +++=, 则可得123411123412123421123422,,,,k k k k a k k k k a k k k k a k k k k a ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩解得唯一一组解为:()()()()1111221222111221223111221224111221221,41,41,41,4k a a a a k a a a a k a a a a k a a a a ⎧=+++⎪⎪⎪=-+-⎪⎨⎪=+--⎪⎪⎪=-++-⎩即任意一个A 都可以由这组矩阵线性表出,且表达式唯一,则22dim()4R ⨯=,且1234,,,A A A A 构成22R ⨯的一组基.5. 解:令123110100,,000011A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则由112233k A k A k A O ++=可解得1230k k k ===,即123,,A A A 线性无关. 又对任意一个A V ∈,a ab Ac c +⎡⎤=⎢⎥⎣⎦,若112233k A k A k A A ++=,可解得唯一一组解为: 123,,k a k b k c ===,即任意一个A 都可以由123,,A A A 线性表出,且表达式唯一,则dim()3V =,且123,,A A A 构成V 的一组基. 6. 解:2()65f x x x =-+,故在这组基下的坐标为[]6,5,1T-.7. 解:(1)根据过渡矩阵C 的3个列向量分别是21,1,(1)x x ++在基21,,x x 下的坐标,可得111012001C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. (2)新的基为:21,1,2x x x -+-+. 8. 解:(1)显然对加法和数乘封闭.(2)令1100A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,2010A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,…,001n A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ . 若1122n n k A k A k A O ++= ,显然可推出120n k k k ==== ,即12,,,n A A A 线性无关.又对任意一矩阵12A n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,若 1122n n k A k A k A A ++= ,可解得唯一一组解为:121,2,,n k k k n === .即任意一个A W ∈都可以由12,,,n A A A 线性表出,且表达式唯一,则dim()W n =,且12,,,n A A A 构成W 的一组基. 9. 解:11211121211101111103001301170000A --⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =,故由1234,,,αααα 生成的子空间维数是3,一组基为123,,ααα(或124,,ααα).11.解:过渡矩阵为:205133113C ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦,若有一非零向量[],,T w x y z =,满足w Cw =,则可得方程组25,33,3,x x z y x y z z x y z =+⎧⎪=++⎨⎪=---⎩对系数矩阵经初等行变换后得阶梯形方程组50,0,x z y z +=⎧⎨-=⎩ 可解得一般解为: [5,,]w c c c =-,c 为任一非零常数.12. 证:已知()()()()112112212211,,313b a a b a a b a a b αβ-⎛⎫⎛⎫==-+-+ ⎪ ⎪-⎝⎭⎝⎭, (1)()()()()112212,3,b a a b a a αββα=-+-+=;(2)()()()()()1112221122,33,,c a b a b c a b a b αβγαγβγ+=+--+--++=+; (3)()()()()112212,3,k kb a a kb a a k αβαβ=-+-+=;(4)()()()()22112212122,320a a a a a a a a a αα=-+-+=-+≥,若(),0αα=,当且仅当1220,0,a a a -=⎧⎨=⎩ 故120a a ==,即0α=.由于(),αβ满足定义4.6中的4个性质,故是2R 的内积.13. 解:(1)1||α=2||α=,3||α=.因为()2323,cos ||||10ααθαα==-,故arccos 10θ⎛⎫=- ⎪ ⎪⎝⎭. (2)设与123,,ααα都正交的向量为()1234,,,b b b b β=,则可得12341234123420,230,220,b b b b b b b b b b b b +-+=⎧⎪++-=⎨⎪---+=⎩ 经过初等行变换可得阶梯形矩阵:123423420,330,b b b b b b b +-+=⎧⎨-+-=⎩ 解得一般解为()34343455,33,,Tb b b b b b β=-+-,其中34,b b 为自由变量,或者通解表达式为1255331001k k β-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.14. 解:()111,0,1,1Tβα==,)1111,0,1,1||Tβγβ==. ()22211121,,1,,333Tβααγγ⎛⎫=-=-- ⎪⎝⎭,)2221,3,2,1||Tβγβ==--. ()()333113223112,,,,,5555Tβααγγαγγ⎛⎫=--=-- ⎪⎝⎭,)3333,1,1,2||Tβγβ==--. 15. 解:()110,0,1Tβα==,()10,0,1Tγ=. ()()22211,0,1,0T βααγγ=-=,()20,1,0Tγ=.()()()33311322,,1,0,0T βααγγαγγ=--=,()31,0,0Tγ=. 16. 证:(1)()()T T T T T AB AB B A AB B EB B B E ====.(2)A 正交,则||1A =±,*1*||A A A A -==±,则**1111()()()T T T A A A A A A E E ----====. 17. 解:已知1T X X =,则(2)(2)(2)(2)T T T T T T Q Q E XX E XX E XX E XX =--=-- 44()44T T T T T E XX X X X X E XX XX E =-+=-+=, 即Q 为正交矩阵.若T X =,则122122123221T Q E XX --⎡⎤⎢⎥=-=--⎢⎥⎢⎥--⎣⎦. 18. 解:73217737326a Q b c -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,通过T Q Q E =得 214960,1421180,621120,a bc abc -+-=⎧⎪-+=⎨⎪---=⎩解得626,,777a b c =-==-.19. 证:因为T Q Q E =,故对任意n X R ∈,有()()()22||,||TT T T QX QX QX QX QX X Q QX X X X =====,则一定有 ||||QX X =.20.(1)否;(2)是;(3)是;(4)否. 21. 解:(1)A 112(1,1,0)T εεε==+,A 212(1,1,0)T εεε=-=-, A 33(0,0,1)T εε==,所求矩阵为:110110001D ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦. (2) A ()12110T,,ηη==,A()212002T,,ηη==,A ()31232012T,,ηηηη==-+,故所求的矩阵为022101001⎛⎫⎪- ⎪ ⎪⎝⎭.22. 解:(1)A 1123(2,3,5)235T εεεε==++,A 2ε=A 110⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 1123(1,3,5)35T εεεε=---=---,A 2ε=A 111⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 2ε-A 1123(1,1,1)T εεεε=--=-+-,故所求的矩阵为211331551A --⎛⎫⎪=- ⎪ ⎪--⎝⎭.(2)已知1232αεεε=-+,则21124331110551114y AX --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭.23. 解:010001000D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦24. 证:必要性:因为12,,,n εεε 是V 的标准正交基,则(,),1,i j ij i j n εεδ=≤≤. 因为A 是正交变换,则(A ()i ε,A ()j ε)ij δ=, 1,i j n ≤≤. 即A ()i ε,A ()j ε,…,A ()n ε是V 的标准正交基. P 40.3.(作业册)解:211111111111011312240000---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,解得4343423x x x X x x -⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥⎣⎦,则解空间的解向量为[]10,1,1,0T α=,[]22,3,0,1Tα=-,通过Schmidt 标准正交化得]10,1,1,0T γ=,]24,3,3,2Tγ=--.。
线性代数习题答案第四章第四章线性相关性与线性无关性线性代数是数学中的重要分支,它研究向量空间及其上的线性变换。
在线性代数的学习过程中,理解线性相关性与线性无关性是非常重要的一部分。
本文将针对线性代数习题第四章中的相关问题进行讨论和解答。
一、线性相关性与线性无关性的定义在开始解答具体问题之前,我们先来回顾一下线性相关性与线性无关性的定义。
定义1:对于向量组V={v1,v2,...,vn},如果存在一组不全为零的实数c1,c2,...,cn,使得c1v1+c2v2+...+cnvn=0,则称向量组V是线性相关的;否则,称向量组V是线性无关的。
定义2:如果向量组V中的任意一组向量都是线性无关的,则称向量组V是极大线性无关的。
根据以上定义,我们可以通过求解线性方程组来判断向量组的线性相关性与线性无关性。
二、线性相关性与线性无关性的判断1. 问题一已知向量组V1={(-1,2,1), (2,-4,2), (3,-6,3)},判断该向量组的线性相关性与线性无关性。
解答:我们可以将向量组V1写成矩阵形式,即:A = [(-1,2,1), (2,-4,2), (3,-6,3)]然后,我们将矩阵A进行行变换,得到行阶梯形矩阵:B = [(-1,2,1), (0,0,0), (0,0,0)]由于矩阵B中存在一行全为零的情况,因此向量组V1是线性相关的。
2. 问题二已知向量组V2={(1,1,1), (1,2,3), (1,3,6)},判断该向量组的线性相关性与线性无关性。
解答:同样地,我们将向量组V2写成矩阵形式:A = [(1,1,1), (1,2,3), (1,3,6)]进行行变换,得到行阶梯形矩阵:B = [(1,1,1), (0,1,2), (0,0,0)]由于矩阵B中不存在一行全为零的情况,因此向量组V2是线性无关的。
3. 问题三已知向量组V3={(1,2,3), (4,5,6), (7,8,9)},判断该向量组的线性相关性与线性无关性。
篇一:线代第四章习题(xítí)解答第四章空间(kōngjiān)与向量运算习题(xítí)4.14-1-1、空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C2,2,1? 〔1〕求向量,,的坐标,并在直角坐标系中作出它们(tā men)的图形;〔2〕求点A与B 之间的间隔.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB??4-1-2.利用(lìyòng)坐标面上和坐标轴上点的坐标的特征,指出以下各点的特殊位置: A?3,4,0?; B?0,4,3? ; C?3,0,0? ;D?0,?1,0? 解: A (3,4,0) 在xoy面上 B〔0,4,3〕点在yoz面上C〔3,0,0〕在x轴上 D〔0,-1,0〕在y轴上 4-1-6. 设u?a?b?2c,v3b?c,试用a、b、c表示3u?3v.解:3u-2v=3〔a-b+2c〕-2〔-3b-c〕=3a+3b+8c4-1-7. 试用向量证明:假如平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由AO=OC,DO=OB 因为AB=AO+OB=OC+DO=DC,AD=AO+OD=OC+BO=BC 所以ABCD为平行四边形。
4-1-8. 向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.?解:.prju?u)?4*cos60=4?r?rcos(r。
3=23 24-1-9. 一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为〔x,y,z〕prjxAB?(2?x0)?4prjyAB?(?1?y)4 prjzAB?(7?z0)?7解得:x2y?3z0?04-1-12. 求以下向量的模与方向(fāngxiàng)余弦,并求与这些向量同方向的单位向量:〔1〕a2,?1,1? ;〔2〕b4,?2,2? ;〔3〕c6,?3,3? ;〔4〕d?2,1,?1? .解:〔1〕a=〔2,-1,1〕a?22?(?1)?122cos22a36cos?1?26cos a6a6〔2〕b=(4,-2,2) b?42?(?2)?2 cos2226? b3cos26?2?b666? cos b0?,?, b6b6b366〔3〕c=(6,-3,3) c?b2?(?4)?3 cos22236?3cos?33?? 6cos23362?6 62〔4〕d=(-2,1,-1)d?(?2)?1?(?1)?6cos?263cos16?d6cos?d0{?,,?66d366与前三向量(xiàngliàng)单位同的d{?6,,?。
线性代数第四章答案解析第四章向量组的线性相关性1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1,3)T ,a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T .解由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61TT T --+==(1, 2, 3, 4)T .3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明由-=312123111012421301402230) ,(B A ????? ??-------971820751610402230421301~r ????? ?------531400251552000751610421301 ~r-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.由-????? ??---????? ??-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R(B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明由- ??- ??--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示;(2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1,a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为-???? ??-???? ??-=000110121220770121101413121~~r r A , 所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1,a , -1)T , a 3=(1, -1, a )T . 解以所给向量为列向量的矩阵记为A . 由aa aA 111111||--=如能使行列式等于0,则此时向量组线性相关.(具体看书后相应答案)8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1,a 2线性表示的表示式. 解因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使λ1(a 1+b )+λ2(a 2+b )=0, 由此得2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=,设211λλλ+-=c , 则b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. (也可看书后答案)解不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.10. 举例说明下列各命题是错误的:(1)若向量组a 1, a 2, ? ? ?, a m 是线性相关的, 则a 1可由a 2, ? ? ?,a m 线性表示. 解设a 1=e 1=(1, 0, 0, ? ? ?, 0), a 2=a 3= ? ? ? =a m =0, 则a 1, a 2, ? ? ?, a m 线性相关, 但a 1不能由a 2, ? ? ?, a m 线性表示.(2)若有不全为0的数λ1, λ2, ? ? ?, λm 使λ1a 1+ ? ? ? +λm a m +λ1b 1+ ? ? ? +λm b m =0成立, 则a 1, a 2, ? ? ?, a m 线性相关, b 1, b 2, ? ? ?, b m 亦线性相关. 解有不全为零的数λ1, λ2, ? ? ?, λm 使λ1a 1+ ? ? ? +λm a m +λ1b 1+ ? ? ? +λm b m =0,原式可化为λ1(a1+b1)++λm(a m+b m)=0.取a1=e1=-b1,a2=e2=-b2,,a m=e m=-b m,其中e1,e2,,e m为单位坐标向量,则上式成立,而a1,a2,,a m和b1,b2,,b m均线性无关.(3)若只有当λ1,λ2,,λm全为0时,等式λ1a1++λm a m+λ1b1++λm b m=0才能成立,则a1,a2,,a m线性无关, b1,b2,,b m亦线性无关.解由于只有当λ1,λ2,,λm全为0时,等式由λ1a1++λm a m+λ1b1++λm b m=0成立,所以只有当λ1,λ2,,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)++λm(a m+b m)=0成立.因此a1+b1,a2+b2,,a m+b m线性无关.取a1=a2==a m=0,取b1,,b m为线性无关组,则它们满足以上条件,但a1,a2,,a m线性相关.(4)若a1,a2,,a m线性相关, b1,b2,,b m亦线性相关,则有不全为0的数,λ1,λ2,,λm使λ1a1++λm a m=0,λ1b1++λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0?λ1=-2λ2,λ1b1+λ2b2 =0?λ1=-(3/4)λ2,λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3, b3=a3+a4, b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.证明由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1, 于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ? ? ?, b r =a 1+a 2+ ? ? ? +a r , 且向量组a 1, a 2, ? ? ? , a r 线性无关, 证明向量组b 1, b 2, ? ? ? , b r 线性无关. 证明已知的r 个等式可以写成=100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ? ? ? , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解由-????? ??--????? ??----=000000010291032001900820291844210141002291) , ,(~~321r r a a a , 知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7).。
第四章 向量组的线性相关性1设v 1(1 1 0)T v 2(0 1 1)T v 3(3 4 0)T 求v 1v 2及3v 12v 2v 3解 v 1v 2(1 1 0)T (0 11)T(10 11 01)T(1 01)T3v 12v 2v 33(1 1 0)T 2(0 1 1)T (34 0)T(31203 31214 30210)T (0 1 2)T2 设3(a 1a )2(a 2a )5(a 3a ) 求a 其中a 1(2 5 13)Ta 2(10 1 5 10)Ta 3(41 1 1)T解 由3(a 1a )2(a 2a )5(a 3a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61TT T --+=(1 2 3 4)T3 已知向量组 A a 1(0 1 2 3)T a 2(3 0 1 2)T a 3(2 30 1)TBb 1(2 112)T b 2(02 1 1)T b 3(4 4 13)T证明B 组能由A 组线性表示 但A 组不能由B 组线性表示证明 由⎪⎪⎪⎭⎫ ⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫ ⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )R (A B )3 所以B 组能由A 组线性表示由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )2 因为R (B )R (B A ) 所以A 组不能由B 组线性表示4 已知向量组 A a 1(0 1 1)T a 2(1 10)TBb 1(10 1)T b 2(1 2 1)T b 3(3 2 1)T证明A 组与B 组等价 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B知R (B )R (B A )2 显然在A 中有二阶非零子式 故R (A )2 又R (A )R (BA )2 所以R (A )2 从而R (A )R (B )R (A B ) 因此A 组与B 组等价5 已知R (a 1 a 2 a 3)2 R (a 2 a3 a 4)3 证明(1) a 1能由a 2 a 3线性表示 (2) a 4不能由a 1 a 2 a 3线性表示 证明 (1)由R (a 2 a 3 a 4)3知a 2 a 3 a 4线性无关 故a 2 a 3也线性无关 又由R (a 1 a 2 a 3)2知a 1 a 2 a 3线性相关 故a 1能由a 2 a 3线性表示(2)假如a 4能由a 1 a 2 a 3线性表示 则因为a 1能由a 2 a 3线性表示 故a 4能由a 2 a 3线性表示 从而a 2 a 3 a 4线性相关 矛盾 因此a 4不能由a 1 a 2 a 3线性表示6 判定下列向量组是线性相关还是线性无关 (1) (1 3 1)T (2 1 0)T (1 4 1)T (2) (23 0)T (14 0)T (00 2)T解 (1)以所给向量为列向量的矩阵记为A 因为⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A所以R (A )2小于向量的个数 从而所给向量组线性相关(2)以所给向量为列向量的矩阵记为B 因为22200043012||≠=-=B所以R (B )3等于向量的个数 从而所给向量组线性相无关7 问a 取什么值时下列向量组线性相关? a 1(a 1 1)T a 2(1a 1)T a 3(11 a )T解 以所给向量为列向量的矩阵记为A 由aa aA 111111||--=如能使行列式等于0,则此时向量组线性相关(具体看书后相应答案)8 设a 1 a 2线性无关 a 1b a 2b 线性相关 求向量b 用a 1 a 2线性表示的表示式解 因为a 1b a 2b 线性相关 故存在不全为零的数12使1(a 1b )2(a 2b )0由此得2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=设211λλλ+-=c 则b c a 1(1c )a 2 c R9 设a 1 a 2线性相关 b 1 b 2也线性相关 问a 1b 1 a 2b 2是否一定线性相关?试举例说明之 (也可看书后答案) 解 不一定例如 当a 1(1 2)T , a 2(2 4)T , b 1(1 1)T , b 2(0 0)T 时 有 a 1b 1(1 2)T b 1(0 1)T , a 2b 2(2 4)T (0 0)T (2 4)T而a 1b 1 a 2b 2的对应分量不成比例 是线性无关的10 举例说明下列各命题是错误的 (1)若向量组a 1 a 2a m 是线性相关的则a 1可由a 2a m 线性表示解设a1e1(1000)a2a3a m0则a1 a2a m线性相关但a1不能由a2a m线性表示(2)若有不全为0的数12m使a1m a m1b1m b m01成立则a1a2a m线性相关, b1b2b m亦线性相关解有不全为零的数12m使a1m a m1b1m b m01原式可化为(a1b1)m(a m b m)01取a1e1b1a2e2b2a m e m b m其中e1e2e m为单位坐标向量则上式成立而a1a2a m和b1b2b m均线性无关(3)若只有当12m全为0时等式a1m a m1b1m b m01才能成立则a1a2a m线性无关, b1b2b m亦线性无关解由于只有当12m全为0时等式由1a1m a m1b1m b m0成立所以只有当12m全为0时等式(a1b1)2(a2b2)m(a m b m)01成立因此a1b1a2b2a m b m线性无关取a1a2a m0取b1b m为线性无关组则它们满足以上条件但a1a2a m线性相关(4)若a1a2a m线性相关, b1b2b m亦线性相关则有不全为0的数12m使a1m a m01b1m b m01同时成立解a1(1 0)T a2(2 0)T b1(0 3)T b2(0 4)Ta12a2 01221b12b2 01(3/4)210与题设矛盾1211设b1a1a2b2a2a3 b3a3a4 b4a4a1证明向量组b1b2 b3b4线性相关证明 由已知条件得a 1b 1a 2 a 2b 2a 3 a 3b 3a 4 a 4b 4a 1于是 a 1 b 1b 2a 3 b 1b 2b 3a 4b 1b 2b 3b 4a 1从而 b 1b 2b 3b 40这说明向量组b 1 b 2 b 3 b 4线性相关12 设b 1a 1 b 2a 1a 2b ra 1a 2a r 且向量组a 1 a 2a r 线性无关 证明向量组b 1 b 2b r 线性无关证明 已知的r 个等式可以写成⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅100110111) , , ,() , , ,(2121r r a a a b b b上式记为B AK 因为|K |10 K 可逆 所以R (B )R (A )r 从而向量组b 1 b 2b r 线性无关13 求下列向量组的秩, 并求一个最大无关组(1)a 1(1 2 1 4)T a 2(9 100 10 4)T a 3(2 4 2 8)T解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a知R (a 1 a 2 a 3)2 因为向量a 1与a 2的分量不成比例 故a 1 a 2线性无关 所以a 1 a 2是一个最大无关组(2)a 1T (1 2 1 3)a 2T (41 5 6)a 3T (134 7)解 由⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a知R (a 1T a 2T a 3T )R (a 1 a 2 a 3)2 因为向量a 1T 与a 2T 的分量不成比例 故a 1Ta 2T 线性无关 所以a 1T a 2T 是一个最大无关组14 利用初等行变换求下列矩阵的列向量组的一个最大无关组(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211解 因为⎪⎪⎪⎭⎫ ⎝⎛---141131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211所以第1、2、3列构成一个最大无关组(关于14的说明:14题和书上的14题有些不同,答案看书后的那个)15 设向量组(a3 1)T (2 b 3)T (1 2 1)T (2 31)T的秩为2 求a b解 设a 1(a 3 1)T a 2(2 b 3)T a 3(12 1)T a 4(23 1)T因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a而R (a 1 a 2 a 3 a 4)2 所以a 2 b 516设a1a2a n是一组n维向量已知n维单位坐标向量e1e2e n能由它们线性表示证明a1a2a n线性无关证法一记A(a1a2a n)E(e1e2e n)由已知条件知存在矩阵K使E AK两边取行列式得|E||A||K|可见|A|0所以R(A)n从而a1a2a n线性无关证法二因为e1e2e n能由a1a2a n线性表示所以R(e1e2e n)R(a1a2a n)而R(e1e2e n)n R(a1a2a n)n所以R(a1a2a n)n从而a1a2a n线性无关17设a1a2a n是一组n维向量, 证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示证明必要性设a为任一n维向量因为a1a2a n线性无关而a1a2a n a是n1个n维向量是线性相关的所以a能由a1a2a n线性表示且表示式是唯一的充分性已知任一n维向量都可由a1a2a n线性表示故单位坐标向量组e1e2e n能由a1a2a n线性表示于是有n R(e1e2e n)R(a1a2a n)n即R(a1a2a n)n所以a1a2a n线性无关18设向量组a1a2a m线性相关且a10证明存在某个向量a k (2k m)使a k能由a1a2a k1线性表示证明因为a1a2a m线性相关所以存在不全为零的数12使ma12a2m a m01而且23m不全为零这是因为如若不然则1a10由a10知10矛盾因此存在k(2k m)使0k1k2m0k于是a12a2k a k01a k(1/k)(1a12a2k1a k1)即a k 能由a 1 a 2 a k 1线性表示19 设向量组B b 1 b r 能由向量组A a 1a s 线性表示为(b 1b r )(a 1a s )K 其中K 为s r 矩阵 且A 组线性无关 证明B 组线性无关的充分必要条件是矩阵K 的秩R (K )r 证明 令B (b 1b r ) A (a 1a s ) 则有B AK必要性 设向量组B 线性无关 由向量组B 线性无关及矩阵秩的性质 有 r R (B )R (AK )min{R (A ) R (K )}R (K )及 R (K )min{r s }r因此R (K )r充分性 因为R (K )r 所以存在可逆矩阵C 使⎪⎭⎫ ⎝⎛=O E KC r 为K 的标准形 于是(b 1b r )C ( a 1a s )KC(a 1 a r )因为C 可逆 所以R (b 1b r )R (a 1a r )r 从而b 1b r 线性无关20 设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n n nααααβαααβαααβ证明向量组12n 与向量组12n 等价证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ将上式记为B AK 因为0)1()1(0111101111011110||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n所以K 可逆 故有A BK 1由B AK 和A BK 1可知向量组12n与向量组12n 可相互线性表示 因此向量组12n 与向量组12n 等价21 已知3阶矩阵A 与3维列向量x 满足A 3x 3A x A 2x 且向量组x A x A 2x 线性无关(1)记P (x A x A 2x ) 求3阶矩阵B 使AP PB解 因为AP A (x A x A 2x ) (A x A 2x A 3x )(A x A 2x 3A x A 2x )⎪⎪⎭⎫⎝⎛-=110301000) , ,(2x x x A A所以⎪⎪⎭⎫ ⎝⎛-=110301000B(2)求|A |解 由A 3x 3A x A 2x 得A (3x A x A 2x )0 因为x A x A 2x 线性无关 故3x A x A 2x 0 即方程A x 0有非零解 所以R (A )3 |A |0(从22题开始,凡涉及到基础解系问题的,答案都不是唯一的,可以参考本文答案,也可以看书后的答案,不过以书后的答案为主。
1习题4.1(线性方程组解的结构)一、下列齐次线性方程组是否有非零解?分析:n 阶方阵A ,AX=0有非零解0()A R A n ⇔=⇔<;仅有零解0()A R A n ⇔≠⇔=(1)123412341234123442020372031260x x x x x x x x x x x x x x x x -+-=⎧⎪--+=⎪⎨++-=⎪⎪--+=⎩ ;解:11421112317213126A ----=---213241311420054045402168r r r r r r ---=-------21054054544544004016821682168r r -=---=-=-≠--------仅有零解。
(2)12451234123453020426340x x x x x x x x x x x x x +--=⎧⎪-+-=⎨⎪-++-=⎩ .分析:n 元齐次线性方程组有非零解()R A n ⇔≤;仅有零解()R A n ⇔= 解:()35R A n ≤<=,有非零解(即有无穷多解)。
二、求齐次线性方程组12341234123420363051050x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩的一个基础解系。
解:322112314123512110121101201036130004000010051015000400000r r r r r r r r r A --------=--→-→--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦所以原方程组等价于1243200x x x x +-=⎧⎨=⎩(24,x x 可取任意实数)原方程组的通解为1122134220x k k x k xx k =-+⎧⎪=⎪⎨=⎪⎪=⎩(12,k k R ∈)2改写为11221211123422222101000000001x k k k k x k k x k k x x k k -+--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪===+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(12,k k R ∈)因此齐次线性方程组的基础解系为1221100001ξξ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,三、设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且()12345Tη=,()231234Tηη=+, 求该方程组的通解。
解:由于矩阵的秩为3,n -r =4-3=1,故其对应的齐次线性方程组的基础解系含有一个向量, 且由于321,,ηηη均为非齐次线性方程组的解,由解的性质得123121232()()()4()()56ηηηηηηη⎛⎫ ⎪-+=-+-= ⎪ ⎪+= ⎪⎝⎭齐次解齐次解齐次解,为齐次线性方程组的基础解系,故此非齐次线性方程组的通解:⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛+=54326543k x ,)(R k ∈四、设123ααα,,是方程组A X =0的一个基础解系,证明:向量组123123αααααα++-,,也是A x =0的一个基础解系.解:123ααα,,是方程组A X =0的一个基础解系,所以A x =0的任意三个线性无关解向量的都是它的基础解系;且123ααα,,是方程组A X =0的线性无关解向量组。
由齐次线性方程组的解的性质得123123αααααα++-,,也是A x =0的解。
3设1123123βαααβααβα=++-23==得1111102001C =-=-≠,由(P64)定理8知123123αααααα++-,,线性无关。
因此,向量组123123αααααα++-,,也是A x =0的一个基础解系。
五、设*η是非齐次线性方程组A x=b (b ≠0)的一个解,ξ1,…,ξn -r 是对应的齐次线性方程组的一个基础解系(r R (A )=),证明:(1)*η,ξ1,…,ξn -r 线性无关;(2)*η,ηξ*1+,…,ηξ*n -r +线性无关.证明 (1)反证法,假设1,,,n r ηξξ*- 线性相关,则存在着不全为0的数01,,,n r c c c - 使得下式成立: 0110n r n r C C C ηξξ*--+++= (1)其中,00c ≠否则,1,,n r ξξ- 线性相关,而与基础解系不是线性相关的产生矛盾。
由于η*为特解,1,,n r ξξ- 为基础解系,故得b C A C C C C A r n r n 00110)(==+++*--*ηξξη 而由(1)式可得011()0n r n r A C C C ηξξ*--+++= 故0b =,而题中,该方程组为非齐次线性方程组,得0b = 产生矛盾,假设不成立, 故1,,,n r ηξξ*- 线性无关. (2)反证法,假使1,,,n r ηηξηξ***-++ 线性相关. 则存在着不全为零的数01,,,n r c c c - 使得下式成立:011()()0n r n r c c c ηηξηξ***--+++++= (2)即0111()0n r n r n r c c c c c ηξξ*---++++++=1) 若010n r c c c -+++= ,由于1,,n r ξξ- 是线性无关的一组基础解系,2) 故010n r c c c -==== ,由(2)式得00c =此时010n r c c c -==== 与假设矛盾.43) 若010n r c c c -+++≠ 由题(1)知, 1,,,n r ηξξ*- 线性无关,故01120n r n r c c c c c c --+++===== 与假设矛盾,综上,假设不成立,原命题得证.5习题4.2(用初等变换解线性方程组解)一、求齐次线性方程组123412341234523053602420x x x x x x x x x x x x -+-=⎧⎪++-=⎨⎪+++=⎩的基础解系.解:21123128321252145152301523015230197120(,0)5361002841400117120011712024210014270014270000000r r r r r r r r r A ---+-------=-→-→-→---⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦所以原方程组等价于134234910721172x x x x x x ⎧+-=⎪⎨-+=⎪⎩(34,x x 可取任意实数) 原方程组的通解为112212314291721172xk k x k k x k x k ⎧=-+⎪⎪⎪=-⎨⎪=⎪=⎪⎩(12,k k R ∈)即12917211720110x k k ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭(12,k k R ∈)2121122121311422919172721111(727200kk k kx x k k k kx k k x k k ⎛⎫⎛⎫⎛⎫-+-⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪-- ⎪==+⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭) 因此齐次线性方程组的基础解系为129107211721001ξξ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,二、求下列非齐次线性方程组123412341234124562345x x x x x x x x x x x x -++=⎧⎪+++=⎨⎪+++=⎩的通解。
解:32211231312211111111111053273(,)21456032340123143123450323400r r r r r r r r r A b ---+--=→→⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦6所以原方程组等价于134234572332433x x x x x x ⎧++=⎪⎨++=⎪⎩(34,x x 可取任意实数)原方程组的通解为1122123142572332433xk k x k k x k x k ⎧=--+⎪⎪⎪=--+⎨⎪=⎪=⎪⎩,即125723324133010100x k k ⎛⎫⎛⎫--⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪--⎪=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(12,k k R ∈)。
111221213114221111033332424(33330000k k x x k k k k x k k x kk ⎛⎫⎛⎫⎛⎫----⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎪---+-⎪ ⎪==++ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭) 三、写出一个以x 1222341001C C -⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦为通解的齐次线性方程组.解:11213413421223412313123442422222220343434022341001x c c x x x x x x x c c x x x x c x c x x x x c x c x C C -=--+=-+=-+=+-==-⎛⎫⎛⎫⎧⎡⎤⎡⎤⎪ ⎪⎪⎢⎥⎢⎥-⎧⎪ ⎪⎪⎢⎥⎢⎥=+⇒=⇒⇒⎨⎨⎪ ⎪⎢⎥⎢⎥⎩⎪ ⎪ ⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎝⎭⎝⎭⎩四、确定a 、b 的值使下列线性方程组有解,并求其通解.(1)12312321231a x x x x a x x a x x a x a⎧++=⎪++=⎨⎪++=⎩;分析:设A 为n m ⨯矩阵,则n 元非齐次线性方程组b Ax =无解([,])()R A b R A ⇔≠. 定理4. n 元非齐次线性方程组b Ax =有无穷多个解的充分必要条件为]),([b A R = n A R <)(. 推论:n 元非齐次线性方程组b Ax =有唯一解充的分必要条件为]),([b A R =)(A R =n .解法一: 3121312222231111111(,)1111011111110111r r r r r a r a a a a aA b a a a a a a a a aa a aaa ↔--→→⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦73222222321111011011(1)00210(1)(2)(1)(1)r r a aa aa a a a a a a a a aa a a a a a a +→⎡⎤⎡⎤⎢⎥⎢⎥---=---⎢⎥⎢⎥⎢⎥⎢⎥--+---+-+⎣⎦⎣⎦(1) 当 a ≠1, -2 时,R (A ) = R (A ,b )=3,方程组有唯一解. (2) 当 a = -2 时,R (A ) =2≠3= R (A ,b ),方程组无解. (3) 当 a = 1时,R (A ) =R (A ,b )=1<3,方程组有无穷多解.此时,213111111111(,)111100001111000r r r r A b --→⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦1231x x x ⇒++= 原方程组的通解为11241321x k k x k x k =--+⎧⎪=⎨⎪=⎩,即12111100010x k k --⎛⎫⎛⎫⎛⎫⎪ ⎪⎪=++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(12,k k R ∈)。