微电网背景知识
- 格式:pptx
- 大小:799.01 KB
- 文档页数:22
智能微电网相关基础知识介绍智能微电网是规模较小的分散的独立系统,它将分布式电源、储能装置、能量装换装置、相关负荷和监控、保护装置汇集而成的小型发配电系统,是能够实现自我控制、保护和管理的自治系统,既可以与外部电网运行,也可以孤立运行。
电气设备专家称,智能微电网本身可看做是小型的电力系统,具备完整的发输配电功能,可实现用侧可再生能源的安全消纳,同时智能微电网本身还是一个典型的分布式发电功能系统,可通过能源之间的调度,提高终端能源的利用率。
也是智能电网发展的趋势。
一、什么是智能微电网智能微电网(Micro Smart Grid)是将可再生能源发电技术(风力发电、光伏发电、生物质能、潮汐能等)、能源管理系统(EMS)和输配电基础设施高度集成的新型电网,它具有提高能源效率、提高供电的安全性和可靠性、减少电网的电能损耗、减少对环境的影响。
强化科研技术,深入开发建设智能微电网有利于扩大分布式电源与可再生能源的大规模接入,为负荷地区提供可靠的供给,实现有效的主动式配电网方式,促进智能微电网变革。
智能微电网特点:可监测一一采用先进的量测、传感技术;可预测通过模型仿真和潮流分析,合理预测和分配电力;可控制对监测状态进行有效控制;可兼容接入分布式发电,自适应处理技术;实时分析数据到信息的提升,优化运行方式。
二、智能微电网两种运行模式并网模式:正常情况下,智能微电网与常规配电网并网运行。
孤岛模式:当检测到电网故障或电能质量不满足要求时,智能微电网将及时与电网断开而独立运行。
智能微电网的电压等级一般为380V~35KV,容量从几KW至几MK不等,在电网结构中最接近于用户。
两种运行方式:与大电网运行,也可在电网故障或需要时与主网断开独立于行,因此它具有双重角色:对于公用电力企业,智能微电网可视为电力系统可控的细胞,成为被控制的一个简单可调度负荷。
可以在数秒内做出响应以满足电网系统的需要;对于用户,智能微电网可以作为一个可定制的电源,以满足用户多样化的需求。
微电网基本知识第一章微电网1.1 微电网的前身分布式发电技术(DG)DG的定义:通过在配电网中建立单独的发电单元来对重要用户负荷进行供电,并通过PCC和外界进行能量交换。
DG的特点:(1)提高能量利用率;(2)减少各种碳化物的排放,利于环保;(3)提高电能质量和供电可靠性;(4)可以降低线损;(5)延续电网的不断膨胀。
DG存在的问题:(1)分布式电源单机计入成本高、控制困难等;(2)分布式电源相对大电网来说是一个不可控源,因此大系统往往采取限制、隔离的方式处置分布式电源,以期减小其对大电网的冲击;(3)I EEE P1547对分布式电源的入网标准做了规定:当电力系统发生故障时,分布式电源必须马上退出运行。
这就大大限制了分布式电源效能的充分发挥。
1.2 微电网的产生针对DG存在的问题,为协调大电网与分布式电源的矛盾充分挖掘分布式能源为电网和用户所带来的价值和效益。
在本世纪初,学者们提出了微电网的概念。
第二章微电网的定义2.1 微电网的定义微网是指由分布式电源、储能装置、能量变换装置、相关负荷和监控、保护装置汇集而成的小型发配电系统,是一个能够实现自我控制、保护和管理的自治系统,既可以与大电网并网运行,也可以孤立运行。
微网在实际运行中需要解决的关键问题之一就是控制问题,而微网的硬件平台建设,作为微网控制策略的实现载体,可为微网控制策略研究提供验证平台。
规模较小的分散独立系统,采用大量现代电力技术,将各种微电源,储能设备,直接接在用户侧。
对大电网:微电网被视为电网中的一个可控单元;对用户:满足特定需求,增加本地供电可靠性,降低馈线损耗。
微电网的组成:微电源、储能装置、控制设备、负荷、保护设备。
微电网的结构图:微电源:主要是分布式电源,其主要包括可再生能源发电设备,如太阳能光伏发电、风力发电、燃料电池、微型燃气机和内燃机等。
储能装置:由于微电源的分散性和规模不大特点,也受自然条件制约,另外,微电网系统运行在孤岛模式下需要有储能装置来保证能量平衡。
微电网技术与应用引言:随着能源需求的不断增长和环境问题的日益突出,传统的中央化电力系统面临着诸多挑战。
微电网作为一种新兴的电力系统模式,以其高效、可靠、可持续的特点,吸引了广泛的关注。
本文将探讨微电网技术的背景、原理、应用以及未来发展方向。
背景:传统的中央化电力系统存在着能源浪费、能源传输损失大等问题。
而微电网则将电力系统分为多个小型的电力网络,通过本地的能源资源进行供电,实现了能量的高效利用和分布式管理。
微电网技术的发展得益于可再生能源的快速发展和电力系统的智能化进程。
原理:微电网主要由分布式能源资源、能量储存系统、智能电力管理系统和电力互联网组成。
分布式能源资源包括太阳能、风能、生物质能等,它们通过光伏发电、风力发电等方式将自然能源转化为电能。
能量储存系统则用于储存多余的电能,以备不时之需。
智能电力管理系统则通过实时监测和控制,协调各个能源资源的供需平衡。
电力互联网则通过智能电网技术,将微电网与传统电力系统相互连接,实现能源的双向流动和共享。
应用:微电网技术在能源供应和电力系统的可靠性方面具有广泛的应用前景。
首先,微电网可以为偏远地区提供可靠的电力供应,减少传统电力系统的传输损失。
其次,微电网可以为城市中的商业和住宅区提供可持续的能源供应,降低对传统能源的依赖。
此外,微电网还可以应用于工业生产中,提高能源利用效率,减少能源消耗和环境污染。
未来发展:微电网技术的发展仍然面临一些挑战。
首先,技术标准和政策法规的制定需要进一步完善,以促进微电网的规模化应用。
其次,微电网的智能化程度还有待提高,需要更加先进的监测、控制和优化算法。
此外,微电网的经济性也需要进一步优化,以提高其市场竞争力。
结论:微电网技术作为一种新兴的电力系统模式,具有很大的潜力和应用前景。
通过分布式能源资源和智能电力管理系统的协同作用,微电网可以实现能源的高效利用和分布式管理。
随着技术的进一步发展和政策的支持,微电网有望在未来的能源领域发挥更加重要的作用,为人类提供可靠、可持续的能源供应。
微电网是一种由负荷和微电源共同组成的系统,它可同时提供电能和热能。
微电网内部的电源主要由电力电子器件负责能量的转换,并提供必要的控制。
微电网相对于大电网表现为单一的受控单元,并可同时满足用户对电能质量和供电安全方面的需求,当微电网与主网因为故障突然解列时,微电网还能维持自身内部的电能供应,直至故障排除。
欧美日三地都在进行微
电网的技术研究,其中日本
立足于国内能源日益紧缺,
负荷日益增长的现实背景,
展开微电网研究,但其发展
目标主要定位于能源供给多样化,减少污染,满足用户的个性电力需求。
日本学者还提出了灵活可靠性和智能能量供给系统(FRIENDS ),其主要思想是在配电网中加入一些灵活交流输电系统装置,利用控制器快速灵活的控制性能,实现对配电网能源结构的优化,并满足用户的多种电能质量需求。
构研究显示,微电网市场有望在未来5年,迎来高速成长期。
从全球来看微电网实验和示范
阶段,微电网的技术推广已经度过幼稚期,市场规模稳步成长。
着眼于当下世界范围内的能
源和环境困局以及电力安全需求的长期高企,微电网技术应用前景看好。
未来5到10年,微电网的市场规模,地区分布和应用场所分布都将发生显著变化。
机。
对微网的相关认识1 微网的背景与意义随着我国经济增长速度的加快,电力需求也越来越大,大规模联网所带来的问题逐渐显露出来,比如调度困难,安全性和可靠系数不高等。
同时,能源危机的加重也使我国这样一个以煤电为主要电力结构的发展中国家在环境治理上耗费了大量人力、物力和财力。
分布式发电以其灵活、环保等优势正在逐渐赢得广大市场,而大量分布式电源的并网也给电力系统的保护、实时调度和电网可靠性等各方面带来了一些问题,建立微型电网(微网)是目前解决这些问题较好的途径。
随着包括风电、光伏等可再生能源和高效清洁的化石燃料在内的新型发电技术的发展,分布式发电系统(distributed generation system,DGS)日渐成为满足负荷增长需求、减少环境污染、提高能源综合利用效率和供电可靠性的一种有效途径。
DGS具有投资少、发电方式灵活、可与环境兼容等优点,在配电网中得到广泛的应用,但是DGS的大规模渗透也产生了一些负面影响,如分布式发电单机接入成本较高,控制较复杂。
另外,从系统的角度来分析,DGS是不可控的发电单元,因此系统总是试图采取隔离、切机的方式来控制微型发电系统,以消除其对大系统的电压和频率的冲击。
为整合分布式发电的优势,削弱分布式发电对电网的冲击和负面影响,充分发挥DGS的效益和价值,相关电力工作人员和专家提出了微网的概念。
利用微网技术可整合多种形式的分布式电源,并考虑当地配电网的特点,在一个局部区域内直接将分布式电源、电力网络和本地用户有机地组合在一起。
微网可以方便地实现(冷)热电联供,并可以结合电蓄冷(热)技术,缓解电网高峰用电压力,实现用电的移峰填谷,优化和提高能源利用效率,减轻能源动力系统对环境的影响,实现能源的梯级利用,为将来智能电网(smart grid)的实现提供必备的技术基础。
2 微网的定义与结构目前,国际上对微网的定义没有统一的标准。
美国、欧盟、日本等发达国家(地区)对微网率先进行了深入研究,在微网的运行、控制、保护、能量管理以及对电力系统的影响等方面进行了大量研究工作,建立了一些可实际应用的微网示范工程及微网测试系统。