微量元素地球化学在岩石成因和成矿作用中的应用演示教学
- 格式:docx
- 大小:62.09 KB
- 文档页数:9
微量元素在岩石成因研究中的应用-----大洋玄武岩和埃达克熔体成因分析20131000380 011134班范伟国改革开放以来,我国社会经济各个方面发生了深刻而快速的转型,取得了举世瞩目的成就在创新型国家战略目标的引导下,我国科学技术实现了高速发展,地球化学这门学科也同样处在历史最佳发展时期。
在此背景下,与同位素组成一样,微量元素组成也是研究各种地质—地球化学作用过程的重要工具。
本文我们主要利用微量元素组成的变化特征来分析岩石成因及其演化信息。
1.大洋玄武岩成因地幔的不均一性一直被认为是由于地壳物质的加入,而地壳物质加入地幔的途径有地壳拆沉和板块俯冲等,其中最主要的是板块俯冲,这也是地球成分分异的主要驱动力,同时又是造成地幔不均一性的最基本原因[Pilet S,Hernandez J,Sylvester P,Poujol M.The metasomatic alternative for ocean island basalt chemical heterogeneity.EPSL,2005,236:148~166]。
俯冲进入地幔的地壳组分包括四点:洋壳玄武岩及其上覆沉积物、大洋岩石圈地幔、路壳结晶基底及沉积盖层、大陆岩石圈地幔。
这些物质通过俯冲进入地幔,部分熔融交代或变质脱水地幔岩石,造成地幔岩石圈地球化学的不均一性。
过去很难直接观察到俯冲带深部,所以主要依赖原始大洋弧玄武岩OAB与正常洋中脊玄武岩MORB的对比或者实验模拟一定温压下的MORB变质脱水或部分熔融交代来间接反推出板块俯冲的主要过程。
但是地壳中的元素会随着俯冲深度增加,岩石在变质脱水或部分熔融交代过程中会发生元素分异,理解此类过程对大洋玄武岩的分析具有重要意义。
由于某些副矿物会显著富集某些元素(如大洋俯冲带榴辉岩中的多硅白云母是大离子亲石元素LILE的主要载体,褐帘石是轻稀土LREE和Th的主要载体,而金红石是高场强元素HFSE的主要赋存矿物[Hermann J.Allanite:Thorium and light rare earth element carrier in subductingcrust.Chem Geol,2002,192:289~306]),因此这些矿物在板块俯冲时的稳定性对交代熔体或流体的组成有着巨大的影响。
微量元素在岩石成因和成矿作用研究上的应用学院:班级:学号:姓名:目录微量元素在岩石成因和成矿作用研究上的应用 (1)花岗岩成因上的应用 (3)§1.微量元素含量差异对于不同花岗岩的判断 (3)§2.微量元素含量的比值对于不同花岗岩成因的判断 (4)3.稀土元素对于不同花岗岩成因的判断 (4)玄武岩成因上的应用 (5)§1.微量元素含量差异对于不同玄武岩的判断 (5)§2.某些微量元素的比值对于不同玄武岩成因的判断 (6)§3.稀土元素对于不同玄武岩成因的判断 (7)微量元素对于不同流纹岩的判断 (7)微量元素在成矿作用中的应用 (8)石英晶格中微量元素组成在成岩成矿作用中的应用 (8)五、参考文献 (9)岩石的微量元素地球化学特征保存了有关成岩或成矿物质来源的信息,成为一种独特的地球化学“指纹”微量元素可作为地质——地球化学的示踪剂,在解决当代地球科学的基础理论问题、为人类提供足够资源和良好的生存环境等方面正发挥着重要的作用。
花岗岩成因上的应用§1.微量元素含量差异对于不同花岗岩的判断Rb- ( Y + Nb)及(Sc/Nb)一(Y/Nb)构造判别图Rb- ( Y + Nb)及(Sc/Nb)一(Y/Nb)构造判别图实例:根据这些图解,诸广山花岗岩类都落在火山弧花岗岩(V AG)和板内花岗岩(WPG)的交界处(a),这表明本区花岗岩是一种后碰撞花岗岩,具有板内花岗岩的某些特征,而非板内花岗岩。
Eby根据地球化学特征将A型花岗岩分为A1型和A2型,并认为A1型是与洋岛岩浆来源相同的地慢分异产物,且侵位于大陆裂谷或板内的构造环境,A2型来源于大陆地壳或板下地壳,且与陆一陆碰撞或岛弧岩浆作用有关。
在图(b)中,碱长花岗岩全部落人A2区。
另外,本区花岗岩的Y/Nb = 2. 6一8. 5,均大于1. 2,同样说明了本区碱长花岗岩为后碰撞型而非非造山型花岗岩。
关于微量元素地球化学的读书报告(021111班2011100---- ---)一微量元素基本概念微量元素(minor elements)依不同学者给出了不同的定义。
盖斯特(Gast, 1968)定义微量元素“不作作系内任何相主要组份存的非化学计量的分散元素”。
按此定义微量元素是相对的,在一个体系中为微量元素,而在另一个体系中可能为常量元素。
有人从热力学角度来定义微量元素:在研究的对象中元素的其含量低到可可近似地用稀溶液定律来描述其行为,则该元素可称为微量元素。
一般的,将地壳中除O、Si、Al、Fe、Ca、Mg、Na、K、Ti 等9种元素(它们的总重量丰度占99%左右)以外的其它元素统称为微量元素,它们在岩石或矿物中的含量一般在1%或0.1%以下,含量单位常以10-6或10-9表示。
开始的研究主要集中在了解和查明微量元素在陨石、地球及其各层圈以及各类地质体中的分布、丰度及其规律,而后认识到微量元素作为一种示踪剂或指示剂,研究成岩成矿作用,如岩石类型划分,原岩恢复、成岩成矿的物质来源和物理化学条件微量元素的特殊的地球化学性质,同时可以利用热力学的有关理论,建立微量元素地球化学模型,对成岩和成矿的熔融和结晶作用过程进行定量理论计算,使微量元素地球化学有自己的特殊的研究方法和理论体系。
在地球化学中最大量和最主要的应用集中表现为:利用微量元素的组成、相互关系等特征作为各类岩石、矿石的成因类型的“指纹元素”,并进一步利用微量元素来探讨和指示地质、地球化学过程。
二微量元素在成岩过程中的化学示踪作用1.1微量元素地球化学对和组合关系图解在将微量元素资料用于地球化学问题研究时,常将两个元素的关系、或将两个元素比值的关系、或两组元素和比值的关系进行对比,可统称为微量元素对,或微量元素地球化学对。
一般说来,微量元素对常常是地球化学性质相近的元素,如Nb/Ta,Zr/Hf,Sr/Ba,Th/U,Cr/Ni,Cl/Br等,也可以其中一个是主元素,另一个是与其他化性质相似的微量元素,如K/Rb,Mg/Li,Ca/Sr,Fe/V,Al/Ga,S/Se等。
第三章微量元素地球化学近20年来微量元素地球化学,尤其是稀土元素地球化学得到了迅猛发展和广泛应用。
上世纪60年代之前,微量元素的研究主要是了解和查明微量元素在陨石、地球各圈层以及不同地质体中的分布、演化和迁移规律,研究对象为上部地壳。
60-80年代,开始利用微量元素作为示踪剂或指示剂研究成岩、成矿作用,例如进行岩石类型划分、原岩恢复、成岩成矿物质来源及其物理化学条件分析等。
20世纪90年代以来,微量元素地球化学进入定量模型和理论发展阶段,主要利用微量元素的特有的地球化学性质、结合热力学有关理论,建立微量元素地球化学模型,对成岩、成矿的熔融与结晶作用过程进行定量理论计算,使微量元素地球化学形成了独特的理论体系和研究方法。
实际上,微量元素地球化学是和现代分析技术的发展相伴生的,早期的分析仪器主要是光谱和X-衍射,随着电感耦合等离子发射光谱、中子活化、电子探针、离子探针以及同位素质谱稀释法的发展和应用,使得大量快速的精确的微区微粒的微量元素测定成为可能。
目前,微量元素研究涉及地球化学和地质学的一切领域,大至地球和天体的形成和演化、小至矿物晶格中的元素分配。
同时,微量元素与同位素的结合,可以更加准确全面地理解地质、地球化学过程,所以说,微量元素地球化学的应用和发展有助于各项地质研究,包括油气地质研究。
第一节微量元素的概念和类型一、微量元素的概念微量元素(trace element),又称痕量元素,目前未有统一认可的严格定义。
习惯上把研究体系(矿物岩石等)中元素含1%的量大于称为主要元素或常量元素(major,common element),把含量在1%-0.1%称为次要元素(minor,subordinate element),而把含量小于0.1%称之为微量元素。
有人也把次要元素当作微量元素的。
这取决于研究者的兴趣和研究目的。
有人认为,在地壳中除O、Si、Al、Fe等几个丰度最大的元素外,其余均可称为微量元素。
关于微量元素地球化学的读书报告(021111班2011100---- ---)一微量元素基本概念微量元素(minor elements)依不同学者给出了不同的定义。
盖斯特(Gast, 1968)定义微量元素“不作作系内任何相主要组份存的非化学计量的分散元素”。
按此定义微量元素是相对的,在一个体系中为微量元素,而在另一个体系中可能为常量元素。
有人从热力学角度来定义微量元素:在研究的对象中元素的其含量低到可可近似地用稀溶液定律来描述其行为,则该元素可称为微量元素。
一般的,将地壳中除O、Si、Al、Fe、Ca、Mg、Na、K、Ti 等9种元素(它们的总重量丰度占99%左右)以外的其它元素统称为微量元素,它们在岩石或矿物中的含量一般在1%或0.1%以下,含量单位常以10-6或10-9表示。
开始的研究主要集中在了解和查明微量元素在陨石、地球及其各层圈以及各类地质体中的分布、丰度及其规律,而后认识到微量元素作为一种示踪剂或指示剂,研究成岩成矿作用,如岩石类型划分,原岩恢复、成岩成矿的物质来源和物理化学条件微量元素的特殊的地球化学性质,同时可以利用热力学的有关理论,建立微量元素地球化学模型,对成岩和成矿的熔融和结晶作用过程进行定量理论计算,使微量元素地球化学有自己的特殊的研究方法和理论体系。
在地球化学中最大量和最主要的应用集中表现为:利用微量元素的组成、相互关系等特征作为各类岩石、矿石的成因类型的“指纹元素”,并进一步利用微量元素来探讨和指示地质、地球化学过程。
二微量元素在成岩过程中的化学示踪作用1.1微量元素地球化学对和组合关系图解在将微量元素资料用于地球化学问题研究时,常将两个元素的关系、或将两个元素比值的关系、或两组元素和比值的关系进行对比,可统称为微量元素对,或微量元素地球化学对。
一般说来,微量元素对常常是地球化学性质相近的元素,如Nb/Ta,Zr/Hf,Sr/Ba,Th/U,Cr/Ni,Cl/Br等,也可以其中一个是主元素,另一个是与其他化性质相似的微量元素,如K/Rb,Mg/Li,Ca/Sr,Fe/V,Al/Ga,S/Se等。
前述各单个稀土元素比值(如La/Ce)也常用作元素对。
应该根据研究目的选择不同的元素对。
如研究岩浆形成机制和过程鉴别要选择分配性质相同或相反的元素对,如Ba/Nb,Nb/Th,以及Ce-Ni,Cr-Ta等。
要讨论氧化、还原状态,要选择变价元素对,如Fe2+/Fe3+,V3+/V5+,Eu2+/Eu3+,以及Mn/Mg等。
要研究岩体剥蚀深度,要选择元素浓度随深变而增减的,如Li/Sc,Rb/Bi,Sb/Bi等。
而要进行变质岩原岩恢复,则需选择对变质作用较稳定的元素,如Zr/Ti,Zr/Ni,Cr/Ti,Zr/Mg等等。
有时为了加强元素对比值的指示意义,所选择的往往不是二个元素的比值,而是二组元素含量和的比值、或含量积的比值。
如(Li+Rb+Cs)/(Sc+Zn)或(Li×Rb×Cs)/(Sc×Zn),也可以是一个元素对与第三个元素的比值,如K/Rb-Ti等。
除元素对关系外,多种微量元素的组合关系也是经常采用的一种方法。
如塔乌松等在研究花岗岩分类时选用Rb,Zr,Zn,Li,Nb,Pb,Cu,Be,Cs,Ta,Sn,W,Mo等十三种元素,还有采用25种元素关系来进行分类的。
但比较多的是采用三元素的图解法。
如玄武岩类型划分的Ti/100-Zr-Sr/2,Ti/100-Zr-Y×3图解。
花岗岩类型划分的F-Sr+Ba-Li+Rb三角图解。
海陆相地层划分的Ga-Ba-Rb图解。
稀土元素的球粒陨石标准化丰度图、不相容元素的蜘蛛图也可属于这一类。
定量研究微量元素之间、微量元素和主元素之间的相关性是微量元素组合的另一类统计分析方法。
最简单的就是相关系数的计算,它反映了元素之间关系的密切程度。
但在复杂的地质、地球化学过程中,单纯的相关系数不能反映元素之间的客观关系,因而就出现了逐步回归分析,群分析和因子分析等复杂统计分析。
1.2岩浆演化和成岩过程判别Rb/Sr比值是岩浆演化过最明显的指示剂:大离子半径亲石元素主要指的是Ba、Rb、Sr、Ca和K。
由于Sr的性质与此同时Ca相似,它为+2价阳离子时,在岩浆演化过程中,Sr长石—熔体间的分配系数大,也就是说Sr2+易,按类质同象规律进入含Ca2+矿物中,因此在中酸性岩浆演化过程中,Sr一般也随Ca的减少而贫化,但其贫化速度较慢Sr/Ca值逐渐增加。
综合岩浆分异程度愈好,Rb/Sr比值愈大。
若以同源不同阶段岩石中的Sr和Ca作图,可得到演化线。
Ba和K的地球化学性质也有类似之处,所以在岩浆结晶过程中,B。
主要进入森石中,随着分异作用的进行,Ba/K值不断增大(说明Ba取代K的数量愈多)。
过渡元素与一个亲石元素对来研究岩浆的形成和演化特征:过渡元素地球化学性质也有相似性。
一般情况下,过渡族元素多是相容元素,在分离结晶时,优先进入结晶相,所以分离结晶作用的定量模型计算中,常用这些元素的数据。
与之相反,亲石元素为不相容元素,在部分熔融过程中易进入熔体,所以常用亲石元素进行部分熔融作用的定量模型计算。
Nb/Ta比值可作为形成条件的指示剂:Nb、Ta、Zr、Hf等其活动性较小。
它们之间常可发生类质同象交换。
Nb和Ta地球化学性质非常相近,所以在地质作用中,密切伴生,但二者在地球化学性质上略有差,超基性岩Nb/Ta约为16左右,花岗岩约为4.8,花岗岩中Na、Ta的地球化学行为取决于岩浆中Ti和Ca浓度。
若浆岩中富Ca,则Nb、Ta分散于含钙矿物,特别是含钙的钛矿物如榍石,褐帘石和钙钛矿等矿物中。
利用Nb、Zr丰度可金伯利岩和钾镁煌斑岩分开:Zr和Hf在地质作用过程中,也紧密伴生。
铁镁质岩石中Zr变化与岩石产出的构造位置有关。
岛弧玄武岩中Zr的含量多10-60PPm,而大洋玄武岩中Zr的含量为120-300PPm。
此外,Zr的分布与岩石的成因也有关,地幔成因的岩石含Zr低。
在熔融及结晶过程中,Zr为不相容元素,倾向于富集在深相中。
Zr/Hf可指示岩浆演化程度:Zr/Hf比值随岩浆演而降低,大陆玄武岩比洋壳拉斑玄武岩的Hf含量较高,而海岛玄武岩比洋中脊拉斑玄武岩的Hf含量高。
这反映了地幔成分,构造环境,部分熔融程度和分离结晶作用的差异。
另外可用来区分不同酸基度的岩石,如从辉长岩到白岗岩之Zr/Hf值由60降为40,从白岚岩到霞石正长岩之Zr/Hf值又由40增至90。
K/Rb值之应用:不同类型的岩浆岩,其K/Rb值不同,随着花岗岩岩浆分异作用的进行,K/Rb值趋于减小,在花岗岩类岩石中当K/Rb值急剧减小时(小于100),往往发生稀有元素的富集,如Nb、Ta等矿化;因此,K/Rb值亦可作为花岗岩类矿化的标志之一。
另外K/Rb值也可判断花岗岩的成因,如I型花岗岩,K/Rb值一般大于2。
伪S型花岗岩之K/Rb值一般小于200。
187Re/186Os值可区分不同来源的岩浆岩:用K型元素(Rb、Ba、Sr等)的丰度区分造山带玄武岩的亚系列, 用Zr/Y值和Zr、Nb、TiO2:、Si02之关系研究不同类型的岩浆岩和玄武岩的类型等。
1.2沉积岩成岩环境示踪如锆石中的铪,钛铁矿中Cr、Ni、V、Cu、Mn、Mg等对中于不同岩石是较灵敏的指示剂。
不同类型岩石中,锆石中的铪含量,特别是锆铪比明显有差异,同一成因类型的不同侵入体之间也有差别。
因此,以锆石或钛铁矿中微量元素含量分布进行源区探索较为有效。
(赵振华,1997)。
根据海水和淡水中含量差异显著的微量元素,可以区别海相和陆相沉积物。
如Sr、Ni、Co、Mn、Ba等可作为区分礁相和非礁相灰岩的指标元素。
应用Rb/K、B/Ga、Sr/Ba等值判别沉积岩的形成环境:各元素比值,海相沉积Rb/K≤0.006,B/Ga>4.5一5,Sr/Ba>1,陆相沉积Rb/K<0.046,B/Ga<3.3,Sr/Ba<1。
另外有人曾对页岩中的B、Rb、Ga、Sr、Ni、V、U及Pb、Zn、Cu、Sn等微量元素的丰度进行研究,也发现B、Rb、Sr等在海相页岩中比较富集;Ga、Ba、K等在陆相页岩中比较富集,也和上述的结论一致。
因此用B、Ga、Rb三角图象进行判别页岩的生成环境,一般效果较佳。
除此在研究中也发现,Ni、V、U等元素在海相的有机质页岩中比较富集,而Pb、Zn、Cu、Sn元素等则在淡水有机质页岩中比较富集的规律。
1.3. 恢复变质岩原岩的指示作用变质过程常使得常量元素发生变化,而微量元素特别是一些惰性微量元素变化很小。
①正副变质岩原岩恢复方法:a. 微量元素绝对浓度法。
e.g. 角闪岩:正变质—Cr、Ni和Ti含量高,副变质—Li和B等含量高,REE的配分模式和含量等。
b.微量元素对比值法用性质相似的元素,或不同的环境下有不同相关性的元素对比值,如REE,(LREE/HREE,原子序数相近的REE之比),Sr/Ba,Cr/Ni等。
e.g. 正变质角闪岩:Sr/Ba>1,Cr/Ni>1;副变质角闪岩:Sr/Ba>1, Cr/Ni<1等。
c. 微量元素与造岩元素比值法e.g. Dearce和K2O/Y值来区别不同构造部位的玄武岩。
e. 图解法 (略)f. 函数判别法:e.g D. M.Shaw:构造了一个判别函数。
X1=-2.69lgCr-3.18lgV-1.25lgNi+10.57lgCo+7.731lgSc+7.5lgSr-1.951lgBa-1.991lgZn-19.58 (PPm),若X1>0,则为正斜长角闪岩, X1<0,则为副斜长角闪岩。
或:X2=3.89LGCo+3.99lgSc-8.63若 X1>0 正斜长角闪岩X1<0 副斜长角闪岩。
②恢复变质沉积岩原岩类型的方法:a. AF图解法A=Al2O3-(CaO-CO2+K2O+Na2O),F=(FeO+Fe2O3+MgO)/SiO2,各氧化物均以分子数进行计算。
分子数=含量(%)/分子量×1000,用AF作图,可把各类沉沉积区要开来。
b. 米什金图解法。
1.4成岩构造环境判别1.4.1玄武岩构造环境判别不同构造环境玄武岩的微量元素丰度和分配型式:(1) 火山弧玄武岩:K、Rb、Ba丰富高(活动性,随板块消减进入地幔楔形区),而Nb、Ta、Zr、Hf、P丰度低(不活动)。
(2) 洋中脊玄武岩:Ba、Th、Ta、Nb富集, Yb、Ti、Y丰度低。
里特曼将世界上1300个活火山熔岩,投影在logσ-logτ座标上(σ=(K2O+Na2O)2/(SiO2-43),叫里特曼组合指数,τ=(Al2O3-Na2O)/TiO2叫戈蒂里指数),把岩石成份划分为三个区:A区为非构造带(板内稳定构造构)火山岩;B区为造山带(岛弧及活动大陆边缘区)火山岩;C区为A、B区火山岩派生的碱性岩。