2初中数学总复习专题训练_开放性问题研究
- 格式:ppt
- 大小:1.17 MB
- 文档页数:19
开放性问题1. 如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH 时,都可以证明△BEH≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.解答:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).2. 猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD 上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.分析:猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,解答:猜想:DM=ME证明:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.(1)如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME,故答案为:DM=ME.(2)如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.3. 如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.分析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.解答:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,即OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.4. 在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.解答:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.5. 复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最==﹣,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.。
中考数学专题复习——开放研究问题(经典题型)【专题点拨】开放研究型问题是相对于条件和结论明确的封闭试题而言的,是能引起同学们产生联想,并会自然而然的往深处想的一种试题类型,简单来说就是答案不唯一的,解题的方向不确定,条件或者结论不止一种情况的试题,解答此类试题时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法。
根据开放性的试题的特点,主要有如下几种类型:条件开放性、结论开放性、选择开放型、综合开放型。
【典例赏析】【例题1】(2017黑龙江鹤岗)如图,在边长为4的正方形ABCD中,E、F是AD 边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG :S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG :S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.【例题2】如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x 的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【考点】LO:四边形综合题.【分析】(1)解方程即可得到结论;(2)由四边形ABCO是矩形,得到AB=OC,∠ABC=∠AOC=90°,根据折叠的性质得到AD=AB,∠ADE=∠ABC=90°,根据全等三角形的判定得到△ADE≌△COE;根据勾股定理得到OE=3;(3)过D作DM⊥x轴于M,则OE∥DM,根据相似三角形的性质得到CM=,DM=,于是得到结论.(4)过P 1作P 1H ⊥AO 于H ,根据菱形的性质得到P 1E=CE=5,P 1E ∥AC ,设P 1H=k ,HE=2k ,根据勾股定理得到P 1E=k=5,于是得到P 1(﹣,2+3),同理P 3(,3﹣2),当A 与F 重合时,得到P 2(4,5);当CE 是菱形EP 4CF 4的对角线时,四边形EP 4CF 4是菱形,得到EP 4=5,EP 4∥AC ,如图2,过P 4作P 4G ⊥x 轴于G ,过P 4作P 4N ⊥OE 于N ,根据勾股定理即可得到结论.【解答】解:(1)解方程x 2﹣12x+32=0得,x 1=8,x 2=4,∵OA >OC , ∴OA=8,OC=4;(2)∵四边形ABCO 是矩形, ∴AB=OC ,∠ABC=∠AOC=90°,∵把矩形OABC 沿对角线AC 所在直线折叠,点B 落在点D 处, ∴AD=AB ,∠ADE=∠ABC=90°, ∴AD=OC ,∠ADE=∠COE , 在△ADE 与△COE 中,,∴△ADE ≌△COE ;∵CE 2=OE 2+OC 2,即(8﹣OE )2=OE 2+42, ∴OE=3;(3)过D 作DM ⊥x 轴于M , 则OE ∥DM , ∴△OCE ∽△MCD , ∴, ∴CM=,DM=,∴OM=, ∴D (﹣,); (4)存在;∵OE=3,OC=4, ∴CE=5,过P 1作P 1H ⊥AO 于H , ∵四边形P 1ECF 1是菱形,∴P1E=CE=5,P1E∥AC,∴∠P1EH=∠OAC,∴==,∴设P1H=k,HE=2k,∴P1E=k=5,∴P1H=,HE=2,∴OH=2+3,∴P1(﹣,2+3),同理P3(,3﹣2),当A与F重合时,四边形F2ECP2是菱形,∴EF2∥CP2,EF2,=CP2=5,∴P2(4,5);当CE是菱形EP4CF4的对角线时,四边形EP4CF4是菱形,∴EP4=5,EP4∥AC,如图2,过P4作P4G⊥x轴于G,过P4作P4N⊥OE于N,则P4N=OG,P4G=ON,EP4∥AC,∴=,设P4N=x,EN=2x,∴P4E=CP4=x,∴P4G=ON=3﹣2x,CG=4﹣x,∴(3﹣2x)2+(4﹣x)2=(x)2,∴x=,∴3﹣2x=,∴P4(,),综上所述:存在以点E,C,P,F为顶点的四边形是菱形,P(﹣,2+3),(,3﹣2),(4,5),(,).【例题3】(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【考点】MR:圆的综合题.【专题】16 :压轴题.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG =CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG :S△DEG=.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.【能力检测】1.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【考点】LF:正方形的判定;LB:矩形的性质.【分析】此题是一道开放型的题目答案不唯一,也可以添加AC⊥BD等.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).2.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.3.(2017齐齐哈尔)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA 的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D 的坐标;(4)若F 是直线AC 上一个动点,在坐标平面内是否存在点P ,使以点E ,C ,P ,F 为顶点的四边形是菱形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.【考点】LO :四边形综合题. 【分析】(1)解方程即可得到结论;(2)由四边形ABCO 是矩形,得到AB=OC ,∠ABC=∠AOC=90°,根据折叠的性质得到AD=AB ,∠ADE=∠ABC=90°,根据全等三角形的判定得到△ADE ≌△COE ;根据勾股定理得到OE=3;(3)过D 作DM ⊥x 轴于M ,则OE ∥DM ,根据相似三角形的性质得到CM=,DM=,于是得到结论.(4)过P 1作P 1H ⊥AO 于H ,根据菱形的性质得到P 1E=CE=5,P 1E ∥AC ,设P 1H=k ,HE=2k ,根据勾股定理得到P 1E=k=5,于是得到P 1(﹣,2+3),同理P 3(,3﹣2),当A 与F 重合时,得到P 2(4,5);当CE 是菱形EP 4CF 4的对角线时,四边形EP 4CF 4是菱形,得到EP 4=5,EP 4∥AC ,如图2,过P 4作P 4G ⊥x 轴于G ,过P 4作P 4N ⊥OE 于N ,根据勾股定理即可得到结论.【解答】解:(1)解方程x 2﹣12x+32=0得,x 1=8,x 2=4,∵OA >OC , ∴OA=8,OC=4;(2)∵四边形ABCO 是矩形, ∴AB=OC ,∠ABC=∠AOC=90°,∵把矩形OABC 沿对角线AC 所在直线折叠,点B 落在点D 处, ∴AD=AB ,∠ADE=∠ABC=90°,∴AD=OC,∠ADE=∠COE,在△ADE与△COE中,,∴△ADE≌△COE;∵CE2=OE2+OC2,即(8﹣OE)2=OE2+42,∴OE=3;(3)过D作DM⊥x轴于M,则OE∥DM,∴△OCE∽△MCD,∴,∴CM=,DM=,∴OM=,∴D(﹣,);(4)存在;∵OE=3,OC=4,∴CE=5,过P1作P1H⊥AO于H,∵四边形P1ECF1是菱形,∴P1E=CE=5,P1E∥AC,∴∠P1EH=∠OAC,∴==,∴设P1H=k,HE=2k,∴P1E=k=5,∴P1H=,HE=2,∴OH=2+3,∴P1(﹣,2+3),同理P3(,3﹣2),当A与F重合时,四边形F2ECP2是菱形,∴EF2∥CP2,EF2,=CP2=5,∴P2(4,5);当CE是菱形EP4CF4的对角线时,四边形EP4CF4是菱形,∴EP4=5,EP4∥AC,如图2,过P4作P4G⊥x轴于G,过P4作P4N⊥OE于N,则P4N=OG,P4G=ON,EP4∥AC,∴=,设P4N=x,EN=2x,∴P4E=CP4=x,∴P4G=ON=3﹣2x,CG=4﹣x,∴(3﹣2x)2+(4﹣x)2=(x)2,∴x=,∴3﹣2x=,∴P4(,),综上所述:存在以点E,C,P,F为顶点的四边形是菱形,P(﹣,2+3),(,3﹣2),(4,5),(,).4.(2017内蒙古赤峰)△OPA和△OQB分别是以OP、OQ为直角边的等腰直角三角形,点C、D、E分别是OA、OB、AB的中点.(1)当∠AOB=90°时如图1,连接PE、QE,直接写出EP与EQ的大小关系;(2)将△OQB绕点O逆时针方向旋转,当∠AOB是锐角时如图2,(1)中的结论是否成立?若成立,请给出证明;若不成立,请加以说明.(3)仍将△OQB绕点O旋转,当∠AOB为钝角时,延长PC、QD交于点G,使△ABG为等边三角形如图3,求∠AOB的度数.【考点】RB:几何变换综合题.【分析】(1)先判断出点P,O,Q在同一条直线上,再判断出△APE≌△BFE,最后用直角三角形的斜边的中线等于斜边的一半即可得出结论;(2)先判断出CE=DQ,PC=DE,进而判断出△EPC≌△QED即可得出结论;(3)先判断出CQ,GP分别是OB,OA的垂直平分线,进而得出∠GBO=∠GOB,∠GOA=∠GAO,即可得出结论.【解答】解:(1)如图1,延长PE,QB交于点F,∵△APO和△BQO是等腰直角三角形,∴∠APO=∠BQO=90°,∠AOP=∠BOQ=45°,∵∠AOB=90°,∴∠AOP+∠AOB+∠BOQ=180°,∴点P,O,Q在同一条直线上,∵∠APO=∠BQO=90°,∴AP∥BQ,∴∠PAE=∠FBE,∵点E是AB中点,∴AE=BE,∵∠AEP=∠BEF,∴△APE≌△BFE,∴PE=EF,∴点E是Rt△PQF的斜边PF的中点,∴EP=EQ;(2)成立,证明:∵点C,E分别是OA,AB的中点,∴CE∥OB,CE=OB,∴∠DOC=∠ECA,∵点D是Rt△OQB斜边中点,∴DQ=OB,∴CE=DQ,同理:PC=DE,∠DOC=∠BDE,∴∠ECA=∠BDE,∵∠PCE=∠EDQ,∴△EPC≌△QED,∴EP=EQ;(3)如图2,连接GO,∵点D,C分别是OB,OA的中点,△APO与△QBO都是等腰直角三角形,∴CQ,GP分别是OB,OA的垂直平分线,∴GB=GO=GA,∴∠GBO=∠GOB,∠GOA=∠GAO,设∠GOB=x,∠GOA=y,∴x+x+y+y+60°=360°∴x+y=150°,∴∠AOB=150°.5.(2017张家界)已知抛物线c1的顶点为A(﹣1,4),与y轴的交点为D(0,3).(1)求c1的解析式;(2)若直线l1:y=x+m与c1仅有唯一的交点,求m的值;(3)若抛物线c1关于y轴对称的抛物线记作c2,平行于x轴的直线记作l2:y=n.试结合图形回答:当n为何值时,l2与c1和c2共有:①两个交点;②三个交点;③四个交点;(4)若c2与x轴正半轴交点记作B,试在x轴上求点P,使△PAB为等腰三角形.【考点】HF:二次函数综合题.【分析】(1)设抛物线c1的解析式为y=a(x+1)2+4,把D(0,3)代入y=a(x+1)2+4即可得到结论;(2)解方程组得到x2+3x+m﹣3=0,由于直线l1:y=x+m与c1仅有唯一的交点,于是得到△=9﹣4m+12=0,即可得到结论;(3)根据轴对称的性质得到抛物线c2的解析式为:y=﹣x2+2x+3,根据图象即可刚刚结论;(4)求得B(3,0),得到OB=3,根据勾股定理得到AB==4,①当AP=AB,②当AB=BP=4时,③当AP=PB时,点P在AB的垂直平分线上,于是得到结论.【解答】解:(1)∵抛物线c1的顶点为A(﹣1,4),∴设抛物线c1的解析式为y=a(x+1)2+4,把D(0,3)代入y=a(x+1)2+4得3=a+4,∴a=﹣1,∴抛物线c1的解析式为:y=﹣(x+1)2+4,即y=﹣x2﹣2x+3;(2)解得x2+3x+m﹣3=0,∵直线l1:y=x+m与c1仅有唯一的交点,∴△=9﹣4m+12=0,∴m=;(3)∵抛物线c1关于y轴对称的抛物线记作c2,∴抛物线c2的顶点坐标为(1,4),与y轴的交点为(0,3),∴抛物线c2的解析式为:y=﹣x2+2x+3,∴①当直线l2过抛物线c1的顶点(﹣1,4)和抛物线记作c2的顶点(1,4)时,即n=4时,l2与c1和c2共有两个交点;②当直线l2过D(0,3)时,即n=3时,l2与c1和c2共有三个交点;③当3<n<4或n>3时,l2与c1和c2共有四个交点;(4)如图,∵若c2与x轴正半轴交于B,∴B(3,0),∴OB=3,∴AB==4,①当AP=AB=4时,PB=8,∴P1(﹣5,0),②当AB=BP=4时,P 2(3﹣4,0)或P3(3+4,0),③当AP=PB时,点P在AB的垂直平分线上,∴PA=PB=4,∴P4(﹣1,0),综上所述,点P的坐标为(﹣5,0)或(3﹣4,0)或(3+4,0)或(﹣1,0)时,△PAB为等腰三角形.。
开放性问题数学开放性问题是指那些条件不完备、结论不确定(或不明确)、方法不惟一的数学问题.此类试题是能使学生展开思维去发散、去发现、去创新的数学问题.中考将开放性问题作为命题创新的突破口,是近几年中考数学命题的一大特点,而且考查力度逐年加大.一、数学开放性问题的类型数学开放性问题的具体表现形式多种多样,依据不同的标准有不同的分类.一般有以下几种分类方法. 1、按问题要求的发散倾向来分,有情境开放、条件开放、策略开放、结论开放、综合开放等; 2、按解题目标的操作模式来分,有探索类,讨论、迁移类等;3、按学习过程中价值取向来分,有知识巩固、技能考查、能力检测、信息迁移等. 二、数学开放性问题的特点1、强调过程的探究性,指数学开放性问题给学生提供了广阔的思维空间,能够激发学生创新意识,可使学生积极参与创造性活动,开发学生创造潜能;2、突出情境模拟的新颖性,指数学开放性问题所附设的材料新、条件复杂、结论多样、解决问题的思路和方法新颖而独特;3、展示问题形式的生动性,指数学开放性问题的开放,可能在于条件、结论、解法驰可能在于问题的设问角度、方式的变化;4、注重问题解决的发散性,指解题者在解决问题过程中,一方面需要动用多种思维方法,另一方面需要多角度、多侧面地进行分析研究,以获取解决问题的方法,并从中选择最佳的解题途径.三、数学开放性问题的解题策略 1、执因索果,直接探求【例1】(1)写出一个两实数根符号相反的一元二次方程:__________________.(2)请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果. (3)请写出一个图象在第二、四象限的反比例函数关系式_____________ (4)如图,将一X 等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请写出其中一种四边形的名称. 【解析】(1)答案不唯一:如2230x x +-= (2)答案不唯一,如2x x 42++2=2(x +1)2第(4)题图(3)答案不唯一,如:y =-2x(4)平行四边形、矩形、等腰梯形(三种中任选一种即可)【点评】 这几道小的开放性填空题都是由因索果,根据所给的限制条件,可以探究出很多开放的结果.我们在处理此类题时注意的是所写的答案尽量简洁、贴近题意,不提倡过分的标新立异.【例2】在市区内,我市乘坐出租车的价格y (元)与路 程x (km )的函数关系图象如图1所示. 请你根据图象写出两条信息.【解析】在0到2km 内都是5元;2km 后,每增加加1元. (答案不唯一)【点评】这类识图写信息的开放性问题近年来是命题热点,解决的关键是,认真看准图形中的关键点所对应的横坐标与纵坐标的意义.【例3】某校八年级共有150名男生,从中随机抽取30名男生在“阳光体育活动”启动日进行“引体向上”测试,下表是测试成绩记录(单位:个):(1)我们已经会列频数分布表、画条形统计图、折线统计图和扇形统计图.为了能让体育老师一目了然知道整个测试情况,请你选择一种..合适的统计表或统计图整理表示上述数据; (2)观察分析(1)中的统计表或统计图,请你写出两条从中获得的信息: ①______________________________________________________ ②______________________________________________________ 【解析】(1)选择条形统计图图1绘图略.(2)获得的信息如:成绩为五个的有3人,占10%等等.【点评】从统计图表中获取相关的信息也是我们识图的一个重要能力,解决此类问题的技巧是,抓住特征数据进行描述,描述时注意结合题目的问题背景展开.【例4】如图1,线段PB 过圆心O ,交圆O 于A B ,两点,PC 切圆O 于点C ,作AD PC ⊥,垂足为D ,连结AC BC ,.(1)写出图1中所有相等的角(直角除外),并给出证明;(2)若图1中的切线PC 变为图2中割线PCE 的情形,PCE 与圆O 交于C E ,两点,AE 与BC 交于点M ,AD PE ⊥,写出图2中相等的角(写出三组即可,直角除外);【解析】(1)图1中相等的角有:ACD ABC BAC CAD ∠=∠∠=∠,.证明:连结OC ,则OC PC ⊥,AD PC ⊥,AD OC ∴∥,CAD OCA ∴∠=∠,又OA OC =,BAC OCA ∠=∠, BAC CAD ∴∠=∠.又AB 为直径,9090ACB BAC B ∠=∴∠+∠=,, 90CAD ACD ACD ABC ∠+∠=∴∠=∠,.(2)ACD ABE ABC AEC BAE BCE BEA BCA CBE CAE ∠=∠∠=∠∠=∠∠=∠∠=∠,,,,(三组即可)【点评】第(1)问寻找所有相等的角这种问题的解决一定要注意分类思想和有序化的处理方法,不少同学图1图2总是漏解或重解,其原因就是没有一种有序的思路,比如从某字母为顶点有序的出发依次寻找.第(2)问探究相等的角时,主要知识运用是圆中角的关系、相似三角形性质及直角三角形锐角关系的应用.2、执果索因,反溯探求【例5】(1)如果一个立体图形的主视图为矩形,则这个立体图形可能是(•只需填上一个立体图形).(2)(2007年某某市)如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个条件是(只要写一个条件).【解析】(1)答案不唯一如:长方体、圆柱等;(2)B C ∠=∠,AEB ADC ∠=∠,CEO BDO ∠=∠,AB AC BD CE ==,(任选一个即可) 【点评】 由所给的结果出发,找寻适合的条件,这种逆向思维方式在这种开放性问题中得好较好的考查.当然,准确而快速地得到合适的条件还要靠我们对具体知识或某数学模型的熟练程度.【例6】已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:.【解析】(13)-,,(12)-,,(11)-,,(21)-,,(22)-,,(31)-,六个中任意写出一个即可.【点评】这道题要求我们根据所给的要求,探究符合条件的点P 的坐标,结果开放,在寻找过程 中,我们注意严格按照所限制的要求去寻找,不能顾此失彼,得到一个符合条件的坐标后再代入题中逐个验证,确保不出差错.【例7】X 强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全等人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因______________.【解析】本题是一道开放性试题,既然推断存在偏差,说明问题是出在估计的可靠性上,进而言之,在样本选取上出现了问题.原因可能如下:样本选取过少;或样本不具代表性、广泛性、随机性等等(只要答对其中一项即可)样本在总体中所占比例太小;或样本不具代表性、广泛性、随机性;(只要答对其中一项均可得分)【点评】近年来对统计内容的考查已经摆脱了单纯的数据运算,而是注重考查统计知识的理解和统计思想OC EA DB图在现实生活中的应用,重要引导学生树立统计意识、形成统计观念,学会分析、学会明理、学会应用. 【例8】如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式:(任写一个即可).【解析】有多种答案,符合条件即可.例如21y x =+,2y x x =+,2(1)2y x =-+或223y x x =-+,2(1)y x =,2(1y x =-.【点评】本题有多种探究思路,如从抛物线向上平移一定会经过点A ,而不会经过点B 可以探究到相应的解析式,再如假设抛物线的顶点平移到A 处,也可得到解析式2(1)2y x =-+等.只有不过分的标新立异,解答本题难度不大.3、关注过程,考查方法【例9】(1)学习和研究《反比例函数的图象与性质》《一次函数的图象与性质》时,用到的数学思想方法有、(填2个即可).(2)学数学不仅仅是听课和解题,三年初中数学学习期间,教材中给你留下深刻印象的选学内容、数学活动、课题学习有、、(填3个即可).【解析】(1)填数形结合、分类讨论、类比、从特殊到一般、化归、函数方程思想等中的2个即可; (2)填教材中的选学内容(如阅读与思考、观察与猜想、实验与探究、信息技术应用等)、数学活动、课x图①题学习等的标题,只要意思对即可.【点评】此题针对学习过程中对数学思想方法重视不够、体会和落实不到位等现象,希望考查学生学习函数学习时对所用到的数学思想方法是否清楚,增强从数学思想方法的角度看待问题,当然为了降低难度,答题时设置成了开放题,只要求答出其中2个即可.“学数学不仅仅是听课和解题”引导学生正确处理课内学习与课外学习的关系,重视有用的、学生能接受的、生动活泼的数学知识和学生数学素养提提高.体现了对整个数学学习过程的关注.4、探索结论,自选解答 【例10】给出三个多项式:2221111,31,,222x x x x x x +-++- 请你选择其中两个进行加法运算,并把结果因式分解.【解析】如选择多项式:22111,3122x x x x +-++, 则:22211(1)(31)4(4)22x x x x x x x x +-+++=+=+.【点评】观察所给的三个多项式,选择两个进行加法运算后再进行因式分解,结论开放,有效的考查了整式的加减及因式分解,能充分还学习主动权给学生,是一道设置新颖的中考试题.【例11】甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答下列问题: (1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个,并展示求解思路).图13【解析】(1)5020(km /h)2.5V ==甲,6030(km /h)2V ==乙; (2)5020S t =-甲(0 2.5t ≤≤)或6030S t =-乙(02t ≤≤)(答对一个即可).如,求解甲距A 地的路程s 与行驶时间t 之间的函数关系式时,我们考虑到甲的图象是一条线段,是一次函数图象一部分,可以选取上面两点坐标应用二元一次方程组来确定待定系数. 把(2.5,0)(0,50)代入.S kt b =+解得5020S t =-甲(0 2.5t ≤≤).【点评】 本题也是一道识图问题,在确定一个函数解析式时给了学生以选择权,这在紧X 的考试中,让学生稍稍轻松,是一道值得提倡的命题设计.【例12】如图,在△ABC 中,AB =AC ,D 是BC 边上的一点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,添加一个条件,使DE = DF ,并说明理由. 解: 需添加条件是. 理由是:【解析】需添加的条件是:BD =CD ,或BE =CF .添加BD =CD 的理由:如图,∵ AB =AC ,∴∠B =∠C . 又∵ DE ⊥AB ,DF ⊥AC ,∴∠BDE =∠CDF . ∴ △BDE ≌△CDF (ASA). ∴ DE = DF . 添加BE =CF 的理由: 如图,∵ AB =AC , ∴ ∠B =∠C .∵ DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD . 又∵ BE =CF , ∴ △BDE ≌△CDF (ASA). ∴DE = DF .【点评】本题考查了等腰三角形底边上哪一点到两腰距离相等,熟悉等腰三角形性质就能很快知道,只要D 为底边中点即可,这是从等腰三角形性质出发的一种思路;也可以从全等三角形的性质入手,如果我们知道BE=CF ,也可以根据直角三角形全等的来获得问题的解决.5、特例引路,探究说明【例13】按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大. (1)若y 与x 的关系是y =x +p (100-x ),请说明:当p =12时,这种变换满足上述两个要求; (2)若按关系式y =a (x -h )2+k (a >0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【解析】(1)当P=12时,y=x +()11002x -,即y=1502x +. ∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)又当x=20时,y=1100502⨯+=100.而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;(2)本题是开放性问题,答案不唯一.若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求. 如取h=20,y=()220a x k -+,∵a >0,∴当20≤x ≤100时,y 随着x 的增大, 令x=20,y=60,得k=60 ①令x=100,y=100,得a ×802+k=100 ②由①②解得116060a k ⎧=⎪⎨⎪=⎩, ∴()212060160y x =-+. 【点评】 本题以程序问题为背景,第(1)问以一次函数为引子,拓展到第(2)问中的开放性问题,这种特例引路,探究说明问题,要认真阅读特例,再去探究新问题是否符合题意,类比意识很重要.6、有效探究,细心求证【例14】已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE【解析】(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴∠BAD =∠DAC .∵ AN 是△ABC 外角∠CAM 的平分线, ∴ MAE CAE ∠=∠.∴∠DAE =∠DAC +∠CAE =⨯21180°=90°.又∵AD ⊥BC ,CE ⊥AN , ∴ADC CEA ∠=∠=90°, ∴ 四边形ADCE 为矩形.(2)例如,当AD=12BC 时,四边形ADCE 是正方形.证明:∵AB=AC ,AD ⊥BC 于D .∴DC=12BC .又 AD=12BC ,∴DC=AD .由(1)四边形ADCE 为矩形,∴矩形ADCE 是正方形.【点评】 第(1)问已证得矩形的基础上,添加一个适当的条件推证出正方形,没有多大的难度.这样的题型,只要充分分析矩形与正方形之间还差什么有效的条件即可,即添加邻边相等就可以证明了,这样我N(例14)们结合等腰三角形ABC 的性质,只要AD=12BC 时,四边形ADCE 是正方形.【例15】如图,把一副三角板如图甲放置,其中90ACB DEC ==∠∠,45A =∠,30D =∠,斜边6cm AB =,7cm DC =,把三角板DCE 绕点C 顺时针旋转15得到D CE ''△如图乙.这时AB 与CD '相交于点O ,D E ''与AB 相交于点F . (1)求OFE '∠的度数; (2)求线段AD '的长.(3)若把三角形D CE ''绕着点C 顺时针再旋转30得D CE ''''△,这时点B 在D CE ''''△的内部、外部、还是边上?证明你的判断.【解析】(1)315∠=,90E '∠=,12∠=∠,175∴∠=.又45B ∠=,14575120OFE B '∴∠=∠+∠=+=.(2)连结AD '.120OFE '∠=,60D FO '∴∠=,又30CD E ''∠=,490∴∠=.又AC BC =,6AB =,3OA OB ∴==,90ACB ∠=,116322CO AB ∴==⨯=. 又7CD '=, A C B ED(甲) E 'A CB OFD ' (乙)C '24题答图734OD CD OC ''∴=-=-=.在Rt AD O '△中,5AD '==. (3)点B 在D CE ''''△内部.理由如下:设BC (或延长线)交D E ''''于点B '.153045B CE '''∠=+=,在Rt B CE '''△中,2CB '''==,又32CB =<,即CB CB '<, ∴点B 在D CE ''''△内部.【点评】本题中,主要变化经过程是把三角板CDE 绕点C 顺时针旋转.边操作,边设置问题,从而,实施了图形变换与问题探究的有机结合.动手练一练1.用同一种正多边形地板砖密铺地面,为铺满地面而不重叠,那么这种正多边形的地板砖可以是正边形.(只需写出一种即可)1.三(或四,或六)2.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2分钟;②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少用 __分钟.2.经分析,安排工序为①、(④②③)、⑤共计12分钟. 3.如图,在ABC △和DCB △中,AB DC =,若不添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件是.4.如图,在ABCD 中,点E F ,分别在BC AD ,上,在不添加辅助线的情况下,请你添加一个..适当的条件,使ABE △和CDF △全等,你添加的条件是,并给出你的证明.3.ABC DCB ∠=∠或AC DB =均可. 4.解:①DE DF CG +=证明:连结AD ,则ABC ABD ACD S S S =+△△△,B即111222AB CG AB DE AC DF =+ 因为AB AC =,所以CG DE DF =+②当点D 在BC 延长线上时,①中的结论不成立,有DE DF CG -=. 理由:连结AD ,则ABD ABC ACD S S S =+△△△,即有,111222AB DE AB CG AC DF =+ 因为AB AC =,所以DE CG DF =+,即DE DF CG -=. 当D 点在CB 的延长线上时,则有DF DE CG -=,说明方法同上.5.如图1,2所示,将一X 长方形的纸片对折两次后,沿图3中的虚线AB 剪下,将AOB △完全展开.(1)画出展开图形,判断其形状,并证明你的结论;(2)若按上述步骤操作,展开图形是正方形时,请写出AOB △应满足的条件.AG E BDFAG BFDC EC图1图2图3ABO5.(1)展开图如图所示,它是菱形.(展开图只要求画出示意图即可.) 证明:由操作过程可知OA OC =,OB OD =,∴四边形ABCD 是平行四边形.又OA OB ⊥,即AC BD ⊥,∴四边形ABCD 是菱形.(2)AOB △中,45ABO =∠(或45BAO =∠或OA OB =).6.将图(1)中的矩形ABCD 沿对角线AC 剪开,再把ABC △沿着AD 方向平移,得到图(2)中的A BC ''△,除ADC △与C BA ''△全等外,你还可以指出哪几对...全等的三角形(不能添加辅助线和字母)?请选择其中一对加以证明.6.有两对全等三角形,分别为:AA E C CF ''△≌△分 A DF CBE '△≌△解法一:求证:AA E C CF ''△≌△ 证明:由平移的性质可知:AA CC ''=,又A C '∠=∠∵,90AA E C CF ''∠=∠=AA E C CF ''∴△≌△解法二:求证:A DF CBE '△≌△证明:由平移的性质可知:A E CF '∥,A F CE '∥∴四边形A ECF '是平行四边形D CBE FA '图(2)A F CE '=∴,A E CF '= AB CD '=∵DF BE =∴又90B D ∠=∠=∵A DF CBE '∴△≌△7.如图,ABC △中,90ACB =∠,AC BC =,CO 为中线.现将一直角三角板的直角顶点放在点O 上并绕点O 旋转,若三角板的两直角边分别交AC CB ,的延长线于点G H ,.(1)试写出图中除AC BC OA OB OC ===,外其他所有相等的线段; (2)请任选一组你写出的相等线段给予证明. 我选择证明=.7.(1)CG BH AG CH OG OH ===,, (2)90ACB AC BC AO BO ===∠,,,45CO OB CO AB ABC ∴=⊥=,,∠. 9090COG GOB BOH GOB +=+=∠∠,∠∠,COG BOH ∴=∠∠.又4518045135ABC OCB OBH ==∴=-=∠∠,∠,9045135GCO =+=∠, GCO OBH ∴=∠∠. (利用等角的补角相等证GCO OBH =∠∠亦可) GCO HBO ∴△≌△ CG BH ∴=.8.为了配合“八荣八耻”宣传教育,针对闯红灯的现象时有发生的实际情况,八年级某班开展一次题为“红灯与绿灯”的课题学习活动,它们将全班学生分成8个小组,其中第①~⑥组分别负责早、中、晚三个时段闯红灯违章现象的调查,第⑦小组负责查阅有关红绿灯的交通法规,第⑧小组负责收集有关的交通标志. 数据汇总如下:BC OHG部分时段车流量情况调查表回答下列问题:⑴请你写出2条交通法规:①. ②.⑵画出2枚交通标志并说明标志的含义.标志含义: 标志含义:⑶早晨、中午、晚上三个时段每分钟车流量的极差是,这三个时段的车流总量的中位数是. ⑷观察表中的数据及条形统计图,写出你发现的一个现象并分析其产生的原因. ⑸通过分析写一条合理化建议.8.(1)如:红灯停、红灯行;过马路要走人行横道线;不可酒后驾车等. (2)标志及标志含义只要解释合理即可. (3)74;2747.(4)现象:如果行人违章率最高,汽车违章率最低;产生原因是汽车驾驶员是专门培训过的,行人存在图方便的心理等. (5)建议:如:广泛宣传交通法规;增加值勤警力等.(只要建议合理均可)9.如图1,OP 是MON ∠的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在ABC △中,ACB ∠是直角,60B ∠=,AD ,CE 分别是BAC ∠,BCA ∠的平分线,AD ,CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图3,在ABC △中,如果ACB ∠不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.9.图略.(1)FE 与FD 之间的数量关系为FEFD =. (2)答:(1)中的结论FE FD =仍然成立.证法一:如图4,在AC 上截取AG AE =,连结FG .因为12∠=∠,AF 为公共边, 可证AEF AGF △≌△.所以AFE AFG ∠=∠,FE FG =.由60B ∠=,ADCE ,分别是BAC BCA ∠∠,的平分线, 可得2360∠+∠=.所以60AFE CFD AFG ∠=∠=∠=. 所以60CFG ∠=.由34∠=∠及FC 为公共边,可得CFG CFD △≌△. 所以FG FD =. 所以FE FD =. 证法二:如图5,过点F 分别作FG AB ⊥于点G ,FH BC ⊥于点H .ONPM图3图1 图2图4因为60B ∠=,且AD ,CE 分别是BAC ∠,BCA ∠的平分线, 所以可得2360∠+∠=,F 是ABC △的内心. 所以601GEF ∠=+∠,FG FH =. 又因为1HDF B ∠=∠+∠, 所以GEF HDF ∠=∠. 因此可证EGF DHF △≌△. 所以FE FD =.10.如图(8-1),四边形ABCD 是O 的内接四边形,点C 是BD 的中点,过点C 的切线与AD 的延长线交于点E .(1)求证:AB DE CD BC =. (2)如果四边形ABCD 仍是O 的内接四边形,点C 在劣弧BD 上运动,点E 在AD 的延长线上运动,切线CE 变为割线EFC ,请问要使(1)的结论成立还需要具备什么条件?请你在图(8-2)上画出示意图,标明有关字母,不要求进行证明.10.证明:(1)连结AC .C 是BD 的中点BC DC BAC DAC ∴==,∠∠CE 切O 于点C ,点C 在O 上 DCE DAC BAC ∴==∠∠∠图8-1图8-2四边形ABCD 是O 的内接四边形,EDC B ∴=∠∠ EDC CBA ∴△∽△AB BCCD DE∴=AB DE CD BC ∴=(2)条件为:DF BC =(或DF BC =或DAF BAC =∠∠ 或DCF BAC =∠∠或FC BD ∥等) 如右图,(图中虚线为可能画的线)11.如图(a ),两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O . (1)将图14(a )中的OAB △绕点O 顺时针旋转90角,在图14(b )中作出旋转后的OAB △(保留作图痕迹,不写作法,不证明).(2)在图14(a )中,你发现线段AC ,BD 的数量关系是,直线AC ,BD 相交成度角. (3)将图14(a )中的OAB △绕点O 顺时针旋转一个锐角,得到图14(c ),这时(2)中的两个结论是否成立?作出判断并说明理由.若OAB △绕点O 继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.11.(1)如图(a )(请注意一些问题,AB ,字母位置不能互换,加弧线,连结AB ) (2)AC BD =;90(90)图(a )图(b )图(c )(3)成立.如图(90COD AOB ∠=∠=∵COA AOD AOD DOB ∠+∠=∠+∠∴即:COA DOB ∠=∠(或由旋转得COA DOB ∠=∠)CO OD =∵OA OB =COA DOB ∴△≌△ AC BD =∴延长CA 交OD 于E ,交BD 于F (下面的证法较多)COA DOB ∵△≌△,ACO ODB ∠=∠∴CEO DEF ∠=∠∵90COE EFD ∠=∠=∴AC BD ∴⊥旋转更大角时,结论仍然成立.图(a )图(b )。
开放性问题【专题点拨】开放探索问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,或者条件、结论有待探求、补充等.【解题策略】在解决开放探索问题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.【典例解析】类型一:条件开放型问题例题1:(2016·某某省滨州市·14分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题;函数及其图象.【分析】(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,易知点E坐标(﹣7,﹣)或(5,﹣),由此不难解决问题.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象可知AB只能为平行四边形的边,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为顶点时,∵直线AC解析式为y=﹣x+1,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.变式训练1:(2016·某某某某)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P 的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.类型二:结论开放型问题例题2:(2016·某某随州·3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c >0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解析】二次函数图象与系数的关系.(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.变式训练2:(2016·某某某某·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值X围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个类型三:解题策略开放型例题3:(2014 年某某襄阳)如图 Z3-1,在△ABC 中,点D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)(2)选择其中的成立条件进行证明。
2014年中考数学专题复习:开放题【问题发现】如图,已知AC ⊥BD 于点P ,AP =CP ,请增加一个条件,使得△ABP≌△CDP(不能添加辅助线),你增加的条件是 。
问题回顾:三角形全等的判定有: , , , , 。
根据什么 判定,需要添加条件 。
【分析归纳】相信同学已经做过类似的问题。
我们发现题目的条件不完全,答案不唯一。
我们把这类题叫做开放题。
主要分为条件开放,结论开放,综合开放和策略开放四类。
条件开放:条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求。
1、已知反比例函数xm y 2-=,其图象在第一、第三象限内,则m 的值可为(写出满足条件的一个k 的值即可)分析:对于反比例函数xk y =(k 是常数,k ≠0)。
当它的图象在第一、第三象限时有,m>0,所以本题中应该是m-2>0,即m>2。
2、在多项式4x 2+1中添加一个条件,使其成为一个完全平方式,则添加的单项式是(只写出一个即可)。
分析:要使多项式4x 2+1成为一个完全平方式,可添加一次项,也可添加二次项,还可添加常数项。
结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍。
3、如图所示,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,DE 交AB 于点E ,M 为BE 的中点,连接DM.在不添加任何辅助线和字母的情况下,图中的等腰三角形是 .(写出一个即可) 分析:4、已知二次函数y=ax 2+bx +c 的图形如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b 2-4ac >0;②2a+b<0;③a-b+c=0;④a+b+c>0。
中考数学复习专题讲座三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1(义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
810360专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2(宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
综合复习.开放与探索性问题&.综合评述:开放与探索性问题改变了过去试题形式单一,知识点考查僵硬,不能充分调动学生的创新意识和探究兴趣的缺点,为学生提供了更广阔的思维空间,正因为如此,开放与探究性题成为近几年中考的热点题型之一。
一、开放性问题这类题一般没有具体的标准答案,解题时要灵活运用所学基础知识,多层次、多角度地思考问题,解决问题,一般答案只要符合题意即可。
二、探究性问题探究性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断、补充并加以证明的题型,探究性问题一般分为三类:1、条件探索型题;2、结论探究型题;3、探究存在型题。
条件型题是指所给问题中结论明确,需要完备条件的题目;结论探究型题是指题目中的结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论。
探究存在型题是指在一定的基础上,需探究发现某种数学关系是否存在的题目。
这类问题具有较强的综合性,涉及的数学基础知识非常广泛。
这种题型既能考查学生对基础知识掌握的熟练程度,又能较好的考查学生的观察、分析、概括能力,因此复习时,既要重视基础知识,又要强化数学思想方法训练,切实提高自己分析问题、解决问题的能力。
&.典型例题剖析:§.例1、多项式192+x 加上一个单项式后,使它成为一个整式的完全平方,那么加上的单项式可以是 .(填上一个你认为正确的即可)思路点拨:本题主要考查了完全平方式。
解:按完全平方公式得()2213619+=++x x x ,()2213619-=-+x x x ,另外22919x x -+21=,()22239119x x x ==-+,224212948119⎪⎭⎫⎝⎛+=++x x x ,故其答案是x 6±或29x -或1-或4481x .规律总结:本题属于条件探索题,可以从完全平方式入手,多层次、多角度思考问题,可繁可简,可难可易,一般答案只要符合题意即可。
专题复习:开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
考点一:条件开放型例1:写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:.(填上一个答案即可)练习:已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)考点二:结论开放型例2:请写一个图象在第二、四象限的反比例函数解析式:.练习:四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.写出一条你从图中所获得的信息:.(只要与统计图中所提供的信息相符即可得分)考点三:条件和结论都开放的问题例3:如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.练习:如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.【课堂讲解】1.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是______(只填写一个条件,不使用图形以外的字母和线段).2.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是_______(写出一个即可).3.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是___________.(只填一个即可)4.若反比例函数y=kx的图象在其每个象限内,y随x的增大而增大,则k的值可以是_______.(写出一个k的值)5.若函数y=1mx的图象在同一象限内,y随x增大而增大,则m的值可以是________(写出一个即可).6. 如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足条件时,有MB=MC(只填一个即可).7. 直线l过点M(-2,0),该直线的解析式可以写为________.(只写出一个即可)8. 如图,要使平行四边形ABCD是矩形,则应添加的条件是_______(添加一个条件即可).9. 请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是(写出一个x的值即可)10.如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件,使△ABC≌△DEF.11.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.12.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)14.如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.15.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可)16.如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t (s)的值为.(填出一个正确的即可)17.已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)18. 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.19. 如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)20. 在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);(2)若E 是线段AC 或AC 延长线上的任意一点,其它条件不变,如图2、图3,线段BE 、EF 有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.【课堂训练】1.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C. CD CB BD AB = D. ACAB AB AD =2. 如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为23且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( )A .16B .15C .14D .133. 如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明.(2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.4. 复习课中,教师给出关于x 的函数y =2kx 2﹣(4kx +1)x ﹣k +1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.5. 猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.6. 已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C 重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;2对角线AE,DF相交于点O,连接OC.求OC的长度.②若正方形ADEF的边长为27. 在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:(填“成立”或“不成立”)个性化教案(真题演练)1. (2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s 的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)1对1出门考(_______年______月______日周_____)1. 写出一个你喜欢的实数k 的值 ,使得反比例函数xk y 2-=的图象在每一个象限内,y 随x 的增大而增大.2. 写出一个x 的值,使|x ﹣1|=x ﹣1成立,你写出的x 的值是 .3. 存在两个变量x 与y ,y 是x 的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x >0时,y 随x 的增大而减小,这个函数的解析式是 (写出一个即可).4. 如图,在△ABC 中,点D 是BC 的中点,作射线AD ,在线段AD及其延长线上分别取点E 、F ,连接CE 、BF .添加一个条件,使得△BDF ≌△CDE ,并加以证明.你添加的条件是 .(不添加辅助线).5. 先化简22)1111(2-÷+--x x x x ,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x 的值代入求值.6. 在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a ,b 两个情境:情境a :小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a ,b 所对应的函数图象分别是 、 (填写序号);(2)请你为剩下的函数图象写出一个适合的情境.评语: 3A 作业:周一: 周二:周三: 周四:周五:作业要求在 月 日之前完成。