2.3CISC与RISC技术
- 格式:ppt
- 大小:1.29 MB
- 文档页数:22
一、RISCRISC (reduced instruction set computer ,精简指令集计算机)是一种执行较少类型计算机指令的微处理器,起源于80年代的MIPS主机(即RISC机), RISC 机中采用的微处理器统称RISC处理器。
这样一来,它能够以更快的速度执行操作(每秒执行更多百万条指令,即MIPS )。
因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令集越大就会使微处理器更复杂,执行操作也会更慢。
1 . RISC体系的指令特征精简指令集:包含了简单、基本的指令,透过这些简单、基本的指令,就可以组合成复杂指令。
同样长度的指令:每条指令的长度都是相同的,可以在一个单独操作里完成。
单机器周期指令:大多数的指令都可以在一个机器周期里完成,并且允许处理器在同一时间内执行一系列的指令。
2 . RISC体系的优缺点优点:在使用相同的晶片技术和相同运行时钟下,RISC系统的运行速度将是CISC的2〜4倍。
由于RISC处理器的指令集是精简的,它的记忆体管理单元、浮点单元等都能设计在同一块晶片上。
RISC处理器比相对应的CISC处理器设计更简单,所需要的时间将变得更短,并可以比CISC处理器应用更多先进的技术,开发更快的下一代处理器。
缺点:多指令的操作使得程式开发者必须小心地选用合适的编译器,而且编写的代码量会变得非常大。
另外就是RISC体系的处理器需要更快记忆体,这通常都集成于处理器内部,就是L1 Cache (一级缓存)。
二、CISCCISC是复杂指令系统计算机(Complex Instruction Set Computer )的简称,微处理器是台式计算机系统的基本处理部件,每个微处理器的核心是运行指令的电路。
指令由完成任务的多个步骤所组成,把数值传送进寄存器或进行相加运算。
1. CISC体系的指令特征使用微代码。
指令集可以直接在微代码记忆体(比主记忆体的速度快很多)里执行,新设计的处理器,只需增加较少的电晶体就可以执行同样的指令集,也可以很快地编写新的指令集程式。
CISC(复杂指令集)与RISC(精简指令集)的区别复杂指令集计算机(CISC)长期来,计算机性能的提高往往是通过增加硬件的复杂性来获得.随着集成电路技术.特别是VLSI(超大规模集成电路)技术的迅速发展,为了软件编程方便和提高程序的运行速度,硬件工程师采用的办法是不断增加可实现复杂功能的指令和多种灵活的编址方式.甚至某些指令可支持高级语言语句归类后的复杂操作.至使硬件越来越复杂,造价也相应提高.为实现复杂操作,微处理器除向程序员提供类似各种寄存器和机器指令功能外.还通过存于只读存贮器(ROM)中的微程序来实现其极强的功能,傲处理在分析每一条指令之后执行一系列初级指令运算来完成所需的功能,这种设计的型式被称为复杂指令集计算机(Complex Instruction Set Computer-CISC)结构.一般CISC计算机所含的指令数目至少300条以上,有的甚至超过500条.精简指令集计算机(RISC)采用复杂指令系统的计算机有着较强的处理高级语言的能力.这对提高计算机的性能是有益的.当计算机的设计沿着这条道路发展时.有些人没有随波逐流.他们回过头去看一看过去走过的道路,开始怀疑这种传统的做法:IBM公司没在纽约Yorktown的JhomasI.Wason 研究中心于1975年组织力量研究指令系统的合理性问题.因为当时已感到,日趋庞杂的指令系统不但不易实现.而且还可能降低系统性能.1979年以帕特逊教授为首的一批科学家也开始在美国加册大学伯克莱分校开展这一研究.结果表明,CISC存在许多缺点.首先.在这种计算机中.各种指令的使用率相差悬殊:一个典型程序的运算过程所使用的80%指令.只占一个处理器指令系统的20%.事实上最频繁使用的指令是取、存和加这些最简单的指令.这样-来,长期致力于复杂指令系统的设计,实际上是在设计一种难得在实践中用得上的指令系统的处理器.同时.复杂的指令系统必然带来结构的复杂性.这不但增加了设计的时间与成本还容易造成设计失误.此外.尽管VLSI技术现在已达到很高的水平,但也很难把CISC的全部硬件做在一个芯片上,这也妨碍单片计算机的发展.在CISC中,许多复杂指令需要极复杂的操作,这类指令多数是某种高级语言的直接翻版,因而通用性差.由于采用二级的微码执行方式,它也降低那些被频繁调用的简单指令系统的运行速度.因而.针对CISC的这些弊病.帕特逊等人提出了精简指令的设想即指令系统应当只包含那些使用频率很高的少量指令.并提供一些必要的指令以支持操作系统和高级语言.按照这个原则发展而成的计算机被称为精简指令集计算机(Reduced Instruction Set Computer-RISC)结构.简称RISC.CISC与RISC的区别我们经常谈论有关"PC"与"Macintosh"的话题,但是又有多少人知道以Intel公司X86为核心的PC系列正是基于CISC体系结构,而 Apple公司的Macintosh则是基于RISC体系结构,CISC与RISC到底有何区别?从硬件角度来看CISC处理的是不等长指令集,它必须对不等长指令进行分割,因此在执行单一指令的时候需要进行较多的处理工作。
CISC与RISC系列CPU新词简释○尹春燕硬件世界态变量的处理是很方便的。
动态变量(au to),典型的编译器是把它们存放在“运行时间堆栈”(r un-tim e st ac k)中,采用“帧指针”(f ra m e p oin te r)来存取它们。
XA对指针SP有充分的寻址方式来实现“运行时间堆栈”的存取。
4.操作码X的指令集和的语句有很好的对应性,所以,X的编译器效率很高。
比如+,,×,÷,&,|,∧,,,~等基本运算,X都有一一对应的指令DD,S U BB,M U L,DI V,AN D,O R,XO R,AS L,LS R,C P L。
下面给出一个条件转移语句,从中也可发现XA编译器的高效率: C语言:X A汇编:w hi l e((c=g e t c h())!=\0')Labe l:M O V[R+],m e m or y buf f e r[i++]=c;B N E La be lX是为面向控制对象设计的,但它强大的中断处理功能、双堆栈结构、丰富完整的指令体系,又具有了面向系统的特性。
CI S C(C om p le x I nst ruc tion Se t Com p ute r):复杂指令集计算机结构。
由于指令系统庞大,因此通常不能在一个时钟周期内执行多条指令。
典型代表是I n tel的80X86系列。
P54C:它是I n tel公司Pe ntiu m(80586)系列中的第二代产品(内部开发代号为P54C),对外统一命名P e ntium/ 100,P en tium/120,P en tium/133,P en tium/150等。
1995年底推出了166M H z芯片,1996年180M Hz、200M Hz相继登场。
当前市场上销售的有P e ntium/100,P en tium/120, P en tium/133,P en tiu m/150,P e ntium/166,P e ntium/180, P en tium/200七种产品,早期的P e ntium/75,P e ntium/90两种产品已被淘汰。
简述risc和cisc的区别在计算机技术的许多变革中,复杂指令集计算机(CISC)过渡到精简指令集计算机(RISC)体系结构的转变是很重要的一个方面。
正是RISC的出现发展大大推动了嵌入式系统性能的提高和功能的完善。
什么是CISC和RISC ?CISC的英文全称为Complex InstrucTIon Set Computer,即复杂指令系统计算机,从计算机诞生以来,人们一直沿用CISC指令集方式。
早期的桌面软件是按CISC设计的,并一直沿续到现在。
目前,桌面计算机流行的x86体系结构即使用CISC。
微处理器(CPU)厂商一直在走CISC的发展道路,包括Intel、AMD,还有其他一些现在已经更名的厂商,如TI(德州仪器)、IBM以及VIA(威盛)等。
在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。
顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。
CISC架构的服务器主要以IA-32架构(Intel Architecture,英特尔架构)为主,而且多数为中低档服务器所采用。
RISC的英文全称为Reduced InstrucTIon Set Computer,即精简指令集计算机,是一种执行较少类型计算机指令的微处理器,起源于80年代的MIPS主机(即RISC机),RISC机中采用的微处理器统称RISC处理器。
这样一来,它能够以更快的速度执行操作(每秒执行更多百万条指令,即MIPS)。
因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令集越大就会使微处理器更复杂,执行操作也会更慢。
特点区别各方面如下:1、指令系统CISC计算机的指令系统比较丰富,有专用指令来完成特定的功能。
因此,处理特殊任务效率较高。
RISC设计者把主要精力放在那些经常使用的指令上,尽量使它们具有简单高效的特色。
对不常。
处理器知识: RISC和CISC架构分析对比CISC(复杂指令集计算机)和RISC(精简指令集计算机)是当前CPU的两种架构。
它们的区别在于不同的CPU设计理念和方法。
早期的CPU全部是CISC架构,它的设计目的是 CISC 要用最少的机器语言指令来完成所需的计算任务。
RISC和CISC是设计制造微处理器的两种典型技术,虽然它们都是试图在体系结构、操作运行、软件硬件、编译时间和运行时间等诸多因素中做出某种平衡,以求达到高效的目的,但采用的方法不同,因此,在很多方面差异很大。
x86架构采用CISC,而ARM采用RISC。
ARM成立于1991年,是一家出售IP(技术知识产权)的公司,所谓的技术知识产权,就有点像是卖房屋的结构设计图,至于要怎修改,哪边开窗户,以及要怎加盖其它的花园,就看买了设计图的厂商自己决定。
而ARM的架构是采用RISC架构,如同它的名称一样,Advanced RISC Machines,RISC 架构在当初的PC架构争霸战虽然败给Intel所主导的x86处理器架构,却默默在另外的领域成长壮大;小从硬盘转速控制、电信基地台的计算、汽车喷射引擎的控制、音响系统、相机引擎,大到电动机具的控制等等,都能够看见采用ARM授权架构处理器的身影。
而有了设计图,当然还要有把设计图实现的厂商,而这些就是ARM架构的授权客户群。
包括:高通、华为、联发科、TI、Freescale等。
X86是英特尔Intel首先开发制造的一种微处理器体系结构的泛称,包括Intel8086、80186、80286、80386以及80486以86结尾系列,英特尔统治整个CPU产业链长达数十年。
但是,Intel以增加处理器本身复杂度作为代价,去换取更高的性能,但集成的指令集数量越来越多,给硬件带来的负荷也就越来越大,无形中增加了功耗和设计难度。
ARM(Advanced RISC Machines)公司是苹果、Acorn、VLSI、Technology等公司的合资企业。
说明cisc与risc的区别。
英文回答:Complex Instruction Set Computers (CISC) and Reduced Instruction Set Computers (RISC) are two distinct architectural approaches in computer design that have emerged over the years. Here's an in-depth comparison of their key differences:1. Instruction Set Complexity:CISC: CISC processors have a large and complex instruction set, typically ranging from 100 to 200 instructions. These instructions perform multiple operations, including complex addressing modes and memory manipulation.RISC: RISC processors have a smaller and simpler instruction set, usually comprising fewer than 60 instructions. The instructions are specifically optimizedto be executed quickly and efficiently.2. Instruction Execution:CISC: CISC instructions are executed in multiple clock cycles and often require multiple memory accesses. This can make CISC processors slower than RISC processors.RISC: RISC instructions are executed in a single clock cycle and typically require fewer memory accesses. This allows RISC processors to achieve higher performance and efficiency.3. Data Types and Addressing Modes:CISC: CISC processors support a wide range of data types and addressing modes, providing greater flexibilityin programming. However, this complexity can introduce overhead and reduce performance.RISC: RISC processors typically have a limited set of data types and addressing modes. This simplifies the designand allows for faster instruction execution.4. Pipeline Architecture:CISC: CISC processors often have a less efficient pipeline architecture due to the complex instructions and multiple clock cycles required for execution.RISC: RISC processors have a deeply pipelined architecture that enables them to overlap instruction execution and improve performance.5. Performance and Cost:CISC: CISC processors can be cost-effective but may have lower performance compared to RISC processors due to their complex instruction set and slower execution.RISC: RISC processors are typically more expensive but offer higher performance and efficiency than CISC processors.中文回答:复杂指令集计算机 (CISC) 和精简指令集计算机 (RISC) 是计算机设计中出现的两种截然不同的架构方法。
RISC和CISC的区别RISC的简介RISC(reduced instruction set computer,精简指令集计算机)是一种执行较少类型计算机指令的微处理器(如下图)起源于80年代的MIPS主机,RISC机中采用的微处理器统称RISC处理器。
这样一来,它能够以更快的速度执行操作(每秒执行更多百万条指令,即MIPS)。
因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令集越大就会使微处理器更复杂,执行操作也会更慢。
RISC的简单使得在选择如何使用微处理器上的空间时拥有更多的自由。
比起从前,高级语言编译器能产生更有效的代码,因为编译器使用RISC机器上的更小的指令集。
RISC微处理器不仅精简了指令系统,采用超标量和超流水线结构;它们的指令数目只有几十条,却大大增强了并行处理能力。
如:1987年Sun Microsystem公司推出的SPARC芯片就是一种超标量结构的RISC处理器。
而SGI公司推出的MIPS处理器则采用超流水线结构,这些RISC处理器在构建并行精简指令系统多处理机中起着核心的作用。
RISC处理器是当今UNIX领域64位多处理机的主流芯片。
其特点主要有:一,由于指令集简化后,流水线以及常用指令均可用硬件执行;二,采用大量的寄存器,使大部分指令操作都在寄存器之间进行,提高了处理速度;三,采用缓存-主存-外存三级存储结构,使取数与存数指令分开执行,使处理器可以完成尽可能多的工作,且不因存储器存取信息而放慢处理速度。
由于RISC处理器指令简单、采用硬布线控制逻辑、处理能力强、速度快,世界上绝大部分UNIX工作站和服务器厂商均采用RISC芯片作CPU用。
RISC芯片的工作频率一般在400MHZ数量级。
时钟频率低,功率消耗少,温升也少,机器不易发生故障和老化,提高了系统的可靠性。
单一指令周期容纳多部并行操作。
在RISC微处理器发展过程中。
曾产生了超长指令字(VLIW)微处理器,它使用非常长的指令组合,把许多条指令连在一起,以能并行执行。
一、RISCRISC(reduced instruction set computer,精简指令集计算机)是一种执行较少类型计算机指令的微处理器,起源于80 年代的MIPS主机(即RISC 机),RISC机中采用的微处理器统称RISC处理器。
这样一来,它能够以更快的速度执行操作(每秒执行更多百万条指令,即MIPS)。
因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令集越大就会使微处理器更复杂,执行操作也会更慢。
1. RISC体系的指令特征精简指令集:包含了简单、基本的指令,透过这些简单、基本的指令,就可以组合成复杂指令。
同样长度的指令:每条指令的长度都是相同的,可以在一个单独操作里完成。
单机器周期指令:大多数的指令都可以在一个机器周期里完成,并且允许处理器在同一时间内执行一系列的指令。
2. RISC体系的优缺点优点:在使用相同的晶片技术和相同运行时钟下,RISC系统的运行速度将是CISC的2~4倍。
由于RISC处理器的指令集是精简的,它的记忆体管理单元、浮点单元等都能设计在同一块晶片上。
RISC处理器比相对应的CISC处理器设计更简单,所需要的时间将变得更短,并可以比CISC处理器应用更多先进的技术,开发更快的下一代处理器。
缺点:多指令的操作使得程式开发者必须小心地选用合适的编译器,而且编写的代码量会变得非常大。
另外就是RISC体系的处理器需要更快记忆体,这通常都集成于处理器内部,就是L1 Cache(一级缓存)。
二、CISCCISC是复杂指令系统计算机(Complex Instruction Set Computer)的简称,微处理器是台式计算机系统的基本处理部件,每个微处理器的核心是运行指令的电路。
指令由完成任务的多个步骤所组成,把数值传送进寄存器或进行相加运算。
1.CISC体系的指令特征使用微代码。
指令集可以直接在微代码记忆体(比主记忆体的速度快很多)里执行,新设计的处理器,只需增加较少的电晶体就可以执行同样的指令集,也可以很快地编写新的指令集程式。
RISC和CISCCPU从指令集的特点上可以分为两类:CISC和RISC。
我们所熟悉的Intel 系列CPU就是CISC 的CPU 的典型代表。
那么,RISC 又是什么呢?RISC是英文Reduced Instruction Set Computer的缩写,汉语意思为"精简指令系统计算机"。
相对应的CISC就是"复杂指令系统计算机"的意思。
随着大规模集成电路技术的发展,计算机的硬件成本不断下降,软件成本不断提高,使得指令系统增加了更多更复杂的指令,以提高操作系统的效率。
另外,同一系列的新型机对其指令系统只能扩充而不能减去旧型机的任意一条,以达到程序兼容。
这样一来,指令系统越来越复杂,有的计算机指令甚至达到数百条。
人们就称这种计算机为CISC (Complex Instruction Set Computer)。
如IBM公司的大、中型计算机,Intel公司的8086、80286、80386微处理器等。
日益庞大的指令系统不仅使计算机研制周期变长,而且还有难以调试、难以维护等一些自身无法克服的缺点。
于是,RISC的概念就应运而生,在1983年,一些中、小型公司开始推出RISC产品。
RISC并非只是简单地去减少指令,而是把着眼点放在了如何使计算机的结构更加简单合理地提高运算速度上。
RISC机优先选取使用频最高的简单指令,避免复杂指令;将指令长度固定,指令格式和寻地方式种类减少;以便布线控制逻辑为主,不用或少用微码控制等措施来达到上述目的。
目前,RISC和CISC各有优势,而且界限并不那么明显了。
现代的CPU往往采用CISC的外围,内部加入了RISC的特性。
就连Intel最新的Pentium II等CISC芯片也具有了明显的RISC特征。
另外,超长指令集CPU由于融合了RISC和CISC的优势,成为未来的CPU发展方向之一。
RISC技术相信大家在日常电脑使用或CPU的广告介绍中时常听到见到“RISC”这个词,什么Pentium Ⅱ/Pro 采用先进RISC技术……K6采用RISC86结构,从而……总之大凡稍高档点的中央处理器都称采用RISC技术。
CISC(复杂指令集)与RISC(精简指令集)的区别复杂指令集计算机(CISC)长期来,计算机性能的提高往往是通过增加硬件的复杂性来获得.随着集成电路技术.特别是VLS I(超大规模集成电路)技术的迅速发展,为了软件编程方便和提高程序的运行速度,硬件工程师采用的办法是不断增加可实现复杂功能的指令和多种灵活的编址方式.甚至某些指令可支持高级语言语句归类后的复杂操作.至使硬件越来越复杂,造价也相应提高.为实现复杂操作,微处理器除向程序员提供类似各种寄存器和机器指令功能外.还通过存于只读存贮器(R OM)中的微程序来实现其极强的功能,傲处理在分析每一条指令之后执行一系列初级指令运算来完成所需的功能,这种设计的型式被称为复杂指令集计算机(Comple x Instru ction Set Comput er-CISC)结构.一般CISC计算机所含的指令数目至少300条以上,有的甚至超过500条.精简指令集计算机(RISC)采用复杂指令系统的计算机有着较强的处理高级语言的能力.这对提高计算机的性能是有益的.当计算机的设计沿着这条道路发展时.有些人没有随波逐流.他们回过头去看一看过去走过的道路,开始怀疑这种传统的做法:IBM公司没在纽约Yo rktow n的Jho masI .W ason研究中心于1975年组织力量研究指令系统的合理性问题.因为当时已感到,日趋庞杂的指令系统不但不易实现.而且还可能降低系统性能.1979年以帕特逊教授为首的一批科学家也开始在美国加册大学伯克莱分校开展这一研究.结果表明,CISC存在许多缺点.首先.在这种计算机中.各种指令的使用率相差悬殊:一个典型程序的运算过程所使用的80%指令.只占一个处理器指令系统的20%.事实上最频繁使用的指令是取、存和加这些最简单的指令.这样-来,长期致力于复杂指令系统的设计,实际上是在设计一种难得在实践中用得上的指令系统的处理器.同时.复杂的指令系统必然带来结构的复杂性.这不但增加了设计的时间与成本还容易造成设计失误.此外.尽管VLSI技术现在已达到很高的水平,但也很难把C I SC的全部硬件做在一个芯片上,这也妨碍单片计算机的发展.在CISC中,许多复杂指令需要极复杂的操作,这类指令多数是某种高级语言的直接翻版,因而通用性差.由于采用二级的微码执行方式,它也降低那些被频繁调用的简单指令系统的运行速度.因而.针对CISC的这些弊病.帕特逊等人提出了精简指令的设想即指令系统应当只包含那些使用频率很高的少量指令.并提供一些必要的指令以支持操作系统和高级语言.按照这个原则发展而成的计算机被称为精简指令集计算机(R educe d Instru ction Set Computer-RISC)结构.简称RISC.CISC与R I SC的区别我们经常谈论有关"PC"与"Macint osh"的话题,但是又有多少人知道以I n tel公司X86为核心的PC系列正是基于CISC体系结构,而 Apple公司的Mac intos h则是基于R ISC体系结构,CISC与R I SC到底有何区别?从硬件角度来看CISC处理的是不等长指令集,它必须对不等长指令进行分割,因此在执行单一指令的时候需要进行较多的处理工作。
RISC和CISC的区别RISC的简介RISC(reduced instruction set computer,精简指令集计算机)是一种执行较少类型计算机指令的微处理器(如下图)起源于80年代的MIPS主机,RISC机中采用的微处理器统称RISC处理器。
这样一来,它能够以更快的速度执行操作(每秒执行更多百万条指令,即MIPS)。
因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令集越大就会使微处理器更复杂,执行操作也会更慢。
RISC的简单使得在选择如何使用微处理器上的空间时拥有更多的自由。
比起从前,高级语言编译器能产生更有效的代码,因为编译器使用RISC机器上的更小的指令集。
RISC微处理器不仅精简了指令系统,采用超标量和超流水线结构;它们的指令数目只有几十条,却大大增强了并行处理能力。
如:1987年Sun Microsystem公司推出的SPARC芯片就是一种超标量结构的RISC处理器。
而SGI公司推出的MIPS处理器则采用超流水线结构,这些RISC处理器在构建并行精简指令系统多处理机中起着核心的作用。
RISC处理器是当今UNIX领域64位多处理机的主流芯片。
其特点主要有:一,由于指令集简化后,流水线以及常用指令均可用硬件执行;二,采用大量的寄存器,使大部分指令操作都在寄存器之间进行,提高了处理速度;三,采用缓存-主存-外存三级存储结构,使取数与存数指令分开执行,使处理器可以完成尽可能多的工作,且不因存储器存取信息而放慢处理速度。
由于RISC处理器指令简单、采用硬布线控制逻辑、处理能力强、速度快,世界上绝大部分UNIX工作站和服务器厂商均采用RISC芯片作CPU用。
RISC芯片的工作频率一般在400MHZ数量级。
时钟频率低,功率消耗少,温升也少,机器不易发生故障和老化,提高了系统的可靠性。
单一指令周期容纳多部并行操作。
在RISC微处理器发展过程中。
曾产生了超长指令字(VLIW)微处理器,它使用非常长的指令组合,把许多条指令连在一起,以能并行执行。
CISC 和RISC 是什么,二者有何区别?
CISC 和RISC:
RISC(reduced instruction set computer,精简指令集计算机)是一种执行较少类型计算机指令的微处理器.这样一来,它能够以更快的速度执行操作。
因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令
集越大就会使微处理器更复杂,执行操作也会更慢。
纽约约克镇IBM 研究中心的John Cocke 证明,计算机中约20%的指令承担了80%的工作,他于1974 年提出了RISC 的概念。
CISC(complexinstrucTIon set computer,复杂指令集计算机)除了RISC,任何全指令集计算机都使用的是复杂指令集计算(CISC)。
目前常见使用RISC 的处理器包括DEC Alpha、ARC、ARM、MIPS、PowerPC、SPARC 和SuperH 等。
1、关于RISC与CISC与哈佛结构冯诺依曼结构区别关于这个问题,有人说51地址线复用,就是冯诺依曼结构。
很多入门的书上基本上都说:由运算器、控制器、存储器、输入设备、输出设备组成的系统都叫冯氏结构。
也有的说:“程序存储器的数据线地址线”与“数据存储器的数据线地址线”共用的话,就是冯氏结构,所以51是该结构。
(我认为说得太绝对了)我认为冯氏结构与哈佛结构的区别应该在存储器的空间分别上,哈佛结构的数据区和代码区是分开的,它们即使地址相同,但空间也是不同的,主要表现在数据不能够当作代码来运行。
(比如51---注)地址线复用,就将它认为成冯氏结构,我认为这样不足取,应该是按照空间是否完全重合来辨别。
比如PC机的代空间和数据空间是同一空间,所以是冯氏结构;51由于IO口不够,但代码空间和数据空间是分开的,所以还是哈佛构.(此种观点才是正确的--注)另外,还有的把CISC RISC 和地址是否复用与是哪种结构这3这都混到一起。
我认为这三者都没有必然的关系。
只不过RISC因为精简了指令集,没有了执行复杂功能的指令,为了提高性能,常采用哈佛结构,并且不复用地址线。
(这种说法不具体,有待补充---注)材料二:哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。
中央处理器首先到程序指令存储器中读取程序指令内容,解码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。
程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度,如Microchip公司的PIC 16芯片的程序指令是14位宽度,而数据是8位宽度。
目前使用哈佛结构的中央处理器和微控制器有很多,除了上面提到的Micro chip公司的PIC系列芯片,还有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的AVR系列和安谋公司的ARM9、ARM10和ARM11,51单片机也属于哈佛结构冯·诺伊曼结构也称普林斯顿结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构。
计算机体系结构RISC与CISC架构的比较计算机体系结构是指计算机中硬件和软件之间的组织方式以及它们之间的交互关系。
在计算机体系结构中,RISC(精简指令集计算机)和CISC(复杂指令集计算机)是两种主要的架构方式。
本文将对RISC和CISC架构进行比较,以探讨它们的优劣势以及应用领域。
1. 架构原理RISC架构采用简单而精简的指令集,指令长度一般为固定的32位,指令的执行时间也相对较短。
RISC架构鼓励使用寄存器进行数据操作,减少了对内存的频繁访问。
指令的执行速度快,功耗较低。
CISC架构则采用更复杂且功能更为全面的指令集,指令的长度和执行时间相对较长。
CISC架构支持多种寻址方式,可以直接对内存进行操作,因此指令的灵活性更强。
2. 指令集与指令执行RISC架构的指令集简单且规模较小,每个指令只能完成特定的功能,执行速度快。
RISC架构的指令执行耗时短,能够高效地进行流水线处理,提高了处理器的性能。
CISC架构的指令集较为复杂,包含大量功能丰富的指令。
每条指令能够完成多个操作,但执行速度相对较慢,消耗较多的处理器资源。
CISC架构的指令执行时间不稳定,难以实现高性能的流水线处理。
3. 硬件复杂度和成本RISC架构的硬件设计相对简单,指令集规模较小,对硬件的要求相对较低,因此硬件复杂度相对较低,成本也较低。
RISC架构的处理器可在较小的芯片上实现高性能。
CISC架构的硬件设计相对复杂,指令集规模较大,对硬件的要求较高,因此硬件复杂度相对较高,成本也较高。
CISC架构的处理器需要更大的芯片面积来容纳更多的电路和复杂的指令集。
4. 程序执行效率和编译器优化RISC架构的指令集简洁,指令执行时间相对较短,能够通过流水线等技术实现高效的指令并行执行,提高程序的执行效率。
而且,RISC架构的指令集易于编译器进行优化。
CISC架构的指令集复杂,指令执行时间相对较长,难以充分利用指令并行执行的优势,影响了程序的执行效率。
CISC VS RISC,Side by Side?[摘要]在CPU设计发展的历史上,形成了CISC结构和RISC结构两大阵营。
CISC 结构被称作复杂指令集结构,是一种为了便于编程和提高内存访问效率的芯片设计体系;RISC结构,与CISC相比,有一个相当精简的指令集,是为了提高处理器运行的速度而设计的芯片体系。
它们的设计方法各有利弊,因此对于CISC 和RISC体系到底谁更好,长期以来都是人们争论较多的话题。
本文在比较了二者的优缺点后,详细分析了一种新型的处理器架构:POST-RISC,它的内核是RISC,而外围是CISC,结合了两种架构的优点,拥有预测执行、处理器重命名等先进特性,因此它既是RISC的扩展,也是RISC和CISC的综合。
通过分析和比较,其实可以发现,如今单纯的RISC和CISC已经不存在了,二者都采纳了对方的优点以提高性能,所以可以说RISC和CISC是在共同发展、相互促进的。
[正文]CPU是计算机的核心,作为计算机中最重要的组成部分,CPU的性能表现如何,对一台计算机的整体性能表现起了决定性的作用,个人电脑的CPU从Intel 的4004发展到现在的Pentiu mⅣ,除了性能上的飞跃、架构的改变,CPU的核心体系也发生了根本的改变。
这些改变实际并不只是影响个人电脑的处理器,也对整个处理器技术的发展都具有深远的影响。
下面我就以本人所知先分别对CISC和RISC略做概述:CISC结构被称作复杂指令集结构,是一种为了便于编程和提高内存访问效率的芯片设计体系,早期的计算机使用汇编语言编程,由于内存速度慢且价格昂贵,使得CISC体系得到了用武之地。
CISC体系最大的指令特点是使用微代码和具有庞大的指令集。
微代码实际上是指令集与芯片内部逻辑电路间的译码器,它把复杂指令集中的指令再分解,使之可执行。
这使在指令集中加入新的指令变得十分简单,不用再重新设计芯片内的逻辑电路。
同时,CISC结构提供微代码ROM,以缓解存储与执行间的速度差异。
RISC(Reduced Instruction Set Computer)和CISC(Complex Instruction Set Computer)是两种不同的计算机体系结构,它们在指令设计和执行方式上存在一些关键差异。
1. RISC(精简指令集计算机):- 指令集:RISC体系结构采用了一种精简的指令集,指令格式简洁,指令数量有限。
- 执行方式:RISC计算机的指令具有固定的长度,执行速度较快。
每个指令只执行一种操作,且操作简单。
处理器通过流水线方式高效地处理指令。
- 存储器访问:RISC架构倾向于使用寄存器之间的数据传送,减少了对内存的直接访问。
- 优点:指令执行简单、执行速度快、流水线效率高、易于硬件实现和优化。
- 缺点:程序长度较长,代码密度较低,需要更多的内存。
2. CISC(复杂指令集计算机):- 指令集:CISC体系结构具有丰富的指令集,其中每个指令可以执行复杂的操作和多个内存访问。
- 执行方式:CISC计算机的指令具有可变长度,有些指令的执行时间较长。
处理器能够执行高级操作,如字符串处理和复杂的数学运算。
- 存储器访问:CISC架构倾向于在存储器中直接操作数据,并支持内存到内存的操作。
- 优点:指令集丰富,灵活,能够进行复杂的操作,减少了对内存的访问次数。
- 缺点:指令设计复杂,执行效率相对较低,流水线处理困难,对于硬件设计和性能优化的要求较高。
总体而言,RISC架构以其精简、高效和易于优化的特点在现代计算机领域占据了主导地位。
它更适合于处理大量独立操作,如高性能计算和嵌入式系统。
而CISC架构适用于需要复杂操作和高级功能的计算机应用,如个人电脑和服务器。
然而,随着技术的发展,RISC和CISC之间的差异逐渐模糊,许多处理器采用了混合型的设计。