小学三年级奥数第一讲-加减的巧算-教案
- 格式:docx
- 大小:11.03 KB
- 文档页数:4
小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。
选手们为争夺冠军,都在舞台上发挥着自己的最好水平。
台下的工作人员小熊和小白兔正在统计着最后的得分。
由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。
观众的情绪也影响着两位分数统计者。
只见分数一到小白兔手中,就像变魔术般地得出了答案。
等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。
小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。
于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。
你可以试一试。
”小熊照着小白兔说的去做,果然既快又对。
整数的加减巧算【教学目标】通过整数的相加减,在运算中找出能凑成整百、整千的数来掌握加减法中的简便计算问题。
【教学重难点】凑整法的熟练运用。
【教学过程】【例题1】计算:475+498这两个数直接相加,感觉数有点不好算呀。
那我们能不能变简单点呢?我们来看498,是不是最接近500,那我们就写500,但这样是不是多加了2,要保持不变我们还要减掉2,于是式子就变成了475+500-2=975-2=973解:475+498=475+(500-2)=975-2=973练习1:用简便方法计算(1)575+598(2)588+699(3)688+799+898(4)375+399+598+699【例题2】:计算:475+501这两个数直接相加,感觉数有点不好算呀。
那我们能不能变简单点呢?我们来看501,是不是最接近500,那我们就写500,但这样是不是少加了1,要保持不变我们还要加上1,于是式子就变成了475+500+1=975+1=976解:475+501=475+500+1=975+1=976.练习2:用简便方法计算(1)575+601(2)588+703(3)688+704+904(4)375+401+502+603.【例题3】计算:549-298这两个数直接相减,感觉数有点不好算呀。
那我们能不能变简单点呢?我们来看298,是不是最接近300,那我们就写300,但这样是不是多减了2,要保持不变我们还要加上2,于是式子就变成了549-300+2=249+2=251.练习3:用简便方法计算。
(1)558-299(2)588-297(3)688-199-298(4)975-197-298-399【例题4】计算:549-302这两个数直接相减,感觉数有点不好算呀。
那我们能不能变简单点呢?我们来看302,是不是最接近300,那我们就写300,但这样是不是少减了2,要保持不变我们还要减去2,于是式子就变成了549-300-2=249-2=247.练习4:用简便方法计算(1)558-301(2)588-204(3)688-202-301(4)975-105-203-301【例题5】计算9999+999+99+9这几个数直接相加,感觉数有点不好算呀。
第一讲加减法的巧算学案一、学习目标(1)理解并掌握凑整法、改变运算顺序的巧算方法(2)能够运用巧算方法进行加减法的巧算二、重点凑整法及两个运算性质的学习三、难点凑整法及两个运算性质在解题中的灵活运用四、学习过程(一)自主探究你能在2分钟内算出以下题目的结果么?3865+2988576-1994674-(674-389)1999+199+19+9加减运算中,使运算顺序简便的常用巧算方法有:凑整、改变运算顺序等。
现在我们先来学习第一种简便方法:凑整法。
1、凑整在加减运算中,把已知数凑成整十、整百、整千的数以后再计算的方法。
巧算的重点并不是算,而是巧。
但要做到巧的话,就必须在算之前对题目进行观察,找出题目中特殊的部分,思考有没有巧妙的解决方法。
例1用简便方法计算3645+1999练一练3865+2988例2 413-198提示:观察题目,有没有哪个数比较特别?进行加减巧算时,凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。
练一练576-199(1)2458+503(2)574+798(3)467+997(4)956-597(5)3475-308(6)7654-3998(7)987-178-222-390(8)376+174+24(9)864+(673+136)+227(10)1324―875―125(11)3842―1567―433―842(12)783+25+175(13)2803+(2178+5497)+47222、计算下列各题。
(1)538-194+162(2)497+334-297(3)7523+(653-1523)(4)9375-(2103+3375)(5)874―(457―126)(6)3467―253―174―47―126(6)538-194+162(7)497+334-297(8)7523+(653-1523)3、计算下列各题。
第一讲加减法巧算前言:在进行加减计算时,“先计算括号中的部分,再从左往右依次计算”是基本的运算法则。
但除此之外,还有许多运算技巧,熟练掌握各种运算技巧可以使你算得更快更准。
“凑整法”是最常用的巧算方法就是在计算时优先计算可以得到整十整百整千的部分,从而达到巧算的目的。
要想凑出整十,两个数的末位相加应该得0,这样的情况除了0+0外,还有1+9,2+8,3+7,4+6,5+5。
同学们在做题时要注意观察各个加数的个位,看能不能找到合适的凑法。
除了加法可以凑整外,减法也可以凑整,个位相同的两个数相减后便能得到整十的数。
在进行加减混合运算时,经常会遇到能够巧算的数不在一起的情况,这时候就需要通过调整运算顺序,把能巧算的放在一起先算。
但需要注意的是,在调整的过程中,每个数都必须带着自己左边的符号一起移动,这种调整可以形象的称“带符号搬家”。
如果搬家的是算式的第一个数,前面没有符号,在这个数之前添一个加号就可以。
例1 (1)计算:73+119+231+69+381+17;(2)计算:375—138+247—175+139—237.分析(1)通过个位凑十来配对,但其中以1和9结尾的部分都分别有两个,应该如何配对呢?(2)加法配对看末位,减法应该如何呢?练习1(1)计算:36+97+32+64+168+103;(2)计算:2468—192+532+392—224+1234.除了“带符号搬家”可以调整顺序外,“脱括号”与“添括号”也是改变运算顺序的常用手段,加减法计算中“脱括号”要遵循下面的规则:括号前面是加号,脱去括号不变符号;括号前面是减号,脱去括号变符号。
例 2 (1)计算:162—(162—135)—(35—19);(2)计算:163—(50—18)—(153—76)+(124—18)。
分析:去掉括号会怎么样呢?练习2(1)计算:123—(23—45)—(45—67);(2)计算:437—(200—83)+(63—53)。
加减法巧算之凑整与组合思想在小学奥数计算中,凑整是一种方法,更是一种解题思想。
凑整只是手段,简算才是目的,同学们在熟练运用下面的简算方法后,课后要多加练习做到能举一反三。
凑整法:凑整法就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果相加。
常用的凑整方法有两种:①移位分组凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。
②加补分组凑整法:把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数。
注:“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”。
【例1】计算:(2000-1)+(1999-2)+(1998-3)+…+(1002-999)+(1001-1000)【例2】计算:1234+3142+4321+2413【例3】魔术师有6粒骰子,每粒骰子的6个面上写的数字如下:256,850,157,553,454,652;814,616,319,715,418,913;585,387,882,189,684,783;437,635,239,833,536,734;168,663,267,564,762,861;671,374,572,473,176,275;这36个数没有一个相同的,魔术师将6粒骰子随意撒在桌面上,请观众将6粒骰子顶面上的6个数相加,每次魔术师都比观众加的快,你知道为什么吗?你能做到吗?〖答案〗【例1】 1000000【例2】 11110【例3】仔细观察可以发现,在每粒骰子的6个数中十位数都相同,个位数与百位数之和也相同,6粒骰子的十位数依次为:5,1,8,3,6,7,个位数与百位数之和依次为:8,12,10,11,9,7。
当6粒骰子掷在桌面上,顶面的6个数相加,十位数之和是:5+1+8+3+6+7=30,个位数与百位数之和是:8+12+10+11+9+7=57。
第1讲加减法的巧算
在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千……的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
先讲加法的巧算。
加法具有以下两个运算律:
加法交换律:两个数相加,交换加数的位置,它们的和不变。
即
a+b=b+a,
其中a,b各表示任意一数。
例如,5+6=6+5。
一般地,多个数相加,任意改变相加的次序,其和不变。
例如,
a+b+c+d=d+b+a+c=…
其中a,b,c,d各表示任意一数。
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变。
即
a+b+c=(a+b)+c=a+(b+c),
其中a,b,c各表示任意一数。
例如,
4+9+7=(4+9)+7=4+(9+7)。
一般地,多个数(三个以上)相加,可先对其中几个数相加,再与其它数相加。
把加法交换律与加法结合律综合起来应用,就得到加法的一些巧算方法。
1.凑整法
先把加在一起为整十、整百、整千……的加数加起来,然后再与其它的数相加。
例1计算:(1)23+54+18+47+82;
(2)(1350+49+68)+(51+32+1650)。
解:(1)23+54+18+47+82
=(23+47)+(18+82)+54
=70+100+54=224;
(2)(1350+49+68)+(51+32+1650)
=1350+49+68+51+32+1650
=(1350+1650)+(49+51)+(68+32)
=3000+100+100=3200。
2.借数凑整法
有些题目直观上凑整不明显,这时可“借数”凑整。
例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。
例2计算:(1)57+64+238+46;
(2)4993+3996+5997+848。
解:(1)57+64+238+46
=57+(62+2)+238+(43+3)
=(57+43)+(62+238)+2+3
=100+300+2+3=405;
(2)4993+3996+5997+848
=4993+3996+5997+(7+4+3+834)
=(4993+7)+(3996+4)+(5997+3)+834
=5000+4000+6000+834=15834。
下面讲减法和加减法混合运算的巧算。
加、减法有如下一些重要性质:
(1)在连减或加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
例如,
a-b-c=a-c-b,a-b+c=a+c-b,
其中a,b,c各表示一数。
(2)在加、减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”。
例如,
a+(b-c)=a+b-c,
a-(b+c)=a-b-c,
a-(b-c)=a-b+c。
(3)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”号,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”号,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
例如,
a+b-c=a+(b-c),
a-b+c=a-(b-c),
a-b-c=a-(b+c)。
灵活运用这些性质,可得减法或加、减法混合计算的一些简便方法。
3.分组凑整法
例3计算:(1)875-364-236;
(2)1847-1928+628-136-64;
(3)1348-234-76+2234-48-24。
解:(1)875-364-236
=875-(364+236)
=875-600=275;
(2)1847-1928+628-136-64
=1847-(1928-628)-(136+64)
=1847-1300-200=347;
(3)1348-234-76+2234-48-24
=(1348-48)+(2234-234)-(76+24)
=1300+2000-100=3200。
4.加补凑整法
例4计算:(1)512-382;
(2)6854-876-97;
(3)397-146+288-339。
解:(1)512-382=(500+12)-(400-18)
=500+12-400+18
=(500-400)+(12+18)
=100+30=130;
(2)6854-876-97
=6854-(1000-124)-(100-3)
=6854-1000+124-100+3
=5854+24+3=5881;
(3)397-146+288-339
=397+3-3-146+288+12-12-339
=(397+3)+(288+12)-(146+3+12+339) =400+300-500=200。