《数值分析》复习笔记
- 格式:pdf
- 大小:445.03 KB
- 文档页数:8
数值分析知识点总结一、数值分析的基本概念1. 数值分析的对象数值分析的对象是现实生活中的数字数据和信息。
这些数据和信息可以来自各个领域,包括自然科学、社会科学、技术工程等。
例如,物理实验中测得的实验数据、经济管理中的统计信息、天气观测中的气象数据等,都是数值分析的对象。
2. 数值分析的目的数值分析的主要目的是通过对数值数据和信息的定量分析,发现其中的规律,提取有用的信息,做出科学的预测和决策。
例如,通过对某种药物的临床试验数据进行数值分析,可以得出这种药物的疗效和毒性情况,为临床医生的治疗决策提供依据。
3. 数值分析的方法数值分析采用数学和计算机科学的方法对数值数据和信息进行处理和分析。
它涉及的具体方法包括数值计算、插值与逼近、数值微分和积分、常微分方程数值解、数值线性代数等。
二、数值分析的基本内容1. 数值计算数值计算是数值分析的基本方法之一,它包括离散化、数值稳定性、误差分析等内容。
离散化是将连续问题转化为离散问题,这是数值计算的基本工作方式。
数值稳定性研究的是数值方法对误差的敏感程度,是评价数值方法好坏的重要指标。
误差分析则研究数值计算中产生的误差的成因和大小。
2. 插值与逼近插值与逼近是数值分析的重要内容之一,它研究如何通过已知的数值数据估计未知函数的值。
插值是通过已知的离散数据点构造一个连续函数,使得这个函数通过这些数据点;逼近则是通过已知的离散数据点构造一个近似函数,使得这个函数与原函数的差尽量小。
3. 数值微分和积分数值微分和积分是数值分析的又一重要内容,它研究如何通过已知的函数值计算函数的导数和定积分值。
数值微分是通过函数值计算函数的导数值;数值积分则是通过函数值计算函数的定积分值。
这两项工作在科学计算中有着广泛的应用。
4. 常微分方程数值解常微分方程数值解也是数值分析的重要内容之一,它研究如何通过数值方法计算常微分方程的近似解。
常微分方程是自然界和技术工程中经常出现的数学模型,因此其数值解的研究有着广泛的应用价值。
第一章、绪论1、了解数值分析的研究对象与特点。
2、了解误差的来源与分类,会求有效数字,会简单的误差估计。
3、了解误茅的定性分析及避免误茅危害。
第一早、插值重点题目:P19, 5, 7.1、 了解插值的概念。
2、 掌握拉格朗日(Lagrange)插值法及其余项公式。
3、 了解均差的概念及基本性质,掌握牛顿(Newton)插值法。
4、 了解茅分的概念,会牛顿前插公式、后插公式。
5、 会埃尔米特(Hermite)插值及其余项公式。
6、 知道高次插值的病态性质,会分段线性插值和分段埃尔米特插值及其误并和收敛性。
7、 了解三次样条插值,知道其误差和收敛性。
重点题目:P5& 2, 6, 16.第三章、函数逼近与曲线拟合1、 了解函数逼近的基木概念,了解范数和内积空间。
2、 了解正交多项式的概念,了解切比雪夫多项式和勒让德多项式以及它们的性质,知道其他常用止交多项式。
理解最佳一致逼近的概念和切比雪夫定理,掌握简单的最佳一致逼近多项式的求法。
理解最佳平方逼近的概念,掌握最佳平方逼近多项式的求法,了解用止交多项式做最佳平 方逼近的方法。
6、了解最佳平方逼近与快速傅里叶变换。
7、了解有理逼近。
重点题目:P115, 4, 13, 15, 17, 19.第四章、数值积分与数值微分1、 了解数值求积的基本思想、代数精度的概念、插值型求积公式及其代数精度、求积公式的 收敛性和稳定性。
2、 掌握低阶牛顿-柯特斯(Newton-Cotes)公式及其性质和余项。
3、 会复化梯形公式和复化辛普森公式及其余项。
4、 会龙贝格(Romberg)求积算法。
5、 了解高斯求积公式的理论,会高斯-勒让德求积公式和高斯-切比雪夫求积公式。
6、 了解儿种常用的数值微分方法。
重点题目:P15& 1, 4, 6.第五章、解线性方程组的直接方法1、 了解求解方程组的两类方法,了解矩阵基础知识。
2、 掌握高斯消去法,了解矩阵的三角分解。
第一章 绪论【考点1】绝对误差概念。
近似数的绝对误差(误差):()a =x a E -,如果()δa E ≤则称δ为a 的绝对误差限(误差限)。
【考点2】相对误差限的概念。
近似数a 的相对误差:()()/x a x =a E r -,实际运算()()/a a x a E r -=,a r /δδ=。
【考点3】有效数字定义。
设*x 的近似值a 可表示为n m a a .a a= 21010⨯±,m 为整数,其中1a 是1到9中的一个整数,n a a 2为0到9中的任意整数,若使()n m a||=|x a |E -*⨯≤-1021成立,则a 称近似*x 有位有效数字。
例:设256010002560,00256702.×=.a .=x -*=,则4-10×21=0.00005a -x ≤*。
因为,2-m=所以2n=,a 有2位有效数字。
若257.01000257.02⨯==-a ,则5102100000500000030-≤×=..=x-a ,因为2-=m ,所以3=n ,a 有3位有效数字。
例:设000018.x=,则00008.a=具有五位有效数字。
41021000010-≤×.=x-a ,因为1=m ,所以5=n ,即a 具有五位有效数字。
例:若3587.64=x *是x 的具有六位有效数字的近似值,求x 的绝对误差限。
410×0.358764=x *,即4=m ,6=n ,0.005=1021x -x 6-4⨯≤*【考点4】四舍五入后得到的近似数,从第一位非零数开始直到末位,有几位就称该近似数有几位有效数字。
【考点5】有效数字与相对误差的关系。
设x 的近似数为n m a a .a ×a= 21010±,)(a 01≠如果a 具有n 位有效数字,则的相对误差限为()111021--≤n r ×a δ,反之,若a 的相对误差限为()()1110121--+≤n r ×a δ,则a 至少具有n 位有效数字。
《数值分析》期末复习纲要 第一章 数值计算中的误差分析主要内容(一)误差分析 1、误差的基本概念:(1)绝对误差:设x 是精确值, *x 是其近似值,则称()E x x x*=-是近似值*x 的绝对误差,简称误差。
特点:可正可负,带量纲。
(2)相对误差:称()r x x E x x *-=是近似值*x 的相对误差,若精确值x 未知,则定义()r x x E x x **-=。
注: 由四舍五入得到的近似值,误差不超过最末位的半个单位(准确到最末位)。
2、有效数字的概念:P6;3、算法的数值稳定性:数值稳定的算法:初始数据所带有的误差在计算的过程中能得到有效控制,不至于因误差的过度增长影响计算结果的精度。
数值不稳定的算法:初始数据所带有的误差在计算的过程中得不到有效控制,以至于因误差的过度增长而使计算结果的精度大大降低。
P11:例子(二)算法设计的基本准则P11-15 应用实例:课堂练习,作业基本要求1、掌握误差、有效数字等基本概念2、熟记算法设计准则,并能依据算法设计准则构造或选择计算公式。
(参见课堂练习、作业)第二章 线性代数方程组的数值解法直接法:不计初始数据的误差和计算过程中的舍入误差,经过有限步四则运算求得方程组的精确解。
迭代法:先给出方程组解的某一初始值,然后按照一定的迭代法则(公式)进行迭代,经过有限次迭代,求得满足精度要求的方程组的近似解。
主要内容(一)直接法的基本模式:高斯顺序消去法基本思想:按照各方程的自然排列顺序(不交换方程),通过按列消去各未知元,将方程组化为同解的三角形方程组来求解求解过程:⎩⎨⎧回代过程消元过程应用实例:课堂例题;练习 (二)高斯列主元消去法基本思想:按列消元,但每次按列消元之前,先选取参与消元的 方程首列系数,选取绝对值最大者,通过交换方程,使之成为主元,再进行消元。
(每一步消元之前先按列选取主元) 应用实例:课堂例题,作业(三)迭代法基本原理:(1)将原方程组b Ax =改写成如下等价形式:f Bx x += (2)构造相应的迭代公式:f Bx x m m +=-)1()((3)任取一初始向量)0(x代入上述迭代公式,经迭代得到向量序列{}Tm n m m m x x x x ),,,()()(2)(1)( =,如果该向量序列{})(m x 收敛于某一向量Tn x x x x ),,,(21****= ,即),,2,1(lim )(n i x x i m i m ==*∞→Tn x x x x ),,,(21****= 即为原方程组的解。
第一章1.设x 为准确值,x*为x 的一个近似值.称e*=x*-x 为近似值的绝对误差,简称误差。
ε*=|e*|叫做近似值的误差限,e ∗x=x ∗−x x为相对误差,εr∗=ε∗|x ∗| 为相对误差限。
2.采用四舍五入原则时,值的误差不超过末位数字的半个单位(对π估计值取3.14时,误差|π-3.14|≤0.5 * 10-2). 3.ε(x 1∗±x 2∗)≤ ε(x 1∗)+ε(x 2∗) ε(x 1∗·x 2∗)≤|x 1∗|ε(x 2∗)+|x 2∗|ε(x 1∗) ε(x 1∗/x 2∗)≤|x 1∗|ε(x 2∗)+|x 2∗|ε(x 1∗)|x 2∗|24.相近数相减、大数吃小数等问题会加大误差。
T1. 已测得某场地长Ɩ的值为Ɩ*=110m ,宽d 的值为d*=80m ,已知 |Ɩ - Ɩ*| ≤ 0.2m ,|d – d*| ≤ 0.1m.试求面积s=Ɩd 的绝对误差限与相对误差限。
解:因为s= Ɩd, ðs ðƖ=d,ðsðd =Ɩ.故 ε(s∗)≈|(ðs ðl)∗|ε(l ∗)+|(ðs ðd)∗|ε(d ∗), (ðs ðl )∗=d ∗=80m (ðsðd)∗=l ∗=110m ε(l ∗)=0.2m ε(d ∗)=0.1m得绝对误差限 ε(s ∗)=27(m 2)相对误差限εr∗=ε(s ∗)|s ∗|=ε(s ∗)l ∗d ∗≈0.31%T3. 计算I n =e −1∫x n e xdx(n =0,1,…)1并估计误差。
解:由分部积分可得I n =e −1∫x n d (e x )=e −1(x n e x |01−∫e x d (x n )1)1=1−e −1n ∫x n−11e xdx =1−nI n−1 I 0=e−1∫e x10dx =1−e −1得到通式{I n =1−nI n−1 (n =1,2,…)I 0=1−e −1(1)为计算出I 0须先计算e -1,采用泰勒展开式,取k=7,使用四位小数计算。
第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生? 答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于 31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(, 221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子)例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2) ;1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □ 第二章拉格朗日插值公式(即公式(1))∑==ni i i n x l y x p 0)()(插值基函数(因子)可简洁表示为)()()()()()(0i n i n nij j j i j i x x x x x x x x x l ωω'-=--=∏≠= 其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 00)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式))(())(())(())(())(())(()(1202102210120120102102x x x x x x x x y x x x x x x x x y x x x x x x x x y x P ----⨯+----⨯+----⨯= 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为)()()(0101x x c x f x p -+=其中],[)()(1001011x x f x x x f x f c =--=⇒ )](,[)()(01001x x x x f x f x p -+=(2) 过点210,,x x x 的二次插值多项式为))(()()(10212x x x x c x p x p --+=其中],,[)()()()(21002010112122x x x f x x x x x f x f x x x f x f c =------=⇒ ))(](,,[)()(1021012x x x x x x x f x p x p --+=))(](,,[)](,[)(102100100x x x x x x x f x x x x f x f --+-+=重点是分段插值: 例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1)(2)解(2):方法一. 由 Lagrange 插值公式)()()()()(332211003x l f x l f x l f x l f x L ⋅+⋅+⋅+⋅= 可得: )21()(23-=x x x L 方法二. 令)()21()(3B Ax x x x L +-=由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则: ii ii i i i i h x x x x x f x x x x x f x f --+--⋅=++++1111)()()(h ihx h i h h i x h i -++-+-⋅=22))1(()1()( 100)1(10)12(+-+=i i x i 误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*⇒ ∑===-ni j i i n j x x a f 0*)1(0,0),(即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中⎰⎰⎰⋅==⋅=+b ab abai iji jijidx x x f x f dx x dx x x x x)(),( ,),(称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。
1. 已知如下数据()i i x y ,,1,2,3,4i =,即(1,8),(2,7),(5,10),(10,21),试求一条形如by ax x=+的最小二乘拟合函数。
2. 考虑n 阶线性代数方程组Ax b =的扰动方程组()()A A x x b b +∆+∆=+∆设A 是非奇异矩阵,∙表示某种向量范数或从属于它的矩阵范数,且11A A -∆<,证明:(1)扰动方程有唯一解; (2)有估计()()1111A A A AA ---+∆≤-∆(3)记()1K A A A -=称为矩阵A 的条件数,则还有估计()()1x A b K A x K A AA A b ⎛⎫∆∆∆≤+ ⎪ ⎪-∆⎝⎭3. 方程组Ax b =,其中10.50.520.5,,0.51a A x a R a -⎡⎤⎢⎥=--∈⎢⎥⎢⎥--⎣⎦(1)试用迭代次数的充要条件求出使jacbi 迭代法收敛的a 的取值范围; (2)选择一种便于计算的迭代收敛的充分条件,求出G-S 迭代法收敛的a 的范围,并求出G-S 迭代公式(分量形式);4. 设矩阵210131012A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试求()()2,,A cond A A ρ. 5. 设求()0f x =的迭代格式,()()()10,1,2,3......n n n n f x x x n f x +=-='收敛到()0f x = 精确解*x ,且*x 是方程()0f x =的单根,试证牛顿迭代格式二阶收敛,即()()()*1*12lim 2n n n n n f x x x x x f x -→∞--''-=-'- 6. 设*x 为()0f x =的一个根,()f x 在*x 的某领域为三次连续可微,且()*0f x ≠,对牛顿法做如下修改:()()()()()()10,1,2,3......n n nnn n n nn f x x x D f x f x f x D n f x +⎧=-⎪⎪⎨+-⎪==⎪⎩,证明该迭代法二阶收敛。