履带式挖掘机行走和回转液压控制系统
- 格式:pdf
- 大小:121.78 KB
- 文档页数:2
挖掘机液压系统的工作原理
挖掘机液压系统是通过液压传动来实现工作的。
液压系统由液压泵、液压执行器和控制装置组成。
1. 液压泵:液压泵将液体(通常是油)从油箱中吸入,通过压力产生装置,将油液压力增加,并将其送到液压执行器。
2. 液压执行器:液压执行器包括液压缸和液压马达。
液压泵通过将高压液体送入液压缸或液压马达来驱动机械运动。
液压缸将液压能转化为机械能,驱动挖掘机的各种动作,如臂、斗杆、铲斗等的伸缩、提升、旋转等。
液压马达则将液压能转化为马达机械能,驱动履带行走。
3. 控制装置:液压系统的控制装置用于控制液压泵的工作和液压执行器的动作。
常见的控制装置有手动控制阀、电动控制阀和比例控制阀等。
通过操作控制装置,可调节液压泵的流量和压力,以及控制液压执行器的运动和速度。
在挖掘机工作时,操作员通过操纵手柄或按键控制液压阀门的开闭和泵的流量,从而控制液体的流动方向和速度,进而实现挖掘机的各种运动。
由于液体具有不可压缩性和良好的传递性能,液压系统能够传递更大的力矩和功率,并具有响应速度快、可靠性高、动作平稳等优势。
履带挖掘机行走制动原理一、概述履带挖掘机是一种常见的工程机械设备,其行走制动系统起着至关重要的作用。
本文将详细探讨履带挖掘机行走制动原理。
二、行走制动系统的组成履带挖掘机行走制动系统主要由以下几个部分组成:2.1 履带链履带链是履带挖掘机行走制动系统的重要组成部分。
它由一系列链节和链轮组成,可以有效地将履带挂在车身的两侧。
履带链的制动效果与行走速度直接相关。
2.2 制动器制动器是履带挖掘机行走制动系统的核心部件。
它通过与履带链或驱动齿轮直接接触,产生制动摩擦力,从而减速或停止履带挖掘机的行走。
2.3 制动液制动液是履带挖掘机行走制动系统的液压介质。
它通过液压系统将制动力传输到制动器,从而实现行走制动功能。
三、行走制动原理履带挖掘机的行走制动原理可以归纳为以下几个方面:3.1 制动器的工作原理制动器通过调节制动器蹄片或摩擦盘的压力,使其与履带链或驱动齿轮产生摩擦,从而产生制动摩擦力。
这种制动摩擦力可以使履带挖掘机减速或停止行走。
3.2 制动液的作用机制制动液在行走制动系统中起着传递制动力的作用。
当制动器收到制动指令时,制动液通过液压系统传输制动力到制动器,并使其产生足够的制动摩擦力。
3.3 制动力的控制履带挖掘机的行走制动力需要通过控制制动器的压力来实现。
可通过调整制动器的液压系统或制动器本身的结构来控制制动力的大小,以达到适合不同工况的行走制动效果。
四、行走制动系统的应用履带挖掘机的行走制动系统广泛应用于各种工程领域。
以下是行走制动系统的一些应用场景:4.1 坡道行走在坡道行走时,行走制动系统可以通过增加制动摩擦力,使履带挖掘机保持在稳定的行走速度或停止行走,确保安全可靠。
4.2 紧急制动在出现紧急情况时,行走制动系统可以迅速响应制动指令,通过增加制动力使履带挖掘机迅速停止行走,避免事故的发生。
4.3 精确控制行走制动系统还可用于对履带挖掘机的行走速度进行精确控制。
通过调节制动器的制动力大小,可以实现精确的行走速度调节,提高工作效率。
挖掘机行走原理
挖掘机行走原理是指通过履带或轮胎等方式实现挖掘机在工地上的灵活移动。
具体来说,履带式挖掘机的行走原理是通过履带带动挖掘机的移动。
履带是由一系列的链轮、导轮和履带板组成的。
驱动链轮通过发动机的动力传递给履带,在履带板与地面之间形成摩擦力,从而推动挖掘机前进或后退。
履带的底部还会有一些减震装置,以提供更加平稳的行走体验。
而轮胎式挖掘机的行走原理则是通过减震系统控制挖掘机的轮胎转动,从而实现行走。
轮胎通过传动装置与发动机相连,发动机提供动力,通过减震系统将动力传递给轮胎,使其旋转并推动挖掘机前进或后退。
轮胎式挖掘机相较于履带式挖掘机行走更加灵活,适用于一些比较平坦的工地。
无论是履带式还是轮胎式挖掘机,驱动系统都是关键的部件,它负责将发动机的动力传递给履带或轮胎,从而实现挖掘机的行走。
此外,控制系统也起到重要作用,它通过操作杆或操纵手柄控制挖掘机前进、后退、转弯等动作。
总之,挖掘机行走原理是通过履带或轮胎作为动力传递的媒介,将发动机的动力传递给挖掘机的移动装置,实现机械在工地上的灵活行走。
挖掘机在履带上旋转的原理
挖掘机在履带上旋转的原理是通过履带运动和液压系统的配合来实现的。
具体原理如下:
1. 履带运动原理:挖掘机通过驱动履带来实现移动和旋转。
履带系统由驱动轮、托辊、链板组成。
驱动轮通过电机或液压马达带动,并通过链条将动力传递给链板,使挖掘机产生前进或后退的动力。
2. 液压系统原理:挖掘机的液压系统控制履带运动。
液压系统由液压泵、液压缸、控制阀等组成。
液压泵将液压油输出到液压缸,液压缸通过推拉活塞来实现挖掘机的运动。
控制阀用于控制液压泵的流量和压力,从而控制挖掘机的速度和力量。
3. 旋转原理:挖掘机通过液压系统中的旋转马达来实现履带上的旋转。
旋转马达通过不同的液压油流方向和大小控制履带的旋转方向和速度。
当液压油流经过旋转马达时,它会驱动旋转轴进行旋转,从而使挖掘机在履带上旋转。
总之,挖掘机在履带上旋转的原理是通过履带运动和液压系统的相互配合来实现的。
履带系统提供了移动和旋转的动力,液压系统控制履带的运动,并通过旋转马达来实现履带上的旋转。
行走装置:按结构特点液压挖掘机行走装置可分为履带式和轮胎式两大类。
履带式行走装置牵引力大,接地比压小,因而越野性能好,爬坡能力大,且转弯半径小,机动灵活,获得广泛应用。
所以本设计选择履带式行走装置。
履带式行走装置由四轮一带即驱动轮,导向轮,支重轮,拖轮,以及履带,装进装置和缓冲弹簧,横走机构,行走架等组成。
机械运行时,驱动轮在履带紧边产生一个拉力,力图把履带从支重轮下拉出,由于支重轮下的履带与地面间有足够的附着力,阻止履带的拉出,迫使驱动轮卷绕履带向前滚动,导向轮再把履带铺设到地面,从而使得机体借助支重轮沿着履带轨道向前运行。
四轮一带等有关参数的初步确定和行走机构的布置1.履带支撑长度L,轨距B和履带板宽度b应合理匹配,使得接地比压,附着性能和转弯性能均符合要求。
根据同机型挖机的对比以及经验公式,初选L=2130mm。
B=1700mm。
b=450mm。
2.履带节距和驱动轮齿数应在满足强度,刚度的要求下,尽量取较小的值以降低履带高度。
=154.25。
履带节距t3.履带板总数n=38 / 侧。
回转装置回转装置由转台,回转支撑和回转机构组成。
滚动轴承式回转支撑由内外座圈,滚动体,隔离体,密封装置,润滑装置和链接螺栓等组成。
本设计采用单排滚球式回转支撑滚动体。
液压挖掘机回转机构的回转时间约占整个工作装置循环时间的50%~70%,能量消耗约占25%~40%,回转液压油路的发热量约占液压系统总发热量的30%~40%,因此合理确定回转机构的液压油路形式和结构方案,正确选择回转机构主参数,对提高生产率和功能利用率,改善司机的劳动条件,减少工作装置的冲击等具有十分重要的意义。
对回转机构的基本要求是:1.在回转力矩和角加速度不超过允许值的前提下,应尽可能缩短回转时间;2.回转时工作装置的动载系数不应该超过允许值;3.回转能量损失小。
液压传动系统采用变量泵驱动。
制动方式采用液压制动加机械制动,可加大制动力矩,减少制动的时间,定位转却,制动油温不高。
课程:流体传动与控制课题:挖掘机液压系统班级:指导教师:组员:1概述挖掘机的液压系统是挖掘机上重要的组成部分, 它是挖掘机工作循环的的动力系统。
挖掘机的工作条件恶劣, 且动臂和底盘动作非常频繁, 因此要求液压系统工作稳定, 平均无故障时间长。
因此, 液压系统的性能优劣决定着挖掘机工作性能的高低。
液压技术的发展直接关系挖掘机的发展, 挖掘机与液压技术密不可分, 二者相互促进。
液压技术是现代挖掘机的技术基础, 挖掘机的发展又促进了液压技术的提高。
挖掘机的液压系统复杂, 可以说目前液压传动的许多先进技术都体现在挖掘机上。
挖掘机的液压系统都是由一些基本回路和辅助回路组成, 它们包括限压回路、卸荷回路、缓冲回路、节流调速和节流限速回路、行走限速回路、支腿顺序回路、支腿锁止回路和先导阀操纵回路等, 由它们构成具有各种功能的液压系统。
随着科技的进步, 挖掘机的液压系统将更加复杂, 功能更加多样且便于操作控制, 工作效率高, 耗能少, 先进的液压系统会使挖掘机在工程领域发挥更大的作用。
液压挖掘机是一种多功能机械, 目前被广泛应用于水利工程, 交通运输, 电力工程和矿山采掘等机械施工中, 它在减轻繁重的体力劳动, 保证工程质量。
加快建设速度以及提高劳动生产率方面起着十分重要的作用。
由于液压挖掘机具有多品种, 多功能, 高质量及高效率等特点, 因此受到了广大施工作业单位的青睐。
液压挖掘机的生产制造业也日益蓬勃发展。
挖掘机液压传动紧密地联系在一起,其发展主要以液压技术的应用为基础。
由于挖掘机的工作条件恶劣, 要求实现的动作很复杂, 于是它对液压系统的设计提出了很高的要求, 其液压系统也是工程机械液压系统中最为复杂的。
因此, 对挖掘机液压系统的分析设计已经成为推动挖掘机发展中的重要一环。
2 挖掘机液压系统概述2.1 挖掘机液压系统的基本组成及其基本要求按照挖掘机工作装置和各个机构的传动要求, 把各种液压元件用管路有机地连接起来就组成一个挖掘机液压系统。
挖掘机履带驱动原理
挖掘机履带驱动原理是指使用液压系统驱动挖掘机履带进行行进和转向。
具体原理如下:
1. 动力源:挖掘机通常采用内燃机或电动机作为动力源。
内燃机通过燃烧混合气体产生的能量驱动液压泵,电动机则通过驱动电机产生的电能驱动液压泵。
2. 液压泵:液压泵是将动力源提供的能量转化为液压能的装置。
它能够将液压油从油箱中吸入,然后压力增加后将液压油送往液压系统中的其他部件。
3. 液压系统:液压系统由液压泵、液压缸、液压阀等组成。
通过液压泵提供的液压能,可以控制液压缸的动作,从而实现挖掘机履带的行进和转向。
4. 行进和转向:挖掘机履带的行进是通过液压缸的运动来实现的。
当液压泵将液压油送入液压缸的一侧时,液压缸的活塞受到压力作用而推动活塞杆,从而实现履带的前进。
同时,当液压泵将液压油送入液压缸的另一侧时,液压缸的活塞受到压力作用而推动活塞杆,从而实现履带的后退。
而挖掘机履带的转向则是通过控制液压阀来实现的。
控制液压阀的开关,可以改变液压油的流动方向,从而实现履带的转向。
图1 YW-100型单斗履带式挖掘机液压系统1—油泵;2、4—分配阀组;3—单向阀;5—速度限制阀;6—推土板油缸;7、8—行走马达;9—双速阀;10—回转马达;11—动臂油缸;12—辅助油缸;13—斗杆油缸;14—铲斗油缸;15—背压阀;16—冷却器;17—滤油器YW-100型单斗液压挖掘机液压系统国产YW-100型履带式单斗液压挖掘机的工作装置、行走机构、回转装置等均采用液压驱动,其液压系统如图1所示。
该挖掘机液压系统采用双泵双向回路定量系统,由两个独立的回路组成。
所用的油泵1为双联泵,分为A、B两泵。
八联多路换向阀分为两组,每组中的四联换向阀组为串联油路。
油泵A输的压力进入第一组多路换向阀,驱动回转马达、铲斗油缸、辅助油缸,并经中央回转接头驱动右行走马达7。
该组执行元件不工作时油泵A输出的压力油经第一组多路换向阀中的合流阀进入第二组多路换向阀,以加快动臂或斗杆的工作速度。
油泵B输出的压力油进入第二组多路换向阀,驱动动臂油缸、斗杆油缸,并经中央回转接头驱动左行走马达8和推土板油缸6。
该液压系统中两组多种换向阀均采用串联油路,其回油路并联,油液通过第二组多路换向阀中的限速阀5流向油箱。
限速阀的液控口作用着由梭阀提供的A、B两油泵的最大压力,当挖掘机下坡行走出现超速情况时,油泵出口压力降低,限速阀自动对回油进行节流,防止溜坡现象,保证挖掘机行驶安全。
在左、右行走马达内部除设有补油阀外,还设有双速电磁阀9,当双速电磁阀在图示位置时马达内部的两排柱塞构成串联油路,此时为高速;当双速电磁阀通电后,马达内部的两排柱塞呈并联状态,马达排量大、转速降低,使挖掘机的驱动力增大。
为了防止动臂、斗杆、铲斗等因自重而超速降落,其回路中均设有单向节流阀。
另外,两组多路换向阀的进油路中设有安全阀,以限制系统的最大压力,在各执行元件的分支油路中均设有过载阀,吸收工作装置的冲击;油路中还设有单向阀,以防止油液的倒流、阻断执行元件的冲击振动向油泵的传递。
履带式挖掘机行走装置设计前言课题研究的目的及意义挖掘机械是工程机械的主要类型之一,广泛应用于各个领域的机械化施工中。
本课题的目的是为挖掘机履带行走装置的设计提供方法和参考。
挖掘机械在工程机械发展中占有重要地位,尤其是中小型、通用的单斗挖掘机的作用更为突出。
然而,我国挖掘机行业在品种、数量和技术性能方面仍需进一步提高,这对于机械化水平的提高、国防建设和现代化建设的速度有着直接影响。
履带式液压挖掘机是一种常见的土石方开挖机械设备,广泛应用于各个领域的机械化施工中。
然而,由于其复杂的制造技术和内部结构,以及投入产出比高的特点,我国在挖掘机产品上与国际先进水平存在较大差距。
近年来,国产挖掘机品牌市场占有率逐步提升,一批具有较强自主创新能力的挖掘机生产商正在崛起。
然而,国内市场仍被国外品牌占据了80%的份额,因此对履带式挖掘机的深入研究势在必行。
通过选择此课题,我们可以进一步巩固和加深对工程机械知识的理解,并为我国挖掘机的具体结构设计和优化做出贡献。
同时,这也有助于培养我们的独立思考、综合运用知识、分析和解决问题、创新思维的能力。
特别是在方案设计、设计计算、工程绘图、文字表达、文献查阅、计算机应用和工具书使用等方面的基本工作能力。
挖掘机国内外研究现状国产挖掘机的功能相对单一,衍生产品较少。
国产挖掘机规格主要集中在30吨以下,6吨以下的规格比较齐全,形成了从1.5吨到30吨的系列产品。
然而,200吨以上的规格基本上没有国产产品,因此我国挖掘机仍处于“发展期”。
我国挖掘机企业在研发体系和试验体系建设方面仍处于初级阶段,产品的开发主要还是仿造为主,只有少数公司如山东众友自主开发了电控技术,大多数企业还在选购阶段。
节能减排、降噪安全部件的研发以及不同功能的附属装置的研发,只有个别企业才刚刚起步,大多数企业还没有涉足这些领域。
目前,我国挖掘机的质量问题主要表现在核心部件如结构件、电控和液压件,以及其他部件如轴销、司机室和四轮一带等。