初中数学找规律常见公式
- 格式:docx
- 大小:1.41 MB
- 文档页数:3
初中数学找规律方法初中数学找规律是数学学习的一种重要方法,它帮助学生发现数学问题中的共性和规律,从而提高问题解决能力和创新思维能力。
在初中数学中,找规律的方法十分灵活多样,有多种途径可以应用。
下面将介绍一些常用的初中数学找规律方法。
一、观察法观察法是找规律的基本方法,通过观察题目中给出的数列、图形、关系式等,寻找其中的共性和变化规律。
观察法的核心是要“看得出来”,通过观察发现数列中的数字之间的关系、图形之间的特征以及等式左右两边的关系等。
例如,观察下面的数列:3,6,9,12,15,...通过观察可以发现,这个数列中的每一个数字都是前一个数字加上3得到的。
因此可以得出这个数列的通项公式为An=3n,其中An表示第n个数。
二、列举法列举法是找规律的一种常见方法,它通过列举一些具体的数来整理和总结问题中的规律。
通过列举不同情况下的数值,可以发现问题中不变的部分和变化的部分,从而找到问题的解决思路。
例如,要找出一个数,它的各位数相加等于5,并且能被6整除。
我们可以列举出符合条件的数:5、14、23、32等等。
通过这些列举的数,我们可以发现它们的个位数循环为5、1、7、3,因此可以得出结论:符合条件的数的个位数循环出现5、1、7、3三、归纳法归纳法是将已知的特例或者部分情况往大处归纳,找出其中的共性和规律,从而推广到更一般的情况。
通过归纳法,我们可以将具体的问题抽象出一般的结论。
例如,我们要找出一共有多少个球队参加三场比赛,每场比赛两队相比,每个球队参加且只参加一场比赛。
我们可以先从小规模情况开始研究,当球队个数为2时,只有一支球队,当球队个数为3时,只有两支球队,当球队个数为4时,只有3支球队。
通过这些列举的特殊情况,我们可以发现球队个数n和比赛场次T的关系为T=n-1、因此,我们可以得出结论,n个球队一共有n-1场比赛。
四、递推法递推法是通过已知的一些数据,推导出下一个数据的方法。
当问题中给出了一些起始的数值,我们可以通过对这些数值进行观察和分析,并找出它们之间的递推关系,从而得到下一个数据的值。
找规律万能公式
第一个是等差数列,差为4,所以f(n)=5+4(n-1)=4n+1。
第二个也是等差数列,差为-5,所以f(n)=2-5(n-1)=7-5n。
万能公式不大可能,最简单办法是在坐标系里画出相应点,然后看点
的大致分布,然后选择相应函数,最后根据数值求出具体函数;比如这两
个题目,点分布基本为直线,对应的函数就是一次函数,也就是等比数列,可以按y=ax+b进行求解。
找规律填空的意义
实际上在于加强对于一般性的数列规律的熟悉,虽然它有很多解,但
主要是培养你寻找数列一般规律和猜测数列通项的能力(即运用不完全归
纳法的能力)。
以便于在碰到一些不好通过一般方法求通项的数列时,能够通过前几
项快速准确地猜测到这个数列的通项公式,然后再用数学归纳法或反证法
或其它方法加以证明,绕过正面的大山,快速地得到其通项公式。
所以找
规律填空还是有助于我们增强解一些有难度又有特点的数列的。
初中数学数列的找规律:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b 为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,…?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?例2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)例3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差下面是常用的一些求和公式:。
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+n2-1=n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3,4,5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,…?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×15^2-3^2=8×27^2-5^2=8×3……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,,144,196,… (第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律(2)第二、三组分别跟第一组有什么关系(3)取每组的第7个数,求这三个数的和2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。
初中数学规律类公式初中数学中,有一些重要的规律和公式,以下是一些常见的例子:1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 乘法交换律:a × b = b × a4. 乘法结合律:(a × b) × c = a × (b × c)5. 乘法对加法的分配律:a × (b + c) = a × b + a × c6. 幂的运算性质:a^m × a^n = a^(m+n),(a^m)^n = a^(mn),(ab)^n = a^n × b^n7. 正弦、余弦、正切定理:sin(A + B) = sinAcosB + cosAsinB,cos(A +B) = cosAcosB - sinAsinB,tan(A + B) = (tanA + tanB) / (1 - tanA × tanB)8. 勾股定理:直角三角形两直角边的平方和等于斜边的平方,即a^2 +b^2 = c^29. 平方差公式:(a - b)^2 = a^2 - 2ab + b^210. 完全平方公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^211. 立方和、立方差公式:a^3 ± b^3 = (a ± b)(a^2 - ab + b^2)12. 分数加法交换律和结合律:同分母分数相加时,分母不变,分子相加;异分母分数相加时,先通分再相加。
13. 平行线的性质:两直线平行时,同位角相等、内错角相等、同旁内角互补。
14. 角的平分线性质:角的平分线上的点到角的两边的距离相等。
15. 余弦定理:cosA = (b^2 + c^2 - a^2) / (2bc),cosB = (a^2 + c^2 - b^2) / (2ac),cosC = (a^2 + b^2 - c^2) / (2ab)以上是一些初中数学中常见的规律和公式,掌握这些公式和规律对于解决数学问题非常重要。
初中数学各种规律公式初中数学中有许多规律和公式,它们是数学知识的基础,也是我们解题的重要工具。
下面就让我们一起来探索一下其中的一些规律和公式吧!1.等差数列的通项公式:等差数列是指数列中相邻两项之间的差值恒定的一种数列。
它的通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
这个公式能够帮助我们快速计算等差数列中任意一项的值。
2.等差数列的前n项和公式:等差数列的前n项和公式为:Sn = (a1 + an)n/2,其中Sn表示前n项和。
这个公式可以帮助我们快速计算等差数列前n项的和。
3.等比数列的通项公式:等比数列是指数列中相邻两项之间的比值恒定的一种数列。
它的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
这个公式能够帮助我们快速计算等比数列中任意一项的值。
4.等比数列的前n项和公式:等比数列的前n项和公式为:Sn = a1 * (1 - r^n)/(1 - r),其中Sn表示前n项和。
这个公式可以帮助我们快速计算等比数列前n项的和。
5.平方差公式:平方差公式是用来计算两个数的平方差的一种公式。
它的表达式为:(a-b)(a+b) = a^2 - b^2。
这个公式在解题中经常用到,特别是在因式分解和方程求解中。
6.勾股定理:勾股定理是平面几何中的重要定理,用于计算直角三角形的边长。
它的表达式为:c^2 = a^2 + b^2,其中c表示斜边的长度,a和b 表示两个直角边的长度。
勾股定理在解决直角三角形相关问题时非常有用。
7.平行四边形面积公式:平行四边形是一种特殊的四边形,它的对边平行且长度相等。
平行四边形的面积可以通过底边长乘以高得到,即S = a * h。
这个公式可以帮助我们快速计算平行四边形的面积。
8.正方形面积公式:正方形是一种特殊的四边形,它的四条边相等且相互垂直。
正方形的面积可以通过边长的平方得到,即S = a^2。
初中数学各种规律公式初中数学中有很多规律和公式,它们是数学知识的基础,也是解决问题的重要工具。
下面我将介绍一些常见的初中数学规律和公式。
一、等差数列的规律公式等差数列是指一个数列中,任意两个相邻的项之间的差值都是相等的。
等差数列的规律可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
二、等比数列的规律公式等比数列是指一个数列中,任意两个相邻的项之间的比值都是相等的。
等比数列的规律可以表示为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
三、平方差公式平方差公式是指两个数的平方之差可以表示为两个数之和乘以两个数之差。
平方差公式可以表示为:a^2 - b^2 = (a + b)(a - b),其中a和b为任意实数。
四、勾股定理勾股定理是指直角三角形中,直角边的平方和等于斜边的平方。
勾股定理可以表示为:a^2 + b^2 = c^2,其中a和b为直角边的长度,c为斜边的长度。
五、平方根的性质平方根的性质是指任意一个非负实数的平方根都是非负的。
平方根的性质可以表示为:对于任意一个非负实数a,如果b是a的平方根,则b≥0。
六、两角和差的三角函数公式两角和差的三角函数公式是指两个角的和或差的正弦、余弦、正切的关系式。
两角和差的三角函数公式可以表示为:sin(a±b) = sinacosb±cosasinb,cos(a±b) = cosacosb∓sinasinb,tan(a±b) = (tana±tanb)/(1∓tana*tanb)。
七、二次函数的顶点坐标公式二次函数的顶点坐标公式是指二次函数的顶点坐标可以通过二次函数的标准式来确定。
二次函数的顶点坐标公式可以表示为:(h, k),其中h = -b/(2a),k = f(h) = -Δ/(4a)。
八、圆的面积和周长公式圆的面积和周长公式是指圆的面积和周长可以通过圆的半径来计算。
初中数学公式定律大全哪里有数,哪里就有美,下面是初中数学公式定律大全,欢迎阅读。
1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(sss)有三边对应相等的两个三角形全等26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的*30等腰三角形的*质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的* 42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形*质定理1平行四边形的对角相等53平行四边形*质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形*质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形*质定理1矩形的四个角都是直角61矩形*质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形*质定理1菱形的四条边都相等65菱形*质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形*质定理1正方形的四个角都是直角,四条边都相等70正方形*质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形*质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2s=l×h83(1)比例的基本*质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比*质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比*质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(asa)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(sas)94判定定理3三边对应成比例,两三角形相似(sss)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96*质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97*质定理2相似三角形周长的比等于相似比98*质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的*102圆的内部可以看作是圆心的距离小于半径的点的*103圆的外部可以看作是圆心的距离大于半径的点的*104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆.110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线l和⊙o相交d<r②直线l和⊙o相切d=r③直线l和⊙o相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的*质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>r+r②两圆外切d=r+r③两圆相交r-r<d<r+r(r>r)④两圆内切d=r-r(r>r)⑤两圆内含d<r-r(r>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式:l=n兀r/180145扇形面积公式:s扇形=n兀r^2/360=lr/2146内公切线长=d-(r-r)外公切线长=d-(r+r)。
数字找规律方法第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,()A.7B.8C.11D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50A.35B.33C.37D.36[解析] 相邻两位数之差分别为3, 5, 7, 9, 是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
初中所有运算规律或公式一、数正数:正数大于0负数:负数小于00既不是正数,也不是负数;正数大于负数整数包括:正整数,0,负整数分数包括:正分数,负分数有理数包括:整数,分数/有限小数,无限循环小数数轴:在直线上取一点表示0(原点),选取单位长度,规定直线上向右的方向为正方向任何一个有理数(实数)都可以用数轴上的一个点表示,点和数是一一对应的两个数只有符号不同,其中一个数为另一个的相反数;两个互为相反数0的相反数就是0在数轴上,表示互为相反数的两个点,位于原点两侧,且与原点距离相等数轴上的两个点表示的数,右边的总比左边的大绝对值:数轴上,一个数所对应的点与原点的距离正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0两个负数比较大小,绝对值大的反而小有理数加法法则:同号相加,不变符号,绝对值相加异号相加,绝对值相等得0;不等,符合和绝对值大的相同,绝对值相减一个数加0,仍是这个数加法交换律:A+B=B+A加法结合律:(A+B)+C=A + (B+C)有理数减法法则:减去一个数,等于加上这个数的相反数有理数乘法法则:两数相乘,同号得正,异号的负,绝对值相乘;任何数与0相乘,积为0 乘积为1的两个有理数互为倒数;0没有倒数乘法交换律:AB=BA乘法结合律:(AB)C=A (BC)乘法分配律:A (B+C) =AB+AC有理数除法法则:两个有理数相除,同号得正,异号的负,绝对值相除0除以任何非0的数都得0;0不能做除数乘方:求n个相同因数a的积的运算;结果叫幂;a是底数;n是指数;an读作a的n次幂有理数混和运算法则:先算乘方,再乘除,后加减;括号里的先算无理数:无限不循环小数,有正负之分。
算数平方根:一个正数x的平方等于a,即x2=a,则x是a的算数平方根,读作“根号a”0的算数平方根是0平方根:一个数x的平方根等于a,即x2=a,则x是a的平方根(又叫:二次方根)一个正数有两个平方根,且互为相反数;0只有一个,是它本身;负数没有平方根开平方:求一个数的平方根的运算;a叫做被开方数立方根:一个数x的立方等于a,即x3=a,则x是a的立方根(又叫:三次方根)每个数只有一个立方根,正数的是正数;0的是0;负数的是负数开立方:求一个数的立方根的运算;a叫做被开方数实数:有理数和无理数的统称,包括有理数,无理数。
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b. 例:4、10、16、22、28……,求第n位数. 分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n- 2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法. 基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数. 举例说明:2、5、10、17……,求第n位数. 分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1 所以,第n位数是:2+ n2-1= n2+1 此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了. (三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8. (三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘. 例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是. 解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1. (二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关. 例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1 B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n (四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来. 例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、 5 分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1 (五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来. 例:4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方. (六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见. (七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律? (2)第二、三组分别跟第一组有什么关系? (3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。
预习掌握知识点1.数列:按一定的次序排列的一列数叫数列。
2.项:数列中的每一个数都叫做这个数列的项。
其中第1项也叫做首项3.项数:数列的各项所在的位置序号叫做项数。
4.数列的表示:(1)一般形式:a 1,a 2,…a n 中a n 是数列的第n 项。
2)简单表示:}{an5.通项公式:若数列{}n a 的第n 项a n 与它的项数n 之间的关系可以用一个公式表示,则这个公式叫做数列的通项公式。
简记为an=f(x)。
说明:(1)通项公式的本质:反映了数列的项与项数之间的对应关系(函数关系)。
(2)依次用1,2,3,...代替公式中的n ,就可以求出这个数列的各项。
6.用函数的观点认识数列: 项数 1 2 3 4 (64)项 1 2 22 23 (264)实质:数列是一个定义域为正整数集N *(或有限子集}{n ....3,2,1)的函数当自变量从小到大依次取值时对应的一列函数值。
即f(1)、 f(2)、 f(3)、 f(4)…,f(n)7.数列的图像表示:画出数列(1)12-=n n a (n *∈N )(2)n a n =(n *∈N )的图像,并说明它们的图像是由什么组成的。
说明:数列的图像是一串孤立的点。
一、等差数列等差数列是高中的知识,初中学生如果知道等差数列的第n 项公式,将能解决一系列问题,举一个例子来说明数列的知识,1、3、5、7、···就是一个等差数列,它任意相邻的两个数之差都是2,我们称这个2为公差,用d 来表示,数列的第1个数用a 1来表示,第2个数用a 2来表示,···,第n 个数用a n 来表示,则a n =a 1+(n -1)d 。
例1、(用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案。
(1)第4个图案中有白色..地面砖______块; (2)第n 个图案中有白色..地面砖______块。
初一数学规律题公式大全
初一数学规律题公式包括但不限于:
1.过两点有且只有一条直线。
2.两点之间线段最短。
3.同角或等角的补角相等。
4.同角或等角的余角相等。
5.过-点有且只有一条直线和已知直线垂直。
6.直线外-点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
8.如果两条直线都和第3条直线平行,这两条直线也互相平行。
9.同位角相等,两直线平行。
10.内错角相等,两直线平行。
11.两直线平行,同位角相等。
12.两直线平行,内错角相等。
13.两直线平行,同旁内角互补。
14.三角形两边的和大于第三边。
15.三角形两边的差小于第三边。
16.三角形内角和定理:三角形三个内角的和等于180°。
17.直角三角形的两个锐角互余。
18.三角形的一一个外角等于和它不相邻的两个内角的和。
19.三角形的一个外角大于任何一个和它不相邻的内角。
20.全等三角形的对应边、对应角相等。
以上信息仅供参考,建议查阅数学书籍或咨询数学老师获取更多信息。
初中数学找规律常见公式找规律和常见公式是初中数学的重要内容之一,掌握了这些规律和公式可以帮助我们更快地解题,提高解题效率。
下面是一些常见的找规律和公式,供你参考:一、四则运算中的规律1.加法规律:a+b=b+a(交换律)(a+b)+c=a+(b+c)(结合律)a+0=a(零元素)2.乘法规律:a×b=b×a(交换律)(a×b)×c=a×(b×c)(结合律)a×1=a(单位元素)a×0=0(零元素)a×(b+c)=a×b+a×c(分配律)3.减法规律:a-b≠b-a(减法没有交换律)4.除法规律:a÷b≠b÷a(除法没有交换律)a÷0是没有意义的(除数不能为0)二、尺规作图中的规律1.垂直线和水平线的交点为直角。
2.两直线相交,相对角相等,即对顶角互等。
3.两直线平行,对应角相等。
4.两直线平行,交叉线与其中一条直线所成的内角和为180°。
三、等差数列和等比数列中的公式1.等差数列(通项公式):an = a1 + (n - 1) × d其中,an 表示第n项,a1 表示首项,d 表示公差。
2.等差数列(前n项和公式):Sn = (a1 + an) × n ÷ 2其中,Sn表示前n项和。
3.等比数列(通项公式):an = a1 × q^(n - 1)其中,an 表示第n项,a1 表示首项,q 表示公比。
4.等比数列(前n项和公式):Sn=a1×(q^n-1)÷(q-1)其中,Sn表示前n项和。
四、平面图形中的规律和公式1.正方形的对角线相等。
2.矩形的对角线相等。
3.平行四边形的对角线互相平分。
4.直角三角形中,斜边的平方等于两直角边的平方和。
5.等腰三角形中,底边上的高相等。
6.面积公式:长方形的面积:S=长×宽三角形的面积:S=底×高÷2平行四边形的面积:S=底×高梯形的面积:S=(上底+下底)×高÷2圆的面积:S=π×r^2其中,S表示面积,π表示圆周率,r表示半径。
初中数理化公式定律大全一、数学公式定律1.二次方程的求解公式(欧拉公式):对于二次方程ax^2 + bx + c = 0,其求解公式为:x = (-b ±√(b^2-4ac))/(2a)2.勾股定理:直角三角形中,a^2+b^2=c^2,其中a和b为直角边的长度,c为斜边的长度。
3.三角函数的基本关系:对于任意角θ(θ为弧度制),sin^2θ + cos^2θ = 1,tanθ = sinθ/cosθ。
4.等差数列求和公式:对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数,其和Sn的求解公式为:Sn = (n/2)(a1 + an)5.等比数列求和公式:对于等比数列an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数,其和Sn的求解公式为:Sn=a1*(r^n-1)/(r-1)6.梯形面积公式:对于梯形的上底a,下底b和高h,其面积S的求解公式为:S=(a+b)*h/27.三角形面积公式:对于三角形的底边长b和高h,其面积S的求解公式为:S=b*h/28.圆的周长和面积公式:对于圆的半径r,其周长C和面积A的求解公式分别为:C=2πr,A=πr^29.定积分的定义:对于函数f(x)在区间[a,b]上的定积分的定义为:∫[a, b] f(x)dx = lim(n→∞) Σ(k=1→n) f(xk)Δx,其中Δx = (b-a)/n,xk为[a+(k-1)Δx, a+kΔx]上的任意一点。
10.泰勒级数展开:对于函数f(x)在x=a处的泰勒级数展开为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...二、物理公式定律1.牛顿第一定律(惯性定律):任何物体都保持静止或匀速直线运动,直到外力强迫其改变状态。
2.牛顿第二定律(运动定律):物体所受合力等于质量与加速度的乘积,即 F = ma,其中F为合力,m为物体质量,a为加速度。
数字找规律方法第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n 为自然数)。
[例1]1,3,5,7,9,()A.7B.8C.11D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50A.35B.33C.37D.36[解析] 相邻两位数之差分别为3, 5, 7, 9, 是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,()A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
初中数学定理公式大全1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1关于某条直线对称的两个图形是全等形43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1平行四边形的对角相等53、平行四边形性质定理2平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3平行四边形的对角线互相平分56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3对角线互相平分的四边形是平行四边形59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形60、矩形性质定理1矩形的四个角都是直角61、矩形性质定理2矩形的对角线相等62、矩形判定定理1有三个角是直角的四边形是矩形63、矩形判定定理2对角线相等的平行四边形是矩形64、菱形性质定理1菱形的四条边都相等65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1四边都相等的四边形是菱形68、菱形判定定理2对角线互相垂直的平行四边形是菱形69、正方形性质定理1正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1关于中心对称的两个图形是全等的72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2相似三角形周长的比等于相似比98、性质定理3相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
初中数学找规律常见公式 Written by Peter at 2021 in January
一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:
1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,,144,196,… (第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律(2)第二、三组分别跟第一组有什么关系(3)取每组的第7个数,求这三个数的和2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的4、 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。