北师大版八年级数学上册 第二章 实数 2.6 实数的运算 讲义
- 格式:doc
- 大小:297.00 KB
- 文档页数:5
《实数》讲义一、实数的概念实数,这个在数学世界中极为基础且重要的概念,是我们理解数量关系和解决数学问题的关键。
简单来说,实数就是包括有理数和无理数的数集。
有理数,我们都很熟悉,像整数(正整数、零、负整数)和分数(正分数、负分数)都属于有理数。
而无理数呢,则是那些无限不循环小数,比如大家熟知的圆周率π,还有根号 2 等等。
实数可以直观地理解为在数轴上能找到对应点的数。
也就是说,数轴上的每一个点都代表着一个实数,反之,每一个实数也都能在数轴上找到对应的点。
二、有理数有理数是实数的重要组成部分。
整数,像-3、0、5 这样的数,它们没有小数部分,清晰明了。
分数呢,比如 1/2、3/4 ,可以表示为两个整数的比值。
有理数具有一些很重要的性质。
比如,两个有理数相加、相减、相乘或相除(除数不为 0),结果仍然是有理数。
而且,有理数是可以用有限小数或无限循环小数来表示的。
我们在日常生活中,很多常见的数量关系都可以用有理数来描述。
比如购物时的价格、物品的数量等等。
三、无理数无理数虽然不像有理数那样“规矩”,但在数学中同样不可或缺。
像根号 2 ,它的值约为 141421356……,这个小数无限且不循环。
圆周率π,约为31415926……,也是一个无限不循环小数。
无理数的发现,让人们对数学的认识更加深入和丰富。
虽然它们的数值看起来没有规律,但通过数学方法和计算,我们可以对它们进行近似和研究。
四、实数的运算实数的运算包括加法、减法、乘法、除法和乘方等。
加法和减法:实数的加法和减法遵循相同的规则,即将对应位上的数字相加或相减,并考虑进位和借位。
乘法:两个实数相乘,先将它们按照整数乘法的规则相乘,然后确定积的符号(同号得正,异号得负),最后根据小数位数确定积的小数点位置。
除法:将除数变为倒数,然后与被除数相乘。
乘方:一个实数的 n 次幂,就是将这个实数乘以自身 n 次。
在进行实数运算时,要特别注意运算顺序,先算乘方、开方,再算乘除,最后算加减。
第二章实数2.2平方根1.平方根(1)平方根的概念:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).32=9,所以3是9的平方根.(-3)2=9,所以-3也是9的平方根,所以9的平方根是3和-3.(2)平方根的表示方法:正数a 的平方根可记作“±a ”,读作“正、负根号a ”.“ ”读作“根号”,“a ”是被开方数.例如:2的平方根可表示为±2.(3)平方根的性质:若x 2=a ,则有(-x )2=a ,即-x 也是a 的平方根,因此正数a 的平方根有两个,它们互为相反数;只有02=0,故0的平方根为0;由于同号的两个数相乘得正,因此任何数的平方都不会是负数,故负数没有平方根.综合上述:一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.如:4的平方根有两个:2和-2,-4没有平方根.一个数a 的平方根可以表示成± a.(1)不是任何数都有平方根,负数可没有平方根,(2)式子√a 只有当a ≥0时才有意义,因为负数没有平方根.【例1】 求下列各数的平方根:(1)81;(2)(-7)2;(3)11549.【例2】 下列各数有平方根吗?如果有,求出它的平方根;若没有,请说明理由.(1)94;(2)0;(3)-9;(4)|-0.81|;(5)-22.【例3】如果一个正数的两个平方根为a+1和2a-7,请你求出这个正数 .2.算术平方根(1)算术平方根的概念:如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根.(2)算术平方根的表示方法:正数a 的算术平方根记作“a ”,读作“根号a ”.(3)算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0;负数没有平方根,当然也没有算术平方根. 算术平方根的性质(1)只有正数和0(即非负数)才有算术平方根,且算术平方根也是非负数;(2)一个正数a 的正的平方根就是它的算术平方根.如果知道一个数的算术平方根,就可以写出它的负的平方根.【例4】 求下列各数的算术平方根:(1)0.09;(2)121169.如何确定一个数的算术平方根求一个数的算术平方根与求一个数的平方根类似,先找到一个平方等于所求数的数,再求算术平方根,应特别注意数的符号.【例5】先填写下表,通过观察后再回答问题.(1)被开方数a的小数点位置移动和它的算术平方根√a的小数点位置移动有无规律?若有规律,请写出它的移动规律.3.开平方求一个数a(a≥0)的平方根的运算,叫做开平方,其中a叫做被开方数.开平方运算是已知指数和幂求底数.(1)因为平方和开平方互逆,故可通过平方来寻找一个数的平方根,也可以利用平方验算所求平方根是否正确.(2)开平方与平方互为逆运算,正数、负数、0可以进行“平方”运算,且“平方”的结果只有一个;但“开平方”只有正数和0才可以,负数不能开平方,且正数开平方时有两个结果.(3)对于生活和生产中的已知面积求长度的问题,一般可用开平方加以解决.【例6】求下列各式中的.(1) x2−81=0 (2) (x−1)2=25【例7】小明家计划用80块正方形的地板砖铺设面积是20 m2的客厅,试问小明家需要购买边长是多少的地板砖?4.a 2与(a )2的关系a 表示a 的算术平方根,依据算术平方根的定义,(a )2=a (a ≥0).a 2表示a 2的算术平方根,依据算术平方根的定义,若a ≥0,则a 2的算术平方根为a ;若a <0,则a 2的算术平方根为-a ,即a 2=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0. (1)区别:①意义不同:(a )2表示非负数a 的算术平方根的平方;a 2表示实数a 的平方的算术平方根.②取值范围不同:(a )2中的a 为非负数,即a ≥0;a 2中的a 为任意数.③运算顺序不同:(a )2是先求a 的算术平方根,再求它的算术平方根的平方;a 2是先求a 的平方,再求平方后的算术平方根.④写法不同.在(a )2中,幂指数2在根号的外面;而在a 2中,幂指数2在根号的里面.⑤运算结果不同:(a )2=a ;a 2=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.(2)联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即(a )2≥0,a 2≥0.③仅当a ≥0时,有(a )2=a 2. 巧用(a )2=a将(a )2=a 反过来就是a =(a )2,利用此式可使某些运算更为简便.【例8】 化简:(6)2=__________;(-7)2=__________.5.平方根与算术平方根的关系(1)区别: ①概念不同 平方根的概念:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根. 算术平方根的概念:如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.②表示方法不同平方根:正数a 的平方根用符号±a 表示.算术平方根:正数a 的算术平方根用符号a 表示,正数a 的负的平方根-a 可以看成是正数a 的算术平方根的相反数.③读法不同a 读作“根号a ”;±a 读作“正、负根号a ”. ④结果和个数不同一个正数的算术平方根只有一个且一定为正数,而一个正数的平方根有两个,它们一正一负且互为相反数.(2)联系:①平方根中包含了算术平方根,就是说算术平方根是平方根中的一个,即一个正数的平方根有一正一负两个,其中正的那一个就是它的算术平方根,这样要求一个正数a 的平方根,只要先求出这个正数的算术平方根a ,就可以直接写出这个正数的平方根±a 了.②在平方根±a 和算术平方根a 中,被开方数都是非负数,即a ≥0.严格地讲,正数和0既有平方根,又有算术平方根,负数既没有平方根,又没有算术平方根.③0的平方根和算术平方根都是0.【例9】 (1)求(-3)2的平方根;(2)计算144;(3)求(π-3.142)2的算术平方根;(4)求16的平方根.【例10】求下列各式的值:(1)±81;(2)-16;(3)925;(4)(-4)2.与平方根相关的三种符号弄清与平方根有关的三种符号±a,a,-a的意义是解决这类问题的关键.±a表示非负数a的平方根,a表示非负数a的算术平方根,-a表示非负数a的负平方根.注意a ≠±a.在具体解题时,“”的前面是什么符号,其计算结果就是什么符号,既不能漏掉,也不能多添.6.巧用算术平方根的两个“非负性”众所周知,算术平方根a具有双重非负性:(1)被开方数具有非负性,即a≥0.(2)a本身具有非负性,即a≥0.这两个非负性形象、全面地反映了算术平方根的本质属性.在解决与此相关的问题时,若能仔细观察、认真地分析题目中的已知条件,并挖掘出题目中隐含的这两个非负性,就可避免用常规方法造成的繁杂运算或误解,从而收到事半功倍的效果.由于初中阶段学习的非负数有三类,即一个数的绝对值,一个数的平方(偶次方)和非负数的算术平方根.关于算术平方根和平方数的非负性相关的求值问题,一般情况下都是它们的和等于0的形式.此类问题可以分成以下几种形式:(1)算术平方根、平方数、绝对值三种中的任意两种组成一题〔||+()2=0,||+=0,()2+=0〕,甚至同一道题目中同时出现这三个内容〔||+()2+=0〕.(2)题目中没有直接给出平方数,而是需要先利用完全平方公式把题目中的某些内容进行变形,然后再利用非负数的性质进行计算.【例11】若-x2+y=6,则x=__________,y=__________.【例12】若|m-1|+n-5=0,则m=__________,n=__________.注:若几个非负数的和为0,则每个数都为0.【例13】如果y=x2-4+4-x2x+2+2 013成立,求x2+y-3的值.针对训练1.若√a+2=4,则(a+2)2的平方根是( )A. 16B.±16C. 2D. ±22.√(−3)2的平方根是( )A. √3B.±√3C. 3D. ±33.已知一个数的两个平方根分别是a+3与2a-15,这个数的值为()A. 4B.±7C. -7D. 494.当x=-9时,√x2的值为()A. 9B. -9C. 3D. -35.一个数的算术平方根为a,比这个数大2 的数是()A. a+2B. √a+2C. √a−2D. a2+2√2x−529.√4的算术平方根是______=_______10.√94=__________.11.已知√x−3和|x−2y−5|互为相反数,且x≠0,则yx12.若y=√x−3+√3−x+2,则x y的算术平方根是__________.13.算一算小文房间的面积为10.8m2,房间地面恰巧由120 块相同的正方形地砖铺成,每块地砖的边长为______.14.探究1:√0.0625≈0.25,√6.25≈2.5,√625=______探究2:√0.625≈0.791,√62.5≈7.91,√6250=___根据上述规律计算:√6250000≈________,√625000≈___________15.求下列各式中的数(1) 4x2=25; (2) (x+1)2=25.3616.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.17.已知(x−1)2+|y+2|+√z−3=0,求x+y+z的平方根.18.7-√10的整数部分为a,小数部分为b,求a+b的值.。
第二章 实数——认识无理数一、 知识要点1.无理数定义: 无限不循环 小数。
如:圆周率有理数:任何有限小数或无限循环小数,若可以用有限小数或无限循环小数表示的也是有理数。
2.在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o 等。
二、课堂大练兵1.下列说法正确的是( )A .()0是无理数B .是有理数C .是无理数D .是有理数2.下列各数中,是无理数的是( )A .0B .﹣2C .D .3.下列实数中,是无理数的为( )A .0B .C .3.14D .4.下列实数中是无理数的是( )A .B .C .D .3.145.在3.14,,π和这四个实数中,无理数是()A.3.14和B.π和C.和D.π和第二节平方根一、知识要点认识平方根、算术平方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a”,读作根号a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
”,读作“正、负根号a”。
表示方法:正数a的平方根记做“a。
第二章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
第二章:实数讲义【无理数】1. 定义:2. 常见无理数的几种类型:(1) (2) (3) (4) (5)3.有理数与无理数的区别:(1) (2)例:(1)下列各数:①、②……、③75-、④π、⑤252.±、⑥32-、⑦……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。
(填序号)(2)有五个数:…,…,-π,4,32其中无理数有 ( )个 【算术平方根】:1. 定义:2.算术平方根具有双重非负性:3.算术平方根与平方根的关系:例:(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=;(C )、81的平方根是3±; (D )、0没有平方根;(2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=- D 、235=-(3)2)3(-的算术平方根是 。
(4)若x x -+有意义,则=+1x ___________。
(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。
(6)(提高题)如果x 、y 分别是4- 3 的整数部分和小数部分。
求x - y 的值. 平方根:1.定义:2.性质:(1) (2) (3)例(1)若x 的平方根是±2,则x= ;的平方根是 (2)当x 时,x 23-有意义。
(3)一个正数的平方根分别是m 和m-4,则m 的值是多少这个正数是多少3. 的性质与22)0()(a a a ≥:(1) (2)例:1.求下列各式的值(1)27 (2)27-)( (3)249-)(2.已知1)12-=-a a (,那么a 的取值范围是 。
3.已知2<x <3,化简=-+|3|)-22x x ( 。
【立方根】 1.定义:2.性质:例:(1)64的立方根是(2)若9.28,89.233==ab a ,则b 等于(3)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。
《实数》讲义一、实数的定义实数,是数学中最基本的概念之一。
简单来说,实数就是有理数和无理数的统称。
有理数,包括整数和分数。
整数如-3、0、5 等,分数如 1/2、-3/4 等。
这些数都可以表示为两个整数的比值。
而无理数,则是无限不循环小数,比如圆周率π约等于 31415926,以及根号 2 约等于 14142135实数的概念让我们能够描述和处理各种数量关系,无论是在日常生活中的测量、计算,还是在科学研究中的复杂运算,实数都扮演着至关重要的角色。
二、实数的性质1、有序性实数具有有序性,即任意两个实数 a 和 b,要么 a < b,要么 a = b,要么 a > b。
例如,3 < 5,-25 >-3 等。
这种有序性让我们能够比较数的大小,从而进行排序和选择。
2、稠密性实数是稠密的,这意味着在任意两个不相等的实数之间,总是存在着无穷多个其他实数。
比如在 1 和 2 之间,有 11、12、125 等等无数个实数。
3、四则运算封闭性实数对四则运算(加、减、乘、除,除数不为 0)是封闭的。
也就是说,两个实数进行四则运算的结果仍然是实数。
例如,3 + 5 = 8,6 25 = 35,4 × 2 = 8,8 ÷ 2 = 4 等。
三、实数的表示方法1、小数表示实数可以用小数来表示。
有限小数,如 025、314 等,能准确地表示为有理数。
无限循环小数,如 0333(1/3),也是有理数。
无限不循环小数,如π、根号 2 等,则是无理数。
2、数轴表示我们可以用数轴来直观地表示实数。
数轴上的每一个点都对应着一个唯一的实数,反之,每一个实数也都能在数轴上找到对应的点。
例如,0 对应的点在数轴的正中间,正数在 0 的右边,负数在 0 的左边。
四、实数的运算1、加法实数的加法遵循交换律和结合律。
交换律:a + b = b + a例如,2 + 3 = 3 + 2 = 5结合律:(a + b) + c = a +(b + c)例如,(1 + 2) + 3 = 1 +(2 + 3) = 62、减法减法是加法的逆运算。
《实数》讲义一、实数的定义实数,是数学中一个非常基础且重要的概念。
简单来说,实数包括了有理数和无理数。
有理数,就是可以表示为两个整数之比的数,例如整数、有限小数和无限循环小数。
像 2、-3、05(即 1/2)、0333(即 1/3)等都是有理数。
而无理数,则是无限不循环小数,不能写成两个整数之比的形式。
比如圆周率π(约为 314159)、根号 2(约为 1414)等。
实数可以直观地看作数轴上的点,每一个实数都对应数轴上的一个唯一的点,反过来,数轴上的每一个点也都对应着一个唯一的实数。
二、实数的分类实数的分类方式有多种,常见的分类方法如下:1、按符号分类(1)正实数:大于 0 的实数,如 2、35 等。
(2)负实数:小于 0 的实数,如-2、-35 等。
(3)零:既不是正数也不是负数的实数。
2、按性质分类(1)有理数:包括整数(正整数、0、负整数)和分数(有限小数、无限循环小数)。
(2)无理数:无限不循环小数。
三、实数的运算1、加法和减法实数的加法和减法运算遵循以下规则:(1)同号两数相加,取相同的符号,并把绝对值相加。
例如,3 + 5 = 8,-3 +(-5) =-8 。
(2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如,3 +(-5) =-2,-3 + 5 = 2 。
(3)减去一个数,等于加上这个数的相反数。
例如,5 3 = 5 +(-3) = 2 。
2、乘法和除法(1)乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
例如,3 × 5 = 15,-3 ×(-5) = 15,3 ×(-5) =-15 。
(2)除法法则:除以一个数等于乘以这个数的倒数。
例如,6 ÷ 3 = 6 × 1/3 = 2 。
3、乘方和开方(1)乘方:求 n 个相同因数乘积的运算,叫做乘方。
例如,2³= 2 × 2 × 2 = 8 。
2.6 实数(2)说课稿-2022-2023学年北师大版数学八年级上册一、教学目标1.理解和掌握实数的概念与性质。
2.掌握实数的分类方法。
3.理解实数的大小比较,并灵活运用于实际问题中。
二、教学重点1.实数的分类方法。
2.实数的大小比较。
三、教学准备1.教材《数学八年级上册》2.讲义、黑板、彩色粉笔四、教学过程1. 导入(5分钟)通过引入一个实际生活中的问题,如“请比较你和你父母的身高,你的身高属于什么类型的实数?”来激发学生的思考和探究实数的概念。
2. 概念讲解(10分钟)介绍实数的概念和性质,包括有理数和无理数两部分。
有理数是可以用整数除以非零整数得到的数,包括正有理数、负有理数和零。
而无理数是不能表示为有理数的数字。
3. 实数的分类方法(20分钟)解释实数的分类方法,并对每种实数类型进行具体的解释和举例说明。
(1)正有理数:介于0和正整数之间的数,如1/2、3/4等。
(2)负有理数:介于0和负整数之间的数,如-1/2、-3/4等。
(3)整数:包括正整数、负整数和零。
(4)无理数:不能写成有限小数或无限循环小数的数,如根号2、pi等。
将每种实数类型的例子写在黑板上,并让学生根据定义来判断实数的类型。
4. 实数的大小比较(25分钟)讲解实数的大小比较方法,并配合具体例子进行讲解和讨论。
(1)同号比大小:两个正数比较大小,大小关系与它们的数值大小一致,两个负数比较大小,大小关系与它们的绝对值大小相反。
(2)异号比大小:正数大于负数,负数小于正数。
让学生通过练习题来巩固掌握实数的大小比较方法。
5. 小结(5分钟)对本堂课的内容进行小结,并与学生进行互动,检查他们对实数的认识和理解程度。
五、课堂练习1.判断以下数属于哪种实数类型:2/5、-3、sqrt(3)、-2.5。
2.比较下列实数的大小关系:-0.3, sqrt(2), -3/4, 0.2。
3.请举例说明两个正整数之间的数和两个负整数之间的数。
实数的运算讲义
【知识要点精讲】
1、无理数—无限不循环小数
常见无理数有三类:(1
(2)π;
(3)无限不循环小数,如: 3.010010001(两个1之间依次多个0) 2、实数---有理数、无理数统称为实数。
实数与数轴上的点一一对应。
实数⎪⎪⎪⎪
⎩
⎪⎪
⎪⎪⎨⎧⎩⎨⎧⎪⎪
⎩⎪⎪⎨⎧⎪⎩⎪
⎨⎧负无理数正无理数无理数循环小数;分数:有限小数或无限负整数正整数整数有理数0
若把实数按正负分可分为:
⎪⎪⎪⎪⎪
⎩
⎪
⎪⎪
⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨
⎧负无理数负分数
负整数负有理数负实数正无理数正分数
正整数
正有理数正实数实数0
3、二次根式的分母有理化:把一个代数式的分母中的根号化去,叫分母有理化。
(1
)最简二次根式
2(0)a a =≥ (2
)最简二次根式
【知识要点及典型例题解析】
【知识要点1】--无理数的概念与判别 【例1】在数4.0,064.0,49,010010001.0,,7
22
,
1427.03--- π,33中,无理数有
;分数有 ;
点拨:带根号的数不一定是无理数、无理数也不一定带根号;判断数要看结果。
◆目标训练1
1、下列叙述中正确的是( )
A 、有理数和数轴上的点是一一对应的;
B 、最大的实数与最小的实数都是存在的;
C 、最小的实数是0;
D 、任意一个实数都可以用数轴上的点来表示;
2、在3
1
,1415926.3,32,09.01,
216,414.1---,38-中无理数有( )个 A 、1个 B 、2个 C 、3个 D 、4个
3、下列说法中正确的为( )
A 、带根号的数都是无理数;
B 、无理数都是无限小数;
C 、不带根号的数都是有理数;
D 、小数都是分数;
【知识要点2】----相反数、倒数、绝对值 【例2】
=-==-x x ,则若13_____;25 ;一个数的倒数是23-,这
个数是 ;
【例3】若x 1互为相反数,y 1互为倒数,则_______xy =;
【例4】概念理解辨析 1、两个无理数的和、差仍然是无理数( ) 2、两个无理数的积、商仍然是无理数( ) 3、任意有理数与无理数的和、差仍然是无理数( ) 4、一个有理数与无理数的积一定是无理数( )
【知识要点3】----分母有理化(乘积中不含根号的两个式子互为有理化因式) 如:1)12)(12(=-+,所以)12(+与)12(-互为有理化因式; 【例5】把下列各式分母有理化: ①、
121 ②、181 ③、251- ④、3
23
2-+
目标训练2
1、已知实数x 满足x x -=,则( )
A 、0>x
B 、0≥x
C 、0<x
D 、0≤x
2、21-的相反数是 ;倒数是 ;绝对值是 ;
3、绝对值大于0而又小于π的整数有 个;
4、一个负数a 的倒数等于它本身,则_______2=+a ;若一个数a 的相反数等于它 本身,则_______82125332=-++-a a a ;
5、把下列各式分母有理化:
(1(2
(3
【知识要点4】---实数的运算 【例6】计算:①、61
211÷
②、)672()2447(-∙- ③、2)3
23(-
④、)278(18⨯÷ ⑤、(济宁)计算:01
1
(1)()52
π--++
【知识要点5】---实数的大小比较
【例7】比较下列每组两个实数的大小: ①、62
5
53与 ②、5665--与 ③、2556--与
方法感悟:比较两个实数大小的方法:
(1)逐位比较法; (2)平方比较法; (3)分子有理化比较法 目标训练3
1、计算:2007
20082)
2)______________⋅=; 2、比较大小:①、15______13+-+-;②、72______33;③、7
1
___21--π;
3、计算下列各题:
(1)2
1(2013)--- (2)2)521(452
1
2
51---
+
(3(4)62)3218
25(+⋅-
【创新运用与思维拓展】
【例8】实数a 、b 在数轴上的位置如图所示,那么化简2
a b a --的结果是( )
A 、b a -2
B 、b
C 、b -
D 、b a +-2
【例9】已知:33+=y x ,求y xy y x x --++22
2的值;
【例10】已知3=xy ,求y
x
y
x y x +的值;
【例11】观察下列算式:
1121==-
32==-
= ;你能得到什么规律?
n ++++
+n
为正整数)。
家庭作业
姓名 作业等级 .
A 组----基础达标
1、若1x =,则___________x =;
2、化简或计算:
①、5032283-+ ②、3)482300()7232(2⋅-+-
③、)29216()5085(--- ④、)483
23113()31512(---
B 组---能力拓展
1、d c b a ,,,为实数,现规定一种新的运算:c a d b
ad bc =-,那么当22(1)x - 5
48=时,
_________=x ;
2、已知
a b ==22__________22a b a b -=-; 3、已知:23,23-=+=y x ,求442222+-+-x y xy x 的。