专题04 数列中的存在性与恒成立问题(解析版)
- 格式:docx
- 大小:1.55 MB
- 文档页数:26
专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
恒成立问题与存在性问题思路一:(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,则不等式a x f >)(在区间D 上恒成立a x f >⇔min )(;不等式a x f ≥)(在区间D 上恒成立a x f ≥⇔min )(;不等式a x f <)(在区间D 上恒成立a x f <⇔max )(;不等式a x f ≤)(在区间D 上恒成立a x f ≤⇔max )(;(2)若函数在D 区间上不存在最小值min )(x f 和最大值max )(x f ,且值域为),(n m 则 不等式a x f >)(或))((a x f ≥在区间D 上恒成立a m ≥⇔;不等式a x f <)(或a x f ≤)(在区间D 上恒成立a n ≤⇔。
例题1:已知函数.ln )(x x x f =(1)求函数.ln )(x x x f =的最小值;(2)若对所有的1≥x 都有1)(-≥ax x f ,求实数a 的取值范围。
答案:(1)11min )()(---==e e f x f ;(2)]1,(-∞变式:设函数)1ln(2)1()(2x x x f +-+=(1)求函数)(x f 的单调区间;(2)若当]1,1[1--∈-e e x 时,不等式m x f <)(恒成立,求实数m 的取值范围;(3)若关于x 的方程a x x x f ++=2)(在区间]2,0[上恰有两个相异实根,求实数a 的取值范围。
答案:(1)递增区间是),0(+∞;递减区间是)0,1(-(2)22->e m(3))3ln 23,2ln 22(--思路二(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,即],[)(n m x f ∈则不等式有解的问题有下列结论:不等式a x f >)(在区间D 上有解max )(x f a <⇔;不等式a x f ≥)(在区间D 上有解max )(x f a ≤⇔;不等式a x f <)(在区间D 上有解min )(x f a >⇔;不等式a x f ≤)(在区间D 上有解min )(x f a ≥⇔。
“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a ,b]上的值域为A ,g (x)在区间[c,d ]上的值域为B ,则A B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数R;某不等式的解为一切实数;某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
“恒成立问题”的解法常用方法:①函数性质法; ②主参换位法; ③分离参数法;④数形结合法。
、函数性质法 1. 一次函数型:给定一次函数f(x) ax b(a 0),若y f (x)在[m,n ]内恒有f (x) 0 ,则根据函数的图象(直线)可得上述结论等价于 ;(;))【同理,若在[m,n ]内恒有f(x) 0,A则有f(m)阴7例1.对满足 * m 略解:不等式即为 2x (x 1)p x 2 x 的取值范围。
2的所有实数 P ,求使不 (x 1)p x 2 2x 10,设 f (p) 1,则f(p)在[2,2]上恒大 于0,故有: f( 2) f(2) 0, 即 x 2 x 4x 3 0 1 或 x 3. 2.二次函数: ①.若二次函数 f(x) 2 ax bx c(a 0) 0 (或0 )在 R 上恒成立,则有 a 0 (或 a 0); 0 0②.若二次函数 f(x)ax 2 bx c(a 0) 0 (或 0 )在指定区间上恒成立,可以利用韦达定 理以及根的分布等知识求解。
例2.已知函数f x 2mx 2 24 m x 1, g x mx ,若对于任一实数 x , f (x)与g(x)的值至少有一个为正数,则实数 m 的取值范围是 A . (0 , 2) B• (0 , 8) C (2 , 8) D •(—汽 0)选Bo例3.设f (x) 2x 2ax 2,当x [ 1,)时, 都有 f (x) a 恒成立,a 的取值范围。
解:设F(x)f (x) a 2ax 2 a , (1)当 4(a 1)(a2) 0时,即2 a1时,对一切x [ 1, ),F(x) 0恒成立;(2)当4(a 1)(a 2) 0时,由图可得以下充要条件:f( 1) 0 即 a 3 03.其它函数:容易分离出参数与变量,但函数的最值却难以求出时,可考虑把主元与参数换个位置,再 结合其它知识,往往会取得出奇制胜的效果。
高三数学专题——恒成立与存在性问题高三复专题——恒成立与存在性问题知识点总结:1.___成立问题:1) 若对于D中的任意x,都有f(x)>A,则f(x)的最小值>A;2) 若对于D中的任意x,都有f(x)<A,则f(x)的最大值<A;3) 若对于D中的任意x,都有f(x)>g(x),则F(x)=f(x)-g(x)>0,因此F(x)的最小值>0;4) 若对于D中的任意x,都有f(x)<g(x),则F(x)=f(x)-g(x)<0,因此F(x)的最大值<0;5) 若对于D中的任意x1和E中的任意x2,都有f(x1)>g(x2),则f(x)的最小值>g(x)的最大值;6) 若对于D中的任意x1和E中的任意x2,都有f(x1)<g(x2),则f(x)的最大值<g(x)的最小值。
2.存在性问题:1) 若存在D中的x,使得f(x)>A,则f(x)的最大值>A;2) 若存在D中的x,使得f(x)<A,则f(x)的最小值<A;3) 若存在D中的x,使得f(x)>g(x),则F(x)=f(x)-g(x),因此F(x)的最大值>0;4) 若存在D中的x,使得f(x)<g(x),则F(x)=f(x)-g(x),因此F(x)的最小值<0;5) 若存在D中的x1和E中的x2,使得f(x1)>g(x2),则f(x)的最大值>g(x)的最小值;6) 若存在D中的x1和E中的x2,使得f(x1)<g(x2),则f(x)的最小值<g(x)的最大值。
3.相等问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)=g(x2),则{f(x)}={g(x)};4.___成立与存在性的综合性问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)>g(x2),则f(x)的最小值>g(x)的最小值;2) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)<g(x2),则f(x)的最大值<g(x)的最大值。
专题04 利用导数解决恒成立与存在性问题常见考点考点一 恒成立问题典例1.已知函数()e xf x ax b =++(e 是自然对数的底数),曲线()y f x =在点()()0,0f 处的切线为y a b =-.(1)求a ,b 的值;(2)若不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正实数m 的取值范围.【答案】(1)1a =-,1b =- (2)()0,e 1- 【解析】 【分析】(1)求导,由切线为y a b =-,可得(0)10(0)1f a f b a b=+=⎧⎨=+=-'⎩,运算即得解;(2)参变分离可得e 1x m x <-,令()e 1xg x x=-,求导分析单调性,可得()g x 的最小值为()1e 1g =-,分析即得解 (1)()e x f x ax b =++可得()e x f x a '=+,因为曲线()y f x =在点()()0,0f 处的切线为y a b =-.所以(0)10(0)1f a f b a b =+=⎧⎨=+=-'⎩,解得1a =-,1b =-.(2)由(1)知()e 1xf x x =--,∵不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴e xx mx ->在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,即e1xm x<-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立.令()e 1xg x x=-,∵()()2e 1x x g x x ='-,当()()2e 10x x g x x '-==时,解得1x =. ∴当11ex <<时,()0g x '<,()g x 为减函数,当1e x <≤时,()0g x '>,()g x 为增函数,∴()g x 的最小值为()1e 1g =-,∴e 1m <-,∴正实数m 的取值范围为()0,e 1-. 变式1-1.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.【答案】(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造 函数()h =ln 1x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l x x x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则 ()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()h =ln 1,0x x x x +-∈+∞,则(),1=10h x x+>,所以()h x 在()0+∞上单调递增,又()h 1ln1110=+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾.所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()11x t x x xx +⎛⎫'=--=- ⎪⎝⎭221110e e ,011e ex x x +∴<≤≤∴<+≤≤+,所以()0t x '<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为,()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明, 对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.变式1-2.已知函数()ln(1)xf x e a x =++.(1)当1a =-时,求函数()f x 的单调区间; (2)若()1f x ≥恒成立,求实数a 的值.【答案】(1)递减区间为(1,0)-,递增区间为(0,)+∞; (2)1-.【解析】 【分析】(1)当1a =-时,求得()11x x xe e f x x +-'=+,令()1x xg x xe e =+-,得到()0g x '>,且()00g =,即可求得函数的单调区间;(2)求得()(1)1x x e a f x x ++'=+,设()(1)xg x x e a =++,当0a ≥时,不满足题意;当0a <时,得到()g x 单调递增,设()0g x =有唯一的零点0x ,使得00(1)0xx e a ++=,结合函数单调性得到()()00min 01[(1)1]ln()ln()1f x f x a x a a a a a x ==-++-+-≥-+-+,再令()ln(),(,0)h a a a a a =-+-∈-∞,结合单调性求得()1f x ≤,即可求解. (1)解:当1a =-时,函数()ln(1)xf x e x =-+,其定义域为(1,)-+∞可得()1111x x xxe e f x e x x +-'=-=++, 令()1x x g x xe e =+-,可得()(2)0xg x e x '=+>,()g x 单调递增,又由()00g =,当(1,0)x ∈-时,()0g x '<,可得()0f x '<,()f x 单调递减; 当,()0x ∈+∞时,()0g x '>,可得()0f x '>,()f x 单调递增, 所以()f x 的递减区间为(1,0)-,递增区间为(0,)+∞. (2)解:由()ln(1)xf x e a x =++,可得()(1)11x xa x e a f x e x x ++'=+=++, 设()(1)xg x x e a =++,当0a ≥时,()0g x >,可得()0f x '>,()f x 单调递增, 当1x →-时,()f x →-∞,不满足题意;当0a <时,由()(2)0xg x x e '=+>,()g x 单调递增,设()0g x =有唯一的零点0x ,即00(1)0xx e a ++=,当0(1,)x x ∈-时,()0g x '<,可得()0f x '<,()f x 单调递减; 当0(,)x x ∈+∞时,()0g x '>,可得()0f x '<,()f x 单调递增,所以()()000000min ln(1)lnln()x xx x af x f x e a x e a e a a ax e-==++=+=+-- 00001ln()()ln()11a ax a a a x a a x x =--+-=-++-++ 001[(1)1]ln()1a x a a x =-++-+-+ 因为010x +>,可得001121x x ++≥+, 当且仅当00x =时,等号成立,所以001(1)111x x ++-≥+,所以001[(1)1]ln()ln()1a x a a a a a x -++-+-≥-+-+,因为()1f x ≥恒成立,即ln()1a a a -+-≥恒成立,令()ln(),(,0)h a a a a a =-+-∈-∞,可得()1ln()1ln()h a a a '=-+-+=-, 当(,1)a ∈-∞-时,()0h a '>,()h a 单调递增; 当(1,0)a ∈-时,()0h a '<,()h a 单调递减, 所以()()11h a h ≤-=,即()1f x ≤,又由()1f x ≥恒成立,即()ln()0h a a a a =-+-=,所以1a =-.变式1-3.已知函数()2ln x x f x ax x =--(a R ∈)恰有两个极值点12,x x 且12x x <.(1)求实数a 的取值范围;(2)若不等式122ln ln 2x x λλ+>+恒成立,求实数λ的取值范围. 【答案】(1)10,2e ⎛⎫ ⎪⎝⎭(2)[)2,+∞ 【解析】 【分析】(1)对()f x 求导后分析其导数的零点(2)将12,x x 代入后消去a ,然后为不等式恒成立问题,换元后分类讨论最值 (1)∵()'ln 2f x x ax =-,依题意得12,x x 为方程ln 20x ax -=的两不等正实数根, ∴0a ≠,ln 2x a x =,令()ln x g x x=,()21ln 'xg x x -=, 当()0,e x ∈时,()'0g x >;当()e,x ∈+∞时,()'0g x <,∴()g x 在(0,e)上单调递增,在()e,+∞上单调递减,且()10g =,当e x >时,()0g x >, ∴()102e ea g <<=,解得102e a <<,故实数a 的取值范围是10,2e ⎛⎫ ⎪⎝⎭; (2)由(1)得11ln 2x ax =,22ln 2x ax =,两式相减得()1212ln ln 2x x a x x -=-,1212ln ln 2x x a x x -=-, ()12122ln ln 2222x x a x x λλλλ+>+⇔+>+()()1112122211222ln2ln ln 221x x x x x x x x x x x x λλλλ⎛⎫+ ⎪+-⎝⎭⇔>+⇔>+--, ∵120x x <<,令()120,1x t x =∈,∴()2ln 21t t t λλ+>+-,即()()()2ln 210t t t λλ+-+-<, 令()()()()2ln 21h t t t t λλ=+-+-,则需满足()0h t <在()0,1上恒成立, ∵()'2ln h t t tλλ=+-,令()2ln I t t tλλ=+-,则()2222't I t t t tλλ-=-=(()0,1t ∈), ①当2λ≥时,()'0I t <,∴()'h t 在()0,1上单调递减,∴()()''10h t h >=, ∴()h t 在(0,1)上单调递增,∴()()10h t h <=,符合题意,②当0λ≤时,()'0I t >,∴()'h t 在()0,1上单调递增,∴()()''10h t h <=, ∴()h t 在()0,1上单调递减,∴()()10h t h >=,不符合题意, ③当02λ<<时,()'012I t t λ>⇔<<,∴()'h t 在,12λ⎛⎫⎪⎝⎭上单调递增,∴()()''10h t h <=, ∴()h t 在,12λ⎛⎫⎪⎝⎭上单调递减,∴()()10h t h >=,不符合题意,综上所述,实数λ的取值范围是[)2,+∞.考点二 存在性问题典例2.已知函数2()(2)ln (0)f x ax a x x a =-++>. (1)讨论函数()f x 的单调性;(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,求实数a 的取值范围. 【答案】(1)答案见解析 (2)10,e ⎛⎤⎥⎝⎦ 【解析】 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论对a 进行分类讨论,由min e ()f x ≤-,结合构造函数法以及导数来求得a 的取值范围. (1)已知函数2()(2)ln f x ax a x x =-++,定义域为(0,)+∞,212(2)1(1)(21)()2(2)ax a x ax x f x ax a x x x-++--=-++==',①当02a <<时,11>,()f x 在110,,,2a ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减; ②当2a =时,2142()0x f x x⎛⎫- ⎪⎝⎭'=≥,函数()f x 在(0,)+∞单调递增; ③当2a >时,112a <,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减. 综上所述,02a <<时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫⎪⎝⎭上单调递减;2a =时,()f x 在(0,)+∞单调递增;2a >时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减.(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,即使得min e ()f x ≤-.由(1),可知当1a ≥时,()f x 在[1,)+∞上单调递增,()min (1)2f f x ==-, 不满足min e ()f x ≤-; 当01a <<时,11a>min 11()1ln f x f a a a ⎛⎫==--- ⎪⎝⎭,所以e 11ln a a ---≤-,即1ln 1e a a +≥-,令1()ln (01)g x x x x =+<<,∴22111()0x g x x x x-='=-<, ∴1()ln g x x x=+在(0,1)上单调递减,又∵1e 1e g ⎛⎫=- ⎪⎝⎭,由1ln 1e a a +≥-,得10ea <≤.综上,实数a 的取值范围为10,e ⎛⎤⎥⎝⎦.变式2-1.已知函数()()ln 11xf x x x =>-.(1)判断函数()f x 的单调性;(2)已知0λ>,若存在()1,x ∈+∞时使不等式()()1eln 0xx f x λ--≥成立,求λ的取值范围.【答案】(1)函数()y f x =在区间()1,+∞上单调递减; (2)1(0,]e. 【解析】 【分析】(1)求出函数()f x 的导数()f x ',判断()f x '的符号作答.(2)对给定不等式作等价变形,借助(1)脱去法则“f ”,分离参数构造函数,再求出函数最值作答. (1) 函数ln 1xf xx ,1x >,求导得:()()211ln 1x x f x x --'=-,令()11ln g x x x =--,1x >,则()210xg x x-'=<,即函数()y g x =在区间()1,+∞单调递减, 而()10g =,则当()1,x ∈+∞时,()(1)0g x g <=,即()0f x '<, 所以函数()y f x =在区间()1,+∞上单调递减. (2)当1x >时ln 0x >,()()()()()ln 1eln 0e e 1xxxxx f x f f f x x λλλ--≥⇔≥⇔≥-, 因0λ>且1x >,则()e 1,xλ∈+∞,由(1)知,()y f x =在()1,+∞单调递减,则存在()1,x ∈+∞,不等式()()ln e e ln x xxf f x x x x xλλλλ≥⇔≤⇔≤⇔≤成立, 令()()ln 1x x x x ϕ=>,则()21ln xx xϕ-'=,当()1,e x ∈时,()0x ϕ'>,当()e,x ∈+∞时,()0x ϕ'<, 因此,函数()x ϕ在()1,e 上单调递增,在()e,+∞上单调递减,()()max 1e e x ϕϕ==,于是得10eλ<≤, 所以λ的取值范围是1(0,]e. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,再利用函数的导数探讨解决问题.变式2-2.已知函数()()222ln f x x a x =++.(1)当5a =-时,求()f x 的单调区间; (2)若存在[]2,e x ∈,使得()2242a f x x x x+->+成立,求实数a 的取值范围. 【答案】(1)单调递减区间为()0,2,单调递增区间为()2,+∞;(2)2e e 2,e 1∞⎛⎫-++⎪-⎝⎭. 【解析】 【分析】(1)当5a =-时,()28ln f x x x =-,得出()f x 的定义域并对()f x 进行求导,利用导数研究函数的单调性,即可得出()f x 的单调区间; (2)将题意等价于()24222ln 0a x a x x ++-+<在[]2,e 内有解,设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <,对()h x 进行求导,令()0h x '=,得出2x a =+,分类讨论2a +与区间[]2,e 的关系,并利用导数研究函数()h x 的单调和最小值,结合()min 0h x <,从而得出实数a 的取值范围. (1)解:当5a =-时,()28ln f x x x =-,可知()f x 的定义域为()0,+∞,则()28282,0x f x x x x x-'=-=>, 可知当()0,2x ∈时,0f x ;当()2,x ∈+∞时,0fx ;所以()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞. (2)解:由题可知,存在[]2,e x ∈,使得()2242a f x x x x+->+成立, 等价于()24222ln 0a x a x x++-+<在[]2,e 内有解, 可设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <, ()()()()()()()22222122422222242x x a a a x a x a h x x xx x ⎡⎤+-+++-+-+⎣⎦∴=--==',令()0h x '=,即()()120x x a ⎡⎤+-+=⎣⎦,解得:2x a =+或1x =-(舍去), 当2e a +≥,即e 2a ≥-时,()0h x '<,()h x 在[]2,e 上单调递减,()()min24e 2e+220e a h x h a +∴==--<,得2e e 2e 1a -+>-,又2e e 2e 2e 1-+>--,所以2e e 2e 1a -+>-; 当22a +≤时,即0a ≤时,()0h x '>,()h x 在[]2,e 上单调递增,()()()min 2622ln 20h x h a a ∴==+-+<,得6ln 40ln 41a ->>-,不合题意; 当22e a <+<,即0e 2a <<-时,则()h x 在[]2,2a +上单调递减,在[]2,e a +上单调递增,()()()()min 22622ln 2h x h a a a a ∴=+=+-++,()ln 2ln 2lne 1a <+<=,()()()22ln 222ln 2222a a a a ∴+<++<+, ()()()22622ln 226224h a a a a a a ∴+=+-++>+--=,即()min 4h x >,不符合题意;综上得,实数a 的取值范围为2e e 2,e 1∞⎛⎫-++ ⎪-⎝⎭.【点睛】思路点睛:本题考查利用导数研究函数的单调性,以及利用导数解决不等式成立的综合问题: (1)利用导数解决单调区间问题,应先确定函数的定义域,否则,写出的单调区间易出错;利用导数解决含有参数的单调性问题,要注意分类讨论和化归思想的应用;(2)利用导数解决不等式的综合问题的一般步骤是:构造新函数,利用导数研究的单调区间和最值,再进行相应证明.变式2-3.已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围.【答案】(1)极小值为1,无极大值(2)单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)21,1e e ⎛⎫++∞⎪-⎝⎭【解析】 【分析】(1)研究()ln f x x x =-的单调区间,进而求出()f x 的极值;(2)先求()h x ',再解不等式()0h x '>与()0h x '<,求出单调区间,注意题干中的0a >的条件;(3)先把题干中的问题转化为在[]1x e ∈,上有()min 0h x <,再结合第二问研究的()h x 的单调区间,对a 进行分类讨论,求出不同范围下的()min h x ,求出最后结果 (1)当1a =时,()ln f x x x =-,定义域为()0,∞+,()111x f x x x-'=-=令()0f x '=得:1x =,当1x >时,()0f x '>,()f x 单调递增;当01x <<时,()0f x '<,()f x 单调递减,故1x =是函数()f x 的极小值点,()f x 的极小值为()11f =,无极大值 (2)()()()()1ln 0ah x f x g x x a x a x+=-=-+>,定义域为()0,∞+ ()()()222211111x x a a a x ax a h x x x x x+--+---'=--== 因为0a >,所以10a +>,令()0h x '>得:1x a >+,令()0h x '<得:01x a <<+,所以()h x 在()1,a ++∞单调递增,在()0,1a +单调递减.综上:()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +. (3)存在[]01x e ∈,,使得()()00f x g x <成立,等价于存在[]01x e ∈,,使得()00h x <,即在[]1x e ∈,上有()min 0h x <由(2)知,()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +,所以当1a e +≥,即1a e ≥-时,()h x 在[]1x e ∈,上单调递减,故()h x 在x e =处取得最小值,由()()min10a h x h e e a e +==-+<得:211e a >e +-,因为2111e e e +>--,故211e a >e +-. 当11a e <+<,即01a e <<-时,由(2)知:()h x 在()1,1x a ∈+上单调递减,在()1,x a e ∈+上单调递增,()h x 在[]1x e ∈,上的最小值为 令()()12ln 1h a a a a +=+-+因为()0ln 11a <+<,所以()0ln 1a a a <+<,则()2ln 12a a a +-+>,即()12h a +>,不满足题意,舍去综上所述:a 的取值范围为21,1e e ⎛⎫++∞⎪-⎝⎭【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.巩固练习练习一 恒成立问题1.已知函数()1ln x f x x+=. (1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 【答案】(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可;(2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x++≤+=,令()()()e 1ln x x g x x++=,则()2eln x xg x x -'=, 令()eln h x x x =-,则()ee1x h x xx-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=,()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-.【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.2.已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性;(2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.【答案】(1)()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)274e a -≥【解析】 【分析】(1)直接求导,先确定导数的单调性及零点,即可确定()f x 的单调性;(2)当0x =时, a R ∈,当0x >时,参变分离得3211e 2xx x a x ++-≥,构造函数()h x 求导得()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再构造函数21e 12()x m x x x ---=确定()h x 单调性后,即可求出实数a 的取值范围.(1)当1a =-时,2()e 1x f x x x =+--,()e 21x f x x '=+-,易得()'f x 在R 上递增,又(0)0f '=,故当()0x ∈+∞,时,()0f x '>,()f x 单调递增;故当(),0x ∈-∞时,()0f x '<,()f x 单调递减, 所以()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)当0x =时,不等式321()22f x x ax ≥-恒成立,可得a R ∈;当0x >时,由2321e 122x ax x x ax ---≥-恒成立可得3211e 2xx x a x++-≥恒成立,设3211e 2()x x x h x x ++-=,则()4223333111e 222(2)1e e 22x x x h x x x x x x x x x x x⎛⎫⎛⎫+-⋅-⋅+'+=--+-- ⎪ ⎪⎝⎭⎭=⎝()()()33322211e 22e 1222x x x x x x x x x x x x⎛⎫ ⎪⎝⎭=⎛⎫-+-+-----⎪⎝⎭=-, 可设21e 12()x m x x x ---=,可得e 1()x x m x =--',设e 1,e 1()()x x k x k x x '-=--=,由0x >,可得()0k x '>恒成立,可得()k x 在()0+∞,递增,即()m x '在()0+∞,递增,所以()(0)0m x m ''>=,即()0m x '>恒成立,即()m x 在()0+∞,递增, 所以()(0)0m x m >=,再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在()0,2上递增,当2x >时,()0h x '<,()h x 在()2,+∞递减,所以2max 7e ()(2)4h x h -==,所以274e a -≥;综上可得274e a -≥. 【点睛】本题关键点在于参变分离构造函数求导后,通过因式分解将导数变为()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再把分子的因式构造成函数21e 12()x m x x x ---=,确定()(0)0m x m >=后,即得()h x '的正负,进而求解.3.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围. 【答案】(1)(],2-∞-(2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】 【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2xax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2x e a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--, 因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-, 故m 的取值范围是(],2-∞-; (2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤, 当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==,则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2mine ()(2)4g x g ==,则2e 4a ≤,综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦.4.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围. 【答案】(1)25y x =+ (2)[1,)-+∞ 【解析】 【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a +->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10x x x x a --+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=- 又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+. (2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立.等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立.构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x x b x b x a a +>-+-在(2,)x ∈+∞上恒成立等价于e()x h a(1)h x >-在(2,)x ∈+∞上恒成立.因为20e <≤a ,所以2e e ,xx a-≥令函数2()e 1(2)x H x x x -=-+>,则2()e1x H x -'=-,显然()H x '是增函数,则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=,故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10b h x x'=+≥恒成立.所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞) 【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.练习二 存在性问题5.己知函数()2ln f x x ax x =+-.(1)当1a =时,求()f x 的单调区间.(2)存在1≥x ,使得()3112f x x ≥+成立,求整数a 的最小值. 【答案】(1)增区间为()0,∞+,无单减区间 (2)2 【解析】 【分析】(1)利用导数与函数的单调性之间的关系可求得结果; (2)由题意可知,存在1≥x ,使得2111ln 2x a x x x -≥++,构造函数()211ln 12x g x x x x +=+-,其中1≥x ,利用导数分析函数()g x 的单调性,求出()min g x 的取值范围,可求得整数a 的最小值. (1)解:当1a =时,()2ln f x x x x =+-,该函数的定义域为()0,∞+,则()121110f x x x'=+-≥=>,当且仅当2x =时,等号成立, 故函数()f x 的增区间为()0,∞+,无单减区间. (2)解:存在1≥x ,使得231ln 12x ax x x +-≥+成立,即2111ln 2xa x x x -≥++,令()211ln 12x g x x x x +=+-,其中1≥x ,则()min a g x ≥, ()323312ln 3112ln 322x x x x g x x x x-+--'=-+=,令()312ln 32h x x x x =-+-,则()3232324122x x h x x x x-+'=-+=,令()3324m x xx =-+,()2920m x x '=->对任意的1≥x 恒成立,故函数()m x 在[)1,+∞上为增函数,则()()15m x m ≥=, 即()0h x '>对任意的1≥x 恒成立,则函数()h x 为增函数. 因为34532ln 02162h ⎛⎫=-+< ⎪⎝⎭,()22ln 210h =->,所以存在3,22t ⎛⎫∈ ⎪⎝⎭,使得()()312ln 302h t g t t t t '==-+-=,当()1,x t ∈时,()0g x '<,此时函数()g x 单调递减, 当(),x t ∞∈+时,()0g x '>,此时函数()g x 单调递增, 所以,()()3333222min 111131ln 1322224224t t t t t t t t t g xg t t t t +-++++--+-====,3,22t ⎛⎫∈ ⎪⎝⎭, 设()2311422t t t t ϕ=+-,则()3233311324424t t t t t t ϕ-+'=-+=, 令()3324p t t t =-+,则()2920p t t '=->对任意的3,22t ⎛⎫∈ ⎪⎝⎭恒成立,故函数()p t 在3,22⎛⎫⎪⎝⎭上为增函数,则()302p t p ⎛⎫>> ⎪⎝⎭,即()0t ϕ'>对任意的3,22t ⎛⎫∈ ⎪⎝⎭恒成立,故函数()t ϕ在3,22⎛⎫⎪⎝⎭为增函数,故()()322t ϕϕϕ⎛⎫<< ⎪⎝⎭,即()8913728t ϕ<<,即()min 8913728g x <<, 因为a 为整数,所以整数a 的最小值为2. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.6.已知函数()321sin 1,,462f x x x x ππαα⎡⎤=-++∈-⎢⎥⎣⎦,(1)讨论函数()f x 的单调性;(2)证明:存在,62ππα⎡⎤∈-⎢⎥⎣⎦,使得不等式()e xf x > 有解(e 是自然对数的底).【答案】(1)讨论见解析 (2)证明见解析 【解析】 【分析】(1)对原函数求导后利用判别式对α 进行分类讨论即可;(2)理解“有解”的含义,构造函数将原不等式转化为求函数的最大值. (1)()f x 的定义域为R ,()232sin 14f x x x α'=-+, ()22332sin 44sin 44αα⎛⎫∆=--⨯=- ⎪⎝⎭ ,①当,32ππα⎛⎤∈ ⎥⎝⎦时,0∆> ,()0f x '=有两个不等实数根为:x =x ⎛∈-∞ ⎝⎭时,()0f x '>,()f x 单调递增,x ∈⎝⎭时, ()0f x '<,()f x 单调递减,x ⎫∈+∞⎪⎪⎝⎭时,()0f x '>,()f x 单调递增, ②当,63a ππ⎛⎤∈- ⎥⎝⎦时,0∆≤ ,()0f x '≥,所以()f x 在(),-∞+∞上单调递增; (2)不等式()e xf x > 等价于321sin 1e 14x x x x α-⎛⎫-++> ⎪⎝⎭,所以只需证321sin 1e 4xx x x α-⎛⎫-++ ⎪⎝⎭的最大值大于1,因为,62a ππ⎡⎤∈-⎢⎥⎣⎦,11sin 2α-≤-≤,又[)20,x ∈+∞,所以221sin 2x x α-≤,6πα=-时等号成立, 所以3232111sin 1e 1e 442x x x x x x x x α--⎛⎫⎛⎫-++≤+++ ⎪ ⎪⎝⎭⎝⎭, 设函数()32111e 42x g x x x x -⎛⎫=+++ ⎪⎝⎭ ,()()211e 4x g x x x -'=-- , (),1x ∈-∞,()0g x '≥,()g x 单调递增,()1,x ∈+∞,()0g x '<,()g x 单调递减,因为()1111 2.754211e eg +++==> ,所以存在,62a ππ⎡⎤∈-⎢⎥⎣⎦,使不等式()e x f x > 有解. 【点睛】对于第二问使用函数的缩放法是核心, 对原函数321sin 1e 4x x x x α-⎛⎫-++ ⎪⎝⎭由于α的不确定性使得求其最大值很困难, “化繁为简”,“化难为易”的数学思想就显得特别重要,通过本题的计算应该能够体会到这种数学思想,在以后的数学计算中遇到很复杂的计算应该首先考虑这种数学思想.7.已知函数()(1)e 1x f x x ax =---.(1)当0a >时,证明函数()f x 在区间(0,)+∞上只有一个零点;(2)若存在x ∈R ,使不等式()e 1f x <--成立,求a 的取值范围.【答案】(1)证明见解析(2){0|a a <或}e a >【解析】【分析】(1)首先求得导函数的解析式,然后讨论函数的单调性,结合函数的性质即可确定函数零点的个数;(2)首先讨论函数的单调性,然后结合函数的最小值构造新函数,结合构造函数的性质分类讨论即可确定a 的取值范围.(1)证明:当0a >时,()()e ,0,x f x x a x ∞'=-∈+,令()()()(),1e 0x g x f x g x x =+''=>,∴()e x f x x a '=-在(0,)+∞上为增函数,∵()()00,e 0a f a f a a a ''=-<=->,∴()00,x a ∃∈,使()000e 0x f x x a '=-=, ∴当()00,x x ∈时,()0f x '<;当0(,)x x ∈+∞时,0f x ,因此,()f x 在()00,x 上为减函数,()f x 在 0(,)x +∞上为增函数,当()00,x x ∈时,()()020f x f <=-<,当x >时,()()()211120f x x x ax x ax >-+--=-->, 故函数f(x)在(0,)+∞上只有一个零点.(2)解:当0a >时,()e ,x f x x a '=-,由(1)可知,()00f x '=,即00e x a x =, ∴当0x x <时,()0f x '<,()f x 在0(,)x -∞上为减函数,当0x x >时,0f x,()f x 在 0(,)x +∞上为增函数, ∴()()()()()0000220000000min 1e 11e e 11e 1x x x x f x f x x ax x x x x ==---=---=-+--, 由00e x a x =,知00x >, 设()()()21e 10x h x x x x =-+-->,则()()()2e 00x h x x x x '=--<>,∴()h x 在(0,)+∞上为减函数,又()1e 1h =--,∴当001x <<时,()0e 1f x >--,当01x >时,()0e 1f x <--,∴存在0x R ∈,使不等式()01f x e <--成立,此时00e e x a x =>;当0a =时,由(1)知,()f x 在(,0)∞-上为减函数,()f x 在(0,)∞+上为增函数,所以()()02e 1f x f ≥=->--,所以不存在x ∈R ,使不等式 ()e 1f x <--成立,当0a <时,取e 10x a+<<,即e 1ax -<--,所以()1e 1e 1x x ax ---<--, 所以存在x ∈R ,使不等式 ()1f x e <--成立,综上所述,a 的取值范围是{0|a a <或}e a >.【点睛】方法点睛:在解决能成立问题时一般是将不等式能成立问题转化为求函数的最值问题,利用()f x m >能成立max ()f x m ⇔>;()f x m <能成立min ()f x m ⇔<.8.已知函数()()e R x f x ax a =-∈,()ln x g x x=. (1)当1a =时,求函数()f x 的极值;(2)若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立,求实数a 的取值范围.【答案】(1)函数()f x 在(),0∞-上递增,在()0,∞+上递减,极大值为1-,无极小值 (2)12ea ≤ 【解析】【分析】(1)求出函数的导函数,再根据导数的符号求得单调区间,再根据极值的定义即可得解;(2)若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立,问题转化为()2maxln ,0x a x x ⎛⎫≤> ⎪⎝⎭,令()2ln x h x x =,0x >,利用导数求出函数的最大值即可得出答案.(1)解:当1a =时,()e x f x x =-,则()'1e x f x =-,当0x <时,()0f x '>,当0x >时,()0f x '<,所以函数()f x 在(),0∞-上递增,在()0,∞+上递减,所以函数()f x 的极大值为()01f =-,无极小值;(2)解:若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立, 则()ln ,0x ax x x ≤>,即()2ln ,0x a x x≤>, 则问题转化为()2max ln ,0x a x x ⎛⎫≤>⎪⎝⎭,令()2ln x h x x =,0x >, ()432ln 12ln x x x x h x x x --'==,当0x <<()0h x '>,当x >()0h x '<,所以函数()h x 在(递增,在)+∞上递减, 所以()max 12e h x =, 所以12e a ≤.。
专题04恒成立与存在性求参(选填题6种考法)考法一一元二次不等式在R【例1-1】(2023·青海西宁·统考二模)已知命题p :x ∃∈R ,2220x x a ++-<,若p 为假命题,则实数a 的取值范围为()A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞【答案】D【解析】因为命题p :x ∃∈R ,2220x x a ++-<,所以p ⌝:x ∀∈R ,2220x x a ++-≥,又因为p 为假命题,所以p ⌝为真命题,即x ∀∈R ,2220x x a ++-≥恒成立,所以0∆≤,即224(2)0a --≤,解得1a ≤,故选:D .【例1-2】(2023·四川·校联考模拟预测)“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意,命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”可得命题“x ∀∈R ,2(1)2(1)30m x m x -+-+>是真命题”当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x ∃∈R ,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件,故选:B.【例1-3】(2023·全国·高三对口高考)已知命题:R p x ∃∈,使得“2210ax x ++<成立”为真命题,则实数a 的取值范围是.【答案】(),1-∞【解析】因为命题:R p x ∃∈,使得“2210ax x ++<成立”为真命题,当0a =时,210x +<,则12x <-,故成立;当0a >时,440a ∆=->,解得:01a <<;当a<0时,总存在2210ax x ++<;综上所述:实数a 的取值范围为(),1-∞.故答案为:(),1-∞【变式】1.(2023·四川广安·四川省广安友谊中学校考模拟预测)若命题:“0x ∃∈R ,使20010mx mx -+≤”是假命题,则实数m 的取值范围为.【答案】[)0,4【解析】由题意可知:命题:R x ∀∈,210mx mx -+>.是真命题,①当0m =时,结论显然成立;②当0m ≠时,则20Δ40m m m >⎧⎨=-<⎩,解得04m <<;故答案为:[)0,4.2.(2023秋·江苏连云港·高三校考阶段练习)若不等式224221mx mx x x +-<+-对任意实数x 均成立,则实数m 的取值范围是【答案】(10,2]-【解析】因为不等式224221mx mx x x +-<+-对任意实数x 均成立,即不等式2(2)(2)30m x m x -+--<对任意实数x 均成立,当20m -=,即2m =时,有30-<恒成立,满足题意;当20m -≠,即2m ≠时,则有()()220Δ21220m m m -<⎧⎪⎨=-+-<⎪⎩,解得102m -<<,综上所述,实数m 的取值范围为(10,2]-.故选:B.3.(2023·广东潮州)若命题:“0x ∃∈R ,使2200(1)(1)10--++≥m x m x ”是真命题,则实数m 的取值范围为.【答案】513-<<m 【解析】当2101-==±m m 即时,易得m=1时命题成立;当21011-<-<<m m 即时,()()222141325011∆=+--=-++≥∴-<<m m m m m 当2101m 1->⇒<->m m 或时,则命题等价于()()2225141325013∆=+--=-++>∴<<m m m m m ,故答案为:513-<<m 考法二一元二次不等式在某区间【例2-1】(2023·河南·长葛市第一高级中学统考模拟预测)已知命题“[]01,1x ∃∈-,20030x x a -++>”为真命题,则实数a 的取值范围是()A .(),2-∞-B .(),4-∞C .()2,-+∞D .()4,+∞【答案】C 【解析】因为命题“[]01,1x ∃∈-,20030x x a -++>”为真命题,所以,命题“[]01,1x ∃∈-,2003a x x >-”为真命题,所以,[]01,1x ∈-时,()min 2003a x x ->,因为,2239324y x x x ⎛⎫=-=-- ⎪⎝⎭,所以,当[]1,1x ∈-时,min 2y =-,当且仅当1x =时取得等号.所以,[]01,1x ∈-时,()200min 32a x x ->=-,即实数a 的取值范围是()2,-+∞故选:C【例2-2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)若命题“[]1,4x ∃∈,使220x x λ+->成立”的否定是真命题,则实数λ的取值范围是()A .(],1-∞B .1,18⎡⎤-⎢⎥⎣⎦C .1,8⎛⎤-∞- ⎥⎝⎦D .[)1,+∞【答案】C【解析】若“[]1,4x ∃∈,使220x x λ+->成立”的否定是:“[]1,4x ∀∈,使220x x λ+-≤”为真命题,即22x x λ-≤;令()222111248x f x x x -⎛⎫==-- ⎪⎝⎭,由[]1,4x ∈,得11,14x ⎡⎤∈⎢⎥⎣⎦,所以()()min 148f x f ==-,所以18λ-≤,故选:C.【例2-3】(2023·辽宁大连)(多选)已知p :[1,1]x ∀∈-,220x ax --<,则使p 为真命题的一个必要不充分条件为()A .21a -<<B .11a -<<C .1a 2-<<D .01a ≤<【答案】AC【解析】令2()2f x x ax =--,则()f x 的图象开口向上,若[1,1]x ∀∈-,()0f x <,则(1)120(1)120f a f a =--<⎧⎨-=+-<⎩,解得11a -<<,对于A ,当11a -<<时,21a -<<成立,而21a -<<时,11a -<<不一定成立,所以21a -<<是p 为真命题的一个必要不充分条件,所以A 正确,对于B ,11a -<<是p 为真命题的充要条件,所以B 错误,对于C ,当11a -<<时,1a 2-<<成立,当1a 2-<<时,11a -<<不一定成立,所以1a 2-<<是p 为真命题的一个必要不充分条件,所以C 正确,对于D ,当11a -<<时,01a ≤<不一定成立,当01a ≤<时,11a -<<成立,所以01a ≤<是p 为真命题的一个充分不必要条件,所以D 错误,故选:AC【例2-4】(2023秋·湖北宜昌)若()21001m x m mx -<≠+对一切4x ≥恒成立,则实数m 的取值范围是()A .{}3m m <B .12m m ⎧⎫<-⎨⎬⎩⎭C .{}2m m >D .{}20m m -<<【答案】B 【解析】因为不等式2210(1)(1)01m x m x mx mx -<⇒-+<+(0m ≠),所以221(1)(1)0m x mx x m-+=⇒=或1x m =-(0m ≠),①当0m >时,211m m-<,所以不等式2()(110)m x mx -+<的解集为211{|}x x m m -<<,所以原不等式不可能对一切4x ≥恒成立,故0m >不符合题意;②当1m ≤-时,211m m≤-,所以不等式2()(110)m x mx -+<的解集为21{|x x m <或1}x m >-,又因为原不等式对一切4x ≥恒成立,所以1 14m m≤-⎧⎪⎨-<⎪⎩,解得1m ≤-,③当10m -<<时,211m m>-,所以不等式2()(110)m x mx -+<的解集为1{|x x m <-或21}x m >,又因为原不等式对一切4x ≥恒成立,所以210 14 m m-<<⎧⎪⎨<⎪⎩,解得112m -<<-,综述,12m <-.故选:B.【变式】1.(2023春·河北衡水·高三河北衡水中学校考阶段练习)若命题“[]21,3,10x x ax ∃∈++>”是假命题,则实数a 的最大值为______.【答案】103-【解析】由题知命题的否定“2[1,3],x x ∀∈+10ax +≤”是真命题.令2()1([1,f x x ax x =++∈3]),则()()120,33100,f a f a ⎧=+≤⎪⎨=+≤⎪⎩解得103a ≤-,故实数a 的最大值为10.3-故答案为:10.3-3.(2022秋·北京·高三统考阶段练习)若存在[0,1]x ∈,有2(1)30x a x a +-+->成立,则实数a 的取值范围是__________.。
专题04 恒成立问题一、单选题1.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()x xf x e=,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断2.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef3.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 4.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010二、多选题1.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0a f f a e>2.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x < D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为14.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 5.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .16.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+ D .21cos 12x x ≥-1.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________. 2.若[,)x e ∀∈+∞,满足32ln 0mxx x me -≥恒成立,则实数m 的取值范围为___________.3.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________.6.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 7.若()()220xxx me exeex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.8.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.9.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________.10.不等式()221n n n N *>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________.11.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________.12.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.13.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________. 14.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.15.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________.1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.2.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________.3.已知函数1()ln (0)f x ax x a x=+>.(1)当1a =时,()f x 的极小值为___________;(2)若()f x ax ≥在(0,)+∞上恒成立,则实数a 的取值范围为___________. 4.已知函数()()221xf exx x =-+,则()f x 在点()()0,0f 处的切线方程为___________,若()f x ax ≥在()0,∞+上恒成立,则实数a 的取值范围为___________.5.设函数()32f x ax bx cx =++(a ,b ,R c ∈,0a ≠)若不等式()()2xf x af x '-≤对一切R x ∈恒成立,则a =___________,b ca+的取值范围为___________. 6.已知函数()()x x f x x ae e -=-为偶函数,函数()()xg x f x xe -=+,则a =___________;若()g x mx e >-对()0,x ∈+∞恒成立,则m 的取值范围为___________. 五、解答题1.已知函数()sin f x x ax =-,()=ln 1xg x x x e -+,2.71828e =⋅⋅⋅为自然对数的底数. (1)当()0,x π∈,()0f x <恒成立,求a 的取值范围;(2)当0a =时,记()()()h x f x g x =+,求证:对任意()1,x ∈+∞,()0h x <恒成立. 2.已知函数()1x f x ae x =--(1)若()0f x ≥对于任意的x 恒成立,求a 的取值范围 (2)证明:1111ln(1)23n n++++≥+对任意的n N +∈恒成立 3.若对任意的实数k 、b ,函数()y f x kx b =++与直线y kx b =+总相切,则称函数()f x 为“恒切函数”.(1)判断函数()2f x x =是否为“恒切函数”;(2)若函数()()ln 0f x m x nx m =+≠是“恒切函数”,求实数m 、n 满足的关系式;(3)若函数()()1x xf x e x e m =--+是“恒切函数”,求证:104m -<≤. 4.已知函数()(ln )sin x f x e x a x =+-.(1)若()ln sin f x x x ≥⋅恒成立,求实数a 的最大值; (2)若()0f x ≥恒成立,求正整数a 的最大值.专题04 恒成立问题一、单选题1.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()x xf x e=,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断【试题来源】安徽省皖江名校联盟2021届高三第二次联考(理) 【答案】C【分析】当1x <时,求导,得出导函数恒小于零,得出()f x 在(),1-∞内是增函数.再由()()2f x f x -=+得()f x 的图象关于直线1x =对称,从而得()f x 在()1,+∞内是减函数,由此可得选项.【解析】当1x <时,'1()0xx f x e -=->,则()f x 在(),1-∞内是增函数. 由()()2f x f x -=+得()f x 的图象关于直线1x =对称,所以()f x 在()1,+∞内是减函数, 所以()()350f f ->.故选C .2.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef【试题来源】2020届福建省仙游县枫亭中学高三上学期期中考试(理) 【答案】B【分析】构造函数()()xf x F x e =,求出'()0F x >,得到该函数为R 上的增函数,故得(0)(1)F F <,(0)(2018)F F <,从而可得到结论.【解析】设()()x f x F x e =,x R ∈(),所以'()()[]xf x F x e '==()()xf x f x e '-, 因为对于()(),x R f x f x ∀∈<',所以'()0F x >,所以()F x 是R 上的增函数,所以(0)(1)F F <,(0)(2018)F F <,即(1)(0)f f e <,2018(2018)(0)f f e <, 整理得()()10f ef >和()20182018(0f ef >).故故选B .3.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 【试题来源】浙江省杭州市萧山中学2019-2020学年高三下学期返校考试 【答案】D【解析】对于A ,不妨令01a <≤,1b ≥,则1aab bb a aa a ab a b a b ⎛⎫⎛⎫⋅=⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,所以1baa b ⋅=即11b aaab-=,由10b a -≥可知101b aa -<≤,则101ab <≤,所以1≥ab ,2a b +≥,故A 正确; 对于B ,若a b ≤,则0a b e e -≤,320b a ->,故32ab e e b a -≠-即23a b e a e b +≠+,与已知矛盾,故B 正确;对于C ,()ln ln ln 1b b a a b a b a a-≥-⇔-≥-, 令0b x a =>,()()ln 10f x x x x =-->,则()1x f x x-'=, 则()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()10f x f ≥=,所以ln 10b b a a --≥即ln 1b ba a-≥-,故C 正确; 对于D ,设()()ln 0h x x x x =>,()()0x xg x x e=>, 则()ln 1h x x '=+,()1xxg x e -'=, 所以()h x 在()10,e -上单调递减,在()1,e -+∞上单调递增,则()()11h x h e e --≥=-,()g x 在()0,1上单调递增,在()1,+∞上单调递减,则()()11g x g e -≤=,所以()()110h e g e --+<,即当1a b e -==时ln 0bba a e +<,故D 错误.故选D . 4.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010【试题来源】新疆维吾尔自治区2021届高三第二次联考数学(理)能力测试试题 【答案】D【分析】由极值点得数列的递推关系,由递推关系变形得数列1{}n n a a +-是等比数列,求得1n n a a +-,由累加法求得n a ,计算出n b ,然后求和122311202020202020n n b b b b b b ++++,利用增函数定义得此式的最小值,从而得出n S 的最小值,再由不等式恒成立可得t 的最大值. 【解析】3212()43n n n f x a x a x a '++=--,所以12(1)430n n n f a a a '++=--=, 即有()2113n n n n a a a a +++-=-,所以{}1n n a a +-是以2为首项3为公比的等比数列, 所以1123n n n a a -+-=⋅,1201111221123232313n n nn n n n n n n a a a a a a a a a a --++---=-+-+-++-+=⋅+⋅++⋅+=所以31log n n b a n +==,所以12231120202020202011120201223(1)n n b b b b b b n n +⎛⎫+++=+++⎪⨯⨯+⎝⎭1111120202020122311n n n n ⎛⎫=-+-++-=⎪++⎝⎭, 又20201ny n =+为增函数,当1n =时,1010n S =,10102020n S ≤<, 若n S t ≥恒成立,则t 的最大值为1010.故选D .【名师点睛】本题考查函数的极值,等比数列的判断与通项公式,累加法求通项公式,裂项相消法求和,函数新定义,不等式恒成立问题的综合应用.涉及知识点较多,属于中档题.解题方法是按部就班,按照题目提供的知识点顺序求解.由函数极值点得数列的递推公式,由递推公式引入新数列是等比数列,求得通项公式后用累加法求得n a ,由对数的概念求得n b ,用裂项相消法求和新数列的前n 项和,并利用函数单调性得出最小值,然后由新定义得n S 的最小值,从而根据不等式恒成立得结论. 二、多选题1.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0af f a e>【试题来源】江苏省扬州中学2019-2020学年高二下学期6月月考 【答案】BD【分析】根据()()'0f x f x +>,设()()xh x e f x =,()()()()xh x ef x f x ''=+,得到()h x 在R 上是增函数,再根据a 是正实数,利用单调性逐项判断.【解析】设()()xh x e f x =,()()()()xh x ef x f x ''=+,因为()()'0f x f x +>,所以()0h x '>,()h x 在R 上是增函数, 因为a 是正实数,所以2a a <,所以()()22aae f a e f a <,因为21a a e e >>, ()(),2f a f a 大小不确定,故A 错误, 因为a a -<,所以()()aa ef a e f a --<,即()()2a f a e f a >-,故B 正确.因为0a >,所以()()()000a e f a e f f >=, 因为1a e >,()(),0f a f 大小不确定.故C 错误.()()()000a e f a e f f >=,因为1a e >,所以()()0af f a e>,故D 正确.故选BD. 【名师点睛】本题主要考查导数与函数单调性比较大小,还考查了运算求解的能力,属于中档题.2.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->【试题来源】江苏省盐城市伍佑中学2019-2020学年高二下学期期中 【答案】BCD【分析】构造出函数()()xxf x F x e =,再运用求导法则求出其导数,借助导数与函数单调性之间的关系及题设中()()()f x xf x xf x '+<,从而确定函数()()xxf x F x e =是单调递减函数,然后可判断出每个答案的正误. 【解析】构造函数()()xxf x F x e =, 因为2[()()]()()()()()0()x x x xe f x xf x xe f x f x xf x xf x F x e e '+-+-=='<', 故函数()()xxf x F x e=在R 上单调递减函数, 因为21>,所以212(2)(1)(2)(1)f f F F e e <⇒<,即2(2)(1)f f e<,故A 正确,B 错误; 因为()(1)0F F <,即()10f e<,所以()10f <,故C 错误; 因为()(1)0F F ->,即()110f e--->,所以()10f -<,故D 错误,故选BCD. 【名师点睛】解答本题的难点所在是如何依据题设条件构造出符合条件的函数()()xxf x F x e=,这里要求解题者具有较深的观察力和扎实的基本功,属于较难题. 3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x < D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1【试题来源】山东省肥城市2019-2020学年高二下学期期中考试 【答案】BCD【分析】先对函数求导,根据022f ππ⎛⎫'=-≠⎪⎝⎭,排除A ;再由导数的方法研究函数单调性,判断出B 选项;构造函数()sin xg x x=,由导数的方法研究其单调性,即可判断C 选项;根据()sin x g x x =的单调性,先得到sin 2x x π>,再令()sin h x x x =-,根据导数的方法研究其单调性,得到sin 1xx<,即可判断D 选项. 【解析】因为()cos sin f x x x x =-,所以()cos sin cos sin f x x x x x x x '=--=-, 所以022f ππ⎛⎫'=-≠⎪⎝⎭,所以2x π=不是函数的极值点,故A 错; 若[]0,x π∈,则()sin 0f x x x '=-≤,所以函数()cos sin f x x x x =-在区间[]0,π上单调递减;因此()()00≤=f x f ,故B 正确; 令()sin x g x x =,则()2cos sin x x x g x x -'=, 因为()cos sin 0f x x x x =-≤在[]0,π上恒成立,所以()2cos sin 0x x xg x x -'=<在()0,π上恒成立,因此函数()sin xg x x=在()0,π上单调递减;又120x x π<<<,所以()()12g x g x >,即1212sin sin x x x x >,所以1122sin sin x x x x <,故C 正确;因为函数()sin x g x x =在()0,π上单调递减;所以0,2x π⎛⎫∈ ⎪⎝⎭时,函数()sin x g x x =也单调递减,因此()sin 22x g x g x ππ⎛⎫=>= ⎪⎝⎭在0,2π⎛⎫⎪⎝⎭上恒成立;令()sin h x x x =-,0,2x π⎛⎫∈ ⎪⎝⎭,则()1cos 0h x x '=-≥在0,2π⎛⎫⎪⎝⎭上恒成立,所以()sin h x x x =-在0,2π⎛⎫⎪⎝⎭上单调递增, 因此()sin 0h x x x =->,即sin 1xx <在0,2π⎛⎫ ⎪⎝⎭上恒成立; 综上,2sin 1x x π<<在0,2π⎛⎫⎪⎝⎭上恒成立,故D 正确.故选BCD . 【名师点睛】本题主要考查导数的应用,利用导数的方法研究函数的极值,单调性等,属于常考题型.4.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 【试题来源】冲刺2020高考数学之拿高分题目强化卷(山东专版) 【答案】ACD【分析】对选项A ,()f x 在[]1,2上的最小值小于a 即可;对选项B ,()g x 的最小值大于0即可;对选项C ,()f x 在[]1,2上的最小值大于()g x 的最大值即可;对选项D ,[]11,2x ∀∈,[]20,1x ∃∈,()min min ()g x f x ≤,()max max ()g x f x ≥即可.【解析】对选项A ,只需()f x 在[]1,2上的最小值小于a ,()f x 在[]1,2上单调递增,所以min 2()(1)111f x f ==-=-,所以1a >-,故正确; 对选项B ,只需()g x 的最小值大于0,因为[]πcos,2x a a a∈-,所以min ()52530g x a a a =-+-=->,所以503a <<,故错误; 对选项C ,只需()f x 在[]1,2上的最小值大于()g x 的最大值,min ()1f x =-,max ()525g x a a a =+-=-,即15a ->-,6a >,故正确;对选项D ,只需()min min ()g x f x ≤,()max max ()g x f x ≥,max 2()(2)212f x f ==-=,所以[]11,2x ∈,[]1()1,1f x ∈-, []0,1x ∈时,π0,22x π⎡⎤∈⎢⎥⎣⎦,所以()g x 在[]0,1上单调递减, ()min (1)52a g x g ==-,()max (0)5a g x g ==-,所以()[]52,5g x a a ∈--,由题意,52151a a -≤-⎧⎨-≥⎩⇒34a ≤≤,故正确.故选ACD .【名师点睛】本题主要考查不等式恒成立和存在性问题,考查学生的分析转化能力,注意恒成立问题和存在性问题条件的转化,属于中档题.5.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .1【试题来源】江苏省南京市2020-2021学年高三上学期期中考前训练 【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立,令()()3ln ln 1x F x x x x x =++>,利用导数法研究其最小值即可.【解析】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x =++>,则()222131ln 2ln x x x F x x x x x---'=-+=.令()ln 2x x x ϕ=--,因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=,将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数,所以713,34t ⎛⎫∈ ⎪⎝⎭,即()min1713,41216F x ⎛⎫∈ ⎪⎝⎭. 因为k 为整数,所以0k ≤.故选ABC . 6.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+D .21cos 12x x ≥-【试题来源】广东省中山市2019-2020学年高二下学期期末 【答案】ACD 【分析】令10tx ,()1ln 1f t t t=+-,导数方法求出最小值,即可判定出A 正确;令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >,导数方法研究单调性,求出范围,即可判定B 错; 令()1xf x e x =--,导数的方法求出最小值,即可判定C 正确;令()21cos 12f x x x =-+,导数的方法求出最小值,即可判定D 正确. 【解析】A 选项,因为1x >-,令10t x ,()1ln 1f t t t=+-,则()22111t f t t t t -'=-=,所以01t <<时,()210t f t t-'=<,即()f t 单调递减;1t >时,()210t f t t -'=>,即()f t 单调递增; 所以()()min 10f t f ==,即()1ln 10f t t t=+-≥,即1ln t t t -≥,即()ln 11x x x +≥+,1x >-恒成立;故A 正确;B 选项,令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >, 则()()2222211112110222x x x f x x x x x ---⎛⎫'=-+==-≤ ⎪⎝⎭显然恒成立, 所以()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭在0x >上单调递减, 又()10f =,所以当()0,1x ∈时,()()10f x f >=,即11ln 2x x x ⎛⎫>- ⎪⎝⎭,故B 错; C 选项,令()1xf x e x =--,则()1xf x e '=-,当0x >时,()10xf e x ='->,即()f x 单调递增;当0x <时,()10xf e x ='-<,所以()f x 单调递减;则()()00f x f ≥=,即1x e x ≥+恒成立;故C 正确; D 选项,令()21cos 12f x x x =-+,则()sin f x x x '=-+, 所以()cos 10f x x ''=-+≥恒成立,即函数()sin f x x x '=-+单调递增, 又()00f '=,所以当0x >时,()0f x '>,即()21cos 12f x x x =-+单调递增; 当0x <时,()0f x '<,即()21cos 12f x x x =-+单调递减; 所以()()min 00f x f ==,因此21cos 12x x ≥-恒成立,故D 正确;故选ACD . 三、填空题1.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________.【试题来源】【全国区级联考】江苏省徐州市铜山区下学期高二数学(文)期中试题 【答案】2c ≥【解析】由()()f x g x ≥,即32ln 1x x c x -+≥+,即32ln 1c x x x ≥-+++.令()()32ln 10h x x x x x =-+++>,()()()21331x x x h x x'-++=-,故函数()h x 在区间()0,1上递增,在()1,+∞上递减,最大值为()12h =,所以2c ≥.【名师点睛】本题主要考查利用分析法和综合法求解不等式恒成立,问题,考查利用导数研究函数的单调性,极值和最值等知识.首先根据()()f x g x ≥,对函数进行分离常数,这里主要的思想方法是分离常数后利用导数求得另一个部分的最值,根据这个最值来求得参数的取值范围.2.若[,)x e ∀∈+∞,满足32ln 0mxx x me -≥恒成立,则实数m 的取值范围为___________.【试题来源】2020届湖南省长沙市长郡中学高三下学期3月停课不停学阶段性测试(理) 【答案】(,2]e -∞【分析】首先对参数的范围进行讨论,分两种情况,尤其是当0m >时,对式子进行变形,构造新函数,将恒成立问题转化为最值来处理,利用函数的单调性来解决,综述求得最后的结果.【解析】(1)0m ≤,显然成立;(2)0m >时,由32ln 0mxx x me -≥22ln m x m x x e x ⇒≥2ln (2ln )mxx m x e e x⇒≥,由()x f x xe =在[),e +∞为增2ln mx x⇒≥2ln m x x ⇒≤在[),e +∞恒成立, 由()2ln g x x x =在[),e +∞为增,min ()2g x e =,02m e <≤, 综上,2m e ≤,故答案为(,2]e -∞.3.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.【试题来源】四川省泸州市2020学年下学期高二期末统一考试(文) 【答案】(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可.【解析】函数的导数2()21f ax x x '=+-,由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立,即221a x x+,得322x x a +在1x 上恒成立,设32()2g x x x =+, 则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数, 则当1x =时,()g x 取得最小值()1213g =+=,则3a , 即实数a 的取值范围是(],3-∞,故答案为(],3-∞.【名师点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 【试题来源】2020年高考数学选填题专项测试(文理通用) 【答案】[)0,+∞【分析】把()ln f x x x =-,代入()10f x m -+≤,即ln 1m x x ≥-+恒成立,构造()ln 1g x x x =-+,利用导数研究最值,即得解.【解析】()ln f x x x =-,则()10f x m -+≤恒成立,等价于ln 1m x x ≥-+令11()ln 1(0),'()1(0)x g x x x x g x x x x-=-+>=-=> 因此()g x 在(0,1)单调递增,在(1)+∞,单调递减, 故max ()(1)00g x g m ==∴≥,故答案为[)0,+∞.【名师点睛】本题考查了导数在不等式的恒成立问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________. 【试题来源】2020届四川省成都七中高三二诊数学模拟(理)试题 【答案】0a e ≤<【分析】若函数()0x f x e ax =->恒成立,即min ()0f x >,求导得'()x f x e a =-,在0,0,0a a a >=<三种情况下,分别讨论函数单调性,求出每种情况时的min ()f x ,解关于a的不等式,再取并集,即得.【解析】由题意得,只要min ()0f x >即可,'()x f x e a =-,当0a >时,令'()0f x =解得ln x a =,令'()0f x <,解得ln x a <,()f x 单调递减, 令'()0f x >,解得ln x a >,()f x 单调递增,故()f x 在ln x a =时,()f x 有最小值,min ()(ln )(1ln )f x f a a a ==-, 若()0f x >恒成立,则(1ln )0a a ->,解得0a e <<; 当0a =时,()0x f x e =>恒成立; 当0a <时,'()x f x e a =-,()f x 单调递增,,()x f x →-∞→-∞,不合题意,舍去.综上,实数a 的取值范围是0a e ≤<.故答案为0a e ≤<6.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 【试题来源】陕西省商洛市洛南中学2019-2020学年高二下学期第二次月考(理) 【答案】(2,)+∞【分析】设()3212,[1,2]2x x x x f x --∈-=,利用导数求得函数的单调性与最大值,结合题意,即可求得实数m 的取值范围.【解析】由题意,设()3212,[1,2]2x x x x f x --∈-=, 则()22(1)(323)x x f x x x --=-+'=,当2[1,)3x ∈--或(1,2]x ∈时,()0f x '>,()f x 单调递增;当2(,1)3x ∈-时,()0f x '<,()f x 单调递减, 又由222(),(2)2327f f -==,即2()(2)3f f -<, 即函数()f x 在区间[1,2]-的最大值为2,又由当[1,2]x ∈-时,32122x x x m --<恒成立,所以2m >, 即实数m 的取值范围是(2,)+∞.故答案为(2,)+∞【名师点睛】本题主要考查了恒成立问题的求解,其中解答中熟练应用函数的导数求得函数的单调性与最值是解答的关键,着重考查推理与运算能力,属于基础题.7.若()()220xxx me exeex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.【试题来源】浙江省杭州地区(含周边)重点中学2020-2021学年高三上学期期中 【答案】32m ≤-【分析】对已知不等式进行变形,利用换元法、构造函数法、常变量分离法,结合导数的性质进行求解即可.【解析】()()()()222210xx x x x xme ex e ex me ex e ex e e++++-⇒≤≤ (1), 令x ext e=,因为()0,x ∈+∞,所以0t >, 则不等式(1)化为2221(2)(1)11t t m t t m t --+++≤⇒≤+,设()xex f x e=,()0,x ∈+∞,'(1)()x e x f x e -=,当1x >时,'()0,()f x f x <单调递减, 当01x <<时,'()0,()f x f x >单调递增,因此当()0,x ∈+∞时,max ()(1)1f x f ==, 而(0)0f =,因此当()0,x ∈+∞时,()(0,1]f x ∈,因此(0,1]t ∈,设2221()1t t g t t --+=+,(0,1]t ∈,因此要想()()220x x xme ex e ex e ++-≤在()0,x ∈+∞上恒成立,只需min ()m g t ≤,2'2243()(1)t t g t t ---=+,因为(0,1]t ∈,所以'()0g t <,因此()g t 在(0,1]t ∈时单调递减,所以min 3()(1)2g t g ==-,因此32m ≤-.8.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.【试题来源】四川省三台中学实验学校2019-2020学年高二下学期期末适应性考试(理) 【答案】1,e e ⎛⎫ ⎪⎝⎭【分析】先由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;原问题即可转化为直线y ax =介于x y e =与ln y x =之间,作出其大致图象,由图象得到只需<<OA OB k a k ;根据导数的方法求出OA ,OB 所在直线斜率,进而可得出结果. 【解析】由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;所以若()()(ln )0=--<xf x e ax x ax 恒成立,只需0ln 0x e ax x ax ⎧->⎨-<⎩,即直线y ax =介于x y e =与ln y x =之间,作出其大致图象如下:由图象可得,只需<<OA OB k a k ;设11(,)A x y ,由ln y x =得1y x'=,所以111OA x x k y x =='=, 所以曲线ln y x =在点11(,)A x y 处的切线OA 的方程为1111ln ()-=-y x x x x , 又该切线过点O ,所以11110ln (0)1-=-=-x x x ,解得1x e =,所以1=OA k e; 设22(,)B x y ,由x y e =得e x y '=,所以22x OB x x k y e =='=,所以曲线x y e =在点22(,)B x y 处的切线OB 的方程为222()-=-x x y e e x x ,又该切线过点O ,所以2220(0)-=-x x ee x ,解得21x =,所以=OB k e ;所以1a e e <<.故答案为1,e e ⎛⎫⎪⎝⎭. 【名师点睛】本题主要考查由导数的方法研究不等式恒成立的问题,熟记导数的几何意义即可,属于常考题型.9.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________. 【试题来源】黑龙江省七台河市田家炳高级中学2019-2020学年高二下学期期中考试(理)【答案】[1,)-+∞【分析】求导得到()x f x e a '=+,讨论10a +和10a +<两种情况,计算10a +<时,函数()f x 在[)00,x 上单调递减,故()(0)0f x f =,不符合,排除,得到答案. 【解析】因为()1x f x e ax =+-,所以()x f x e a '=+,因为0x ,所以()1f x a '+. 当10a +,即1a ≥-时,()0f x ',则()f x 在[0,)+∞上单调递增,从而()(0)0f x f =,故1a ≥-符合题意;当10a +<,即1a <-时,因为()x f x e a '=+在[0,)+∞上单调递增,且(0)10f a '=+<,所以存在唯一的0(0,)x ∈+∞,使得()00f x '=.令()0f x '<,得00x x <,则()f x 在[)00,x 上单调递减,从而()(0)0f x f =,故1a <-不符合题意.综上,a 的取值范围是[1,)-+∞.故答案为[1,)-+∞.10.不等式()221n n n N *>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________. 【试题来源】北京市101中学2019-2020学年高三10月月考 【答案】331n n >-【分析】将不等式中的数字2变为3,得出331n n >-,然后利用导数证明出当3n ≥时,33n n ≥即可,即可得出不等式331n n >-对任意的n *∈N 恒成立.【解析】13311>-,23321>-,33331>-,猜想,对任意的n *∈N ,331n n >-.下面利用导数证明出当3n ≥时,33n n ≥,即证ln 33ln n n ≥,即证ln ln 33n n ≤, 构造函数()ln x f x x =,则()21ln xf x x -'=,当3x ≥时,()0f x '<. 所以,函数()ln x f x x =在区间[)3,+∞上单调递减,当3n ≥时,ln ln 33n n ≤.所以,当3n ≥且n *∈N 时,33n n ≥,所以,331n n >-.故答案为331n n >-. 【名师点睛】本题考查数列不等式的证明,考查了归纳法,同时也考查了导数在证明数列不等式的应用,考查推理能力,属于中等题.11.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________. 【试题来源】湖北省襄阳市第一中学2019-2020学年高二下学期5月月考 【答案】(,1)-∞【分析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->,分类讨论,分离参数,求最值,即可求实数m 的取值范围.【解析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->, (ⅰ)当(0,1)x ∈时,||0x m -≥,ln 0xx<,不等式恒成立,所以m R ∈; (ⅰ)当1x =时,|1|0m -≥,ln 0xx=,所以1m ≠; (ⅰ)当1x >时,不等式恒成立等价于ln x m x x <-恒成立或ln xm x x>+恒成立, 令ln ()x h x x x =-,则221ln ()x x h x x'-+=,因为1x >,所以()0h x '>,从而()1h x >, 因为ln xm x x<-恒成立等价于min ()m h x <,所以1m , 令ln ()x g x x x =+,则221ln ()x xg x x+-'=, 再令2()1ln p x x x =+-,则1'()20p x x x=->在(1,)x ∈+∞上恒成立,()p x 在(1,)x ∈+∞上无最大值,综上所述,满足条件的m 的取值范围是(,1)-∞.故答案为(,1)-∞.12.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.【试题来源】陕西省安康市2020-2021学年高三上学期10月联考(理)【答案】4e -⎡⎤⎣⎦【分析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立,当0x ≠时,则2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩,然后构造函数()x e g x x=(0x >),()221x h x x x +=-(0x <),分别求解函数()g x 的最小值和()h x 的最大值,只需()()min max h x a g x ≤≤即可.【解析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立;当0x ≠时,则()2,012,0x e ax x a x x x x ⎧≥>⎪⎨-≥--<⎪⎩,因为当0x <时,20x x ->, 所以只需满足2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩即可,令()x e g x x =(0x >),则()()21x x e g x x-'=, 则()0,1x ∈时,()0g x '<,所以()g x 在()0,1x ∈上递减, 当()1,x ∈+∞时,()0g x '>,则()g x 在()1,+∞上递增, 所以()()1min g x g e ==,所以a e ≤,令()221x h x x x +=-(0x <), 则()()()()()()22222222112221x x x x x x h x x x x x --+-+-'==--,令()0h x '=,得x =x =则当x ⎛∈-∞ ⎝ ⎭时,()0h x '>;当x ⎫∈⎪⎪⎝⎭时,()0h x '<, 所以函数()h x在⎛-∞ ⎝ ⎭上递增,在⎫⎪⎪⎝⎭上递减, 所以()4maxh x h ===-⎝⎭⎝⎭故4a ≥-4a e -≤.故答案为4e -⎡⎤⎣⎦.【名师点睛】本题考查根据不等式恒成立问题求参数的取值范围问题,考查学生分析问题、转化问题的能力,考查参变分离思想的运用,考查利用导数求解函数的最值,属于难题. 解决此类问题的方法一般有以下几种:(1)作出函数的图象,利用数形结合思想加以研究;(2)先进行参变分离,然后利用导数研究函数的最值,即可解决问题,必要时可以构造新函数进行研究.13.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________.【试题来源】河南省名校联盟2020届高三(6月份)高考数学(理)联考试题 【答案】[)0,+∞ 【分析】先根据2x π=时22f a ππ⎛⎫≤⎪⎝⎭得0a ≥,再对函数()f x 求导,研究导函数的单调性、最值等,进而研究函数()f x 单调性,即可解决.【解析】22f a ππ⎛⎫≤ ⎪⎝⎭,02f ⎛⎫= ⎪⎝⎭π,0a ∴≥. 由题意得()()2sin sin cos 1sin cos 1f x x x x x x x x '=-++-=-+-⎡⎤⎣⎦, 令()sin cos 1g x x x x =-+-,则()sin g x x x '=-. 当,2x π⎛⎤∈π⎥⎝⎦时,()0g x '<,()g x 单调递减; 当3,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,()g x ∴的最小值为()1g ππ=--. 又22g π⎛⎫=- ⎪⎝⎭,302g π⎛⎫= ⎪⎝⎭,3,22x ππ⎡⎤∴∈⎢⎥⎣⎦,()0g x ≤,即()0f x '≤, ()f x ∴在区间3,22ππ⎡⎤⎢⎥⎣⎦为减函数.02f π⎛⎫= ⎪⎝⎭,∴当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()0f x ≤.又当0a ≥,3,22x ππ⎡⎤∈⎢⎥⎣⎦时,0ax ≥,故()f x ax ≤恒成立,因此a 的取值范围是[)0,+∞.14.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.【试题来源】6月大数据精选模拟卷04(上海卷)(满分冲刺篇) 【答案】e -【分析】把不等式()221ln 0a x ax x ax -+≥+恒成立,转化为函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,结合函数的单调性和零点,得出1a-是函数ln y ax x =-的零点,即可求解. 【解析】由题意,不等式()221ln 0a x ax x ax -+≥+恒成立,即函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,由ln ,0,0y ax x a x =-<>,则10y a x'=-<,所以ln y ax x =-为(0,)+∞减函数, 又由当0a <,可得1y ax =+为(0,)+∞减函数, 所以1y ax =+ 与ln y ax x =-同为单调减函数,且1a-是函数1y ax =+的零点, 故1a -是函数ln y ax x =-的零点,故110ln a a a ⎛⎫⎛⎫=⋅--- ⎪ ⎪⎝⎭⎝⎭,解得a e =-.【名师点睛】本题主要考查了不等式的恒成立问题,以及函数与方程的综合应用,其中解答中把不等式恒成立问题转化为函数的性质和函数的零点问题是解答的关键,着重考查转化思想,以及推理与运算能力.15.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________. 【试题来源】2020届辽宁省抚顺市高三二模考试(理) 【答案】12-【分析】设()()2211xx ax f x x e-+=≤,结合导数可知当0a <时,()()min 21f x f a =+;由题意可知,()()2122211a a f x f a e++≥+=≥,设()1t g t e t =--,则()0g t ≤,由导数可求出当0t =时,()g t 有最小值0,即()0g t ≥.从而可确定()0g t =,即可求出a 的值.【解析】设()()2211xx ax f x x e -+=≤,则()()()121xx x a f x e --+⎡⎤⎣⎦'=.当211a +≥,即0a ≥时,()0f x '≤,则()f x 在(],1-∞上单调递减, 故()()2211a f x f e -≥=≥,解得102ea ≤-<,所以0a ≥不符合题意; 当211a +<,即0a <时,()f x 在(),21a -∞+上单调递减,在(]21,1a +上单调递增, 则()()min21f x f a =+.因为2211xx ax e -+≥,所以()()2122211a a f x f a e ++≥+=≥. 令211a t +=<,不等式21221a a e++≥可转化为10te t --≤,设()1t g t e t =--, 则()1tg t e '=-,令()0g t '<,得0t <;令()0g t '>,得01t <<,则()g t 在(),0-∞上单调递减,在()0,1上单调递增;当0t =时,()g t 有最小值0, 即()0g t ≥.因为()0g t ≤,所以()0g t =,此时210a +=,故12a =-. 【名师点睛】本题考查了函数最值的求解,考查了不等式恒成立问题.本题的难点在于将已知恒成立问题,转化为()10tg t e t =--≤恒成立.本题的关键是结合导数,对含参、不含参函数最值的求解. 四、双空题1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.【试题来源】辽宁省锦州市渤大附中、育明高中2020-2021学年高三上学期第一次联考 【答案】10,2⎛⎫ ⎪⎝⎭[)5,-+∞【分析】求出导函数()2122122ax x f x ax x x-+'=-+=,只需方程22210ax x -+=有两个不相等的正根,满足1212010210x x a x x a ⎧⎪∆>⎪⎪=>⎨⎪⎪+=>⎪⎩,解不等式组可得a 的取值范围;求出 ()()1212f x f x x x +--的表达式,最后利用导数,通过构造函数,求出新构造函数的单调性,最后求出t 的取值范围.【解析】2221()(0)ax x f x x x'-+=>,因为函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,所以方程22210ax x -+=有两个不相等的正实数根,于是有:121248010102a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()212121212()23ln a x x x x x x x x ⎡⎤=+--++⎣⎦21ln 2a a=---, 设21()1ln 2,02h a a a a ⎛⎫=---<< ⎪⎝⎭, 22()0a h a a '-=>,故()h a 在102a <<上单调递增,故1()52h a h ⎛⎫<=-⎪⎝⎭,所以5t ≥-.因此t 的取值范围是[)5,-+∞. 故答案为10,2⎛⎫ ⎪⎝⎭;[)5,-+∞【名师点睛】本题考查了已知函数极值情况求参数取值范围问题,考查了不等式恒成立问题,构造新函数,利用导数是解题的关键,属于基础题.2.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________. 【试题来源】2021年新高考数学一轮复习学与练 【答案】13,2⎛⎤-∞-⎥⎝⎦132-【分析】将2n =代入求解即可;当n 为奇数时,cos 1n π=-,则转化。
专题3.12 恒成立、存在性问题1.恒成立、存在性问题的求解思路:(1)转化为基本函数(曲线)问题:数形结合,利用函数图象或曲线性质求解,如一次函数端点法,二次函数判别式、指对函数切线法、根式平方联想圆等等; (2)分离参数法:转化为函数最值问题求解;(3)变换主元法:参数与变量角色转化,以参数为自变量,构建函数再求解. 2.不等式恒成立问题的求解策略:(1)分离参数()a f x ≥恒成立(()max a f x ≥)或()a f x ≤恒成立(()min a f x ≤); (2)数形结合(()y f x = 图象在()y g x = 上方即可); (3)讨论最值()min 0f x ≥或()max 0f x ≤恒成立. 3.不等式能恒成立求参数值(取值范围)的求解策略: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 4.对于已知函数()y f x =的单调性求参数问题:(1)已知可导函数()f x 在区间D 上单调递增,转化为区间D 上()0f x '≥恒成立; (2)已知可导函数()f x 在区间D 上单调递减,转化为区间D 上()0f x '≤恒成立; (3)已知可导函数()f x 在区间D 上存在增区间,转化为()0f x '>在区间D 上有解; (4)已知可导函数()f x 在区间D 上存在减区间,转化为()0f x '<在区间D 上有解.【预测题1】已知函数()ln xf x x-=.(1)设()()1x g x f x f x ⎛⎫=+⎪-⎝⎭,求函数()g x 的最小值; (2)设()1h x f x ⎛⎫=⎪⎝⎭,对任意1x ,()20,x ∈+∞,()()()()121212h x h x h x x k x x ++++≥恒成立,求k 的最大值.【答案】(1)ln 2-;(2)ln 2-. 【解析】(1)因为()11ln x f x x =,()()1111ln 1ln 11x g x f x f x x x x x ⎛⎫⎛⎫⎛⎫=+=+-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 令1t x=,则()()()ln 1ln 1F t t t t t =+--,()0,1t ∈. ()()ln 1ln 11ln1tF t t t t'=+--+=⎡⎤⎣⎦-, 当10,2t ⎛⎫∈ ⎪⎝⎭,()0F t '<,()F t 单调递减;当1,12t ⎛⎫∈ ⎪⎝⎭,()0F t '>,()F t 单调递增. 所以()F t )的最小值为1ln 22F ⎛⎫=-⎪⎝⎭.即函数()g x 的最小值是ln 2-. (2)()ln h x x x =,()()()1212h x h x h x x +-+()()11221212ln ln ln x x x x x x x x =+-++12121212lnln x x x x x x x x =+++=()11221212121212ln ln x x x x x x x x x x x x x x ⎡⎤++⎢⎥++++⎣⎦()12121212x x x x h h x x x x ⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎣⎦.由(1)知121121212ln 2x x x h h F x x x x x x ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≥, 所以()()()()121212ln 2h x h x h x x x x +-+-+⋅≥. 所以ln 2k -≤,k 的最大值是ln 2-. 【名师点睛】本题关键是将函数转化为()11ln x f xx =,利用换元法而得解.【预测题2】已知函数22()ln (1)1x f x x x =+-+.(1)求()f x 的单调区间;(2)若不等式1(1)e n an++≤对任意*n N ∈恒成立,求a 的取值范围.【答案】(1)单调递增区间为(10)-,,单调递减区间为(0)+∞,;(2)1(1]ln 2-∞-,. 【解析】(1)()f x 的定义域(1)-+∞,,22222ln(1)22(1)ln(1)2()1(1)(1)x x x x x x x f x x x x ++++--'=-=+++,令2()2(1)ln(1)2g x x x x x =++--,(1)x ∈-+∞,,()2ln(1)2g x x x '=+-,令()2ln(1)2h x x x =+-,(1)x ∈-+∞,,2()21h x x '=-+,当10x -<<时,()0h x '>,当0x >时,()0h x '<, 所以()h x 在(10)-,单调递增,在(0)+∞,单调递减, 又(0)0h =,故()0≤h x ,即当1x >-时,()0g x '≤,所以()g x 在(1)-+∞,单调递减,于是当10x -<<时,()(0)0g x g >=,当0x >时,()(0)0g x g <=, 所以当10x -<<时,()0f x '>,当0x >时,()0f x '<, 所以()f x 的单调递增区间为(10)-,,单调递减区间为(0)+∞,.(2)不等式1(1)n ae n++≤*()n N ∈等价于1()ln(1)1n a n++≤,又111n+>,故11ln(1)a nn≤-+, 设11()ln(1)x x x ϕ=-+,(01]x ∈,,222222(1)ln (1)()()(1)ln (1)ln (1)x x x f x x x x x x x ϕ++-'==+++,又()(0)0f x f ,故当(01]x ∈,时,()0x ϕ'<,所以()ϕx 在(01],单调递减,于是1()(1)1ln 2x ϕϕ≥=-,故11ln 2a ≤-,所以a 的取值范围为1(1]ln 2-∞-,. 【预测题3】已知函数()2()12ln ,f x a x x a R =--∈. (1)2a =时,求在(1,(1))f 处的切线方程; (2)讨论()f x 的单调性;(3)证明:当1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立. 【答案】(1)()21y x =-;(2)见解析;(3)证明见解析. 【解析】当2a =时,()()2212ln f x x x =--,0x >,()22424x f x x x x-'=-=,()10f =,()12f '=, ()f x ∴在1x =处的切线方程是()21y x =-.(2)()22222ax f x ax x x-'=-=,()0x >当0a ≤时,()0f x '<,()f x ∴在()0,∞+上单调递减,当0a >时,令()0f x '>,解得x a >,令()0f x '<,解得0x a<<,()f x ∴的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭, 综上可知0a ≤时,函数的减区间是()0,∞+,无增区间;0a >时,函数的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭. (3)要证明不等式当1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立, 即证明()()2112ln 1a x x ax a x--≥+-+在区间(1,)+∞上恒成立, 即证212ln 10ax x ax x ---+≥恒成立,令()212ln 1g x ax x ax x=---+,()3222212212ax ax x g x ax a x x x --+'=--+=()()()()22222112121x ax ax x x x x-----==,1,1a x ≥>,2210,10x ax ∴->->,即()0g x '>,()g x ∴在区间()1,+∞单调递增,即()()1g x g >,而()()2110g ax ax ax x =-=->,()0g x ∴>,∴ 1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立. 【预测题4】已知函数1()x f x e -=.(1)设函数()()h x xf x =,求()h x 的单调区间;(2)判断函数()y f x =与()ln g x x =的图象是否存在公切线,若存在,这样的切线有几条,为什么?若不存在,请说明理由.【答案】(1)单调减区间为(),1-∞-,单调增区间为()1,-+∞;(2)两曲线有两条公切线,理由见解析.【解析】(1)1()()x h x xf x xe-==,()()1111x x x h x xee x e ---=+=+',当1x <-时,()0h x '<,当1x >-时,()0h x '>,所以()h x 的单调减区间为(),1-∞-,单调增区间为()1,-+∞.(2)设两曲线的公切线为l ,与曲线1()x f x e -=切于点()1,a a e-,则切线方程为()11a a y e e x a ---=-,即111a a a y e x e ae ---=+-,又与曲线()ln g x x =切于点(),ln b b ,则切线方程为()1ln y b x b b-=-, 即1ln 1y x b b =+-.所以有1111ln 1a a a e be ae b ---⎧=⎪⎨⎪-=-⎩. 消元整理得110a a e ae a ---+=,所以方程根的个数即为两曲线的公切线条数.设11()x x x exe x ϕ--=-+,()11x x xeϕ-=-'.当0x <时,()0x ϕ'>,当01x <<时,由(1)知,()x ϕ'单调递减,()()10x ϕϕ''>=,当1x >时,由(1)知,()x ϕ'单调递减,()0x ϕ'<,当且仅当1x =时,()0x ϕ'=;所以()ϕx 在(),1-∞单调递增,在()1,+∞单调递减. 而()110ϕ=>,()220e ϕ=-<,22(1)10e ϕ-=-<,1(0)0eϕ=>, 又函数()ϕx 在R 上连续,所以函数11()x x x e xe x ϕ--=-+有两个零点,分别位于区间()1,0-和区间()1,2内.所以方程110a a e ae a ---+=有两个不同的根,即两曲线有两条公切线.【名师点睛】公切线问题需分别求得函数的切线方程,使斜率,截距分别相等,从而得到切线方程参数之间的关系,转化为函数问题,借助导数解决方程根的问题.【预测题5】已知函数()()1ln 22f x x x x =+-+,()()2ln 0g x x ax x a =-+>.(1)当1x >时,求函数()f x 的值域;(2)若函数()g x 有两个零点1x ,()212x x x <,当102λ≤≤时,不等式()()12110g x x a λλ'+-+-<恒成立,求实数a 的取值范围.【答案】(1)()0,∞+;(2)()0,1.【解析】(1)()()1ln 22f x x x x =+-+,定义域为()0,∞+,()1ln 2x f x x x+'=+-,所以()22111x f x x x x -''=-=,所以当1x >时,()0f x ''>,所以函数()y f x '=在[)1,+∞单调递增,又()10f '=,所以当1x >时,()0f x '>,所以函数()y f x =在[)1,+∞单调递增, 又()10f =,所以当1x >时,()0f x >,x →+∞时,()f x →+∞, 即所求的值域是()0,∞+.(2)因为()g x 有两个零点1x ,()212x x x <,所以由()0g x =得2ln x xa x+=,记2ln x x y+=,则312ln x xy --'=,令0y '=得1x =,列表得 分析得max 1y =,且当0x →时,y →-∞;当x →+∞时,0y +→; 因为()g x 有两个零点1x ,()212x x x <,即2ln x xa x +=有两个零点, 所以必有01a <<.又由(1)知当1x >时,()()1ln 220f x x x x =+-+>,即()22ln 11x x x x ->>+ (*) 又()()1210g x ax a x '=-+>,()2120g x a x''=--<,所以()g x '在()0,∞+单调递减.又令211x x x =>代入(*)式得,()2212121211222ln 1x x x x x x x x x x -->=++,即121212ln ln 2x x x x x x -+<-,又由题意函数()g x 有两个零点1x ,()212x x x <,得()()2111122222ln 0ln 0g x x ax x g x x ax x ⎧=-+=⎪⎨=-+=⎪⎩, 两式相减得()1212121210ln ln 12x x x x x x a x x -+<=<-+-,所以()1212210a x x x x -++<+,因为120x x <<,102λ≤≤, 所以()()121212121122122x x x x x x x x λλλλ++--=+---⎡⎤⎡⎤⎣⎦⎣⎦ ()()1212102x x λ=--≥,所以()121212x x x x λλ++-≥, 所以()()()1212121221102x x g x x g a x x x x λλ+⎛⎫''+-≤=-++<⎪+⎝⎭, 又()1211g x x a λλ'+-<-⎡⎤⎣⎦,所以只要10a -≥, 因为0a >,所以01a <≤.综上所述,实数a 的取值范围是()0,1.【预测题6】已知函数21()(ln )2f x a x x x x=++-. (1)若02a <<,求函数()f x 的单调区间;(2)若存在实数[1,)a ∈+∞,使得()()2f x f x '+≤对于任意的x m ≥恒成立,求实数m 的取值范围.【答案】(1)增区间为⎫⎪⎪⎭,减区间为⎛ ⎝,(1,)+∞;(2)m 1≥. 【解析】(1)()f x 定义域为(0,)x ∈+∞,()222(1)211()22x x a f x a x x x x --⎛⎫'=-+-=-⎪⎝⎭22(1)x x x x ⎛- ⎝⎭⎝⎭=-,当02a <<时,令()0f x '>1x <, 所以()f x的增区间为⎫⎪⎪⎭,减区间为⎛ ⎝,(1,)+∞ (2)()()2f x f x '+≤,即222ln 0a aa x x x x+--≤ 即存在[1,)a ∈+∞,使得221211ln x x x x a⎛⎫+-≤ ⎪⎝⎭, 故22121ln 1x x x x ⎛⎫+-≤ ⎪⎝⎭对于任意的x m ≥恒成立,即2221ln 0x x x x+--≤, 令2221()ln g x x x x x=+--,即()0g x ≤对于任意的x m ≥恒成立,244233222222()x x x x x x g x x x -+--+-'==-, 设42()222h x x x x =-+-,3()82(1)h x x x '=--,当01x <<时,()0h x '>,42()222h x x x x =-+-在(0,1)单调递增,又(0)0h <,(1)0h >,所以存在唯一的0(0,1)x ∈,使得()00h x =, 当()0,1x x ∈时,()0h x >,则()0g x '<,()g x 是减函数, 所以()(1)0g x g >=,不符合题意,所以1m ≥, 下证当1≥x 时,()0g x ≤恒成立,()4222222212(1)0x x x x x x -+-=-+->, 所以423222()0x x x g x x-+-'=-<, 即()g x 在[1,)+∞上单调递减,()g(1)0g x ≤=, 综上,m 1≥.【名师点睛】此题考查导数的应用,考查利用导数求函数的单调区间,利用导数解决不等式恒成立问题,解题的关键是将问题转化为22121ln 1x x x x ⎛⎫+-≤ ⎪⎝⎭对于任意的x m ≥恒成立,即2221ln 0x x x x+--≤,然后构造函数,利用导数解决,考查数学转化思想和计算能力,属于中档题【预测题7】已知()ln f x x x =,()()212xg x x e e=--(1)求函数()g x 的单调区间;(2)已知1≥x 时,不等式()()2245ax x x f x -≤-+恒成立,求实数a 的取值范围.【答案】(1)在(),0-∞递增,在()0,2递减,在()2,+∞递增;(2)(],1ln 2-∞+. 【解析】(1)()g x 的定义域是R ,又()()2xg x x x e '=-,令()0g x '=,解得0x =或2x =,x ,()g x ',()g x 的变化如下:故()g x 在(),0-∞递增,在()0,2递减,在()2,+∞递增; (2)()y f x =的定义域是()0,∞+,当1≥x 时,由()()2245ax x x f x -≤-+可知()2245ln a x x x x≤-++, 令()()2245ln h x x x x x=-++,(1≥x ), 则()()2245222ln x x h x x x x x-+'=-+-()()222222ln x x x x x x -+-=-+()()22222ln 1x x x x x⎡⎤-+-⎣⎦=, 令()0h x '=,则1x =或2x =,故()h x 在()1,2递减,在()2,+∞递增, 故()h x 在[)1,+∞上的最小值是()21ln 2h =+, 故1ln2a ≤+,即a 的取值范围是(],1ln 2-∞+.【名师点睛】对于不等式恒成立可以采用常变量分离法构造函数,利用导数的性质进行求解. 【预测题8】已知函数()22ln kx f x x x +-=(1)当1k =时,求在1x =处的切线方程;(2)若()f x 在定义域上存在极大值,求实数k 的取值范围. 【答案】(1)3y x =;(2)1,02⎛⎫-⎪⎝⎭. 【解析】(1)1k =时,()22ln f x x x x =+-定义域是()0,∞+,()122f x x x'=+-(0x >) 所以()13f =,()13f '=,切线方程为()331y x -=-即3y x =(2)()f x 的定义域是()0,∞+,求导得()2122122kx x f x kx x x+-'=+-=(0x >) 记()2221g x kx x =+-,①当0k =时,令()102g x x =⇒=, 当10,2x ⎛⎫∈ ⎪⎝⎭时,()()()00g x f x f x <⇒'<⇒单调递减, 当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()()()00g x f x f x >⇒'>⇒单调递增;()f x 有极小值没有极大值.②当0k >时,480k ∆=+>,()21042g x x k k-=⇒==(负根舍去),当10,2x k ⎛⎫∈ ⎪ ⎪⎝⎭时,()()()00g x f x f x <⇒'<⇒单调递减,当x ⎫∈+∞⎪⎪⎝⎭时,()()()00g x f x f x >⇒'<⇒单调递增;()f x 有极小值没有极大值.③当0k <时,令480k ∆=+≤得1,2k ⎛⎤∈-∞- ⎥⎝⎦,则()22210g x kx x =+-≤在()0,∞+恒成立,于是()0f x '≤在()0,∞+恒成立,()f x 在定义域()0,∞+上单调递减,没有极大值. 令480k ∆=+>得1,02k ⎛⎫∈-⎪⎝⎭,令()10g x x =⇒=2x =()0f x '=有2个不相等正根,()f x 在10,2k ⎛⎫⎪ ⎪⎝⎭上单调递减,在11,22k k ⎛⎫ ⎪ ⎪⎝⎭单调递增,在1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭单调递减.所以()f x在2x =综上所述,()f x 在定义域上存在极大值时,实数k 的取值范围是1,02⎛⎫-⎪⎝⎭. 【名师点睛】本题考查导数的几何意义,考查用导数研究函数的最值.解题关键是掌握导数与单调性的关系,掌握极值的定义.解题方法是利用分类讨论思想讨论()0f x '=的根的分布,()'f x 0>或()0f x '<的解的情况,确定单调性得极值情况.【预测题9】已知函数()f x x =,()sin cos g x x x =+.(1)当4x π≥-时,求证:()()f x g x ≥;(2)若不等式()()2f x g x ax +≤+在[0,)+∞上恒成立,求实数a 的取值范围. 【答案】(1)证明见解析;(2)[2,)+∞. 【解析】(1)令()()()sin cos h x f x g x x x x =-=--,4x π≥-,①当44x ππ-≤<时,则()1cos sin h x x x '=+-+,设1()()h x h x =',)1321()04h x x π⎛⎫'=++> ⎪⎝⎭, ()h x '∴在,44ππ⎡⎫-⎪⎢⎣⎭上单调递增,且()00h '=,当04x π-≤<时,()0h x '<;当04x π≤<时,()0h x '≥,()h x ∴在,04π⎡⎫-⎪⎢⎣⎭上递减,在0,4π⎡⎫⎪⎢⎣⎭上递增, ()()00h x h ∴≥=,()()f x g x ∴≥;②当4x π≥时,则()4h x x x x π⎛⎫=+≥- ⎪⎝⎭1044ππ≥>+->,()()f x g x ∴≥;综上所述,当4x π≥-时,()()f x g x ≥;(2)令()()()2sin cos 2t x f x g x ax x x x ax =+--=++--,0x ≥,则()1cos sin t x x x a '=+--,由题意得()0t x ≤在[0,)+∞上恒成立,()00t =,()020t a '∴=-≤,2a ∴≥;下证当2a ≥时,()0t x ≤在[0,)+∞上成立,()sin cos 2sin cos 22t x x x x x ax x xx x =++--≤++--,令()sin cos 2x x x x ϕ++-,只需证明()0xϕ≤在[0,)+∞上成立, (1)当04x π≤≤时,()1cos sin x x x ϕ'=-+-,设1()()x x ϕϕ=',1321()4x x πϕ⎛⎫'=-+ ⎪⎝⎭, ()1x ϕ'在0,4⎡⎤⎢⎥⎣⎦π上单调递减,11()(0)0x ϕϕ∴'≤'=,()x ϕ'∴在0,4⎡⎤⎢⎥⎣⎦π上单调递减,()()00x ϕϕ''∴≤=,()x ϕ∴在0,4⎡⎤⎢⎥⎣⎦π上单调递减,()()00xϕϕ∴≤=;(2)当4x π>时,()24x xx πϕ⎛⎫=++- ⎪⎝⎭2x ≤-+204π≤+<;综上所述,实数a 的取值范围是[2,)+∞.【名师点睛】本题考查了利用导数证明不等式,利用导数研究不等式恒成立,解题的关键是由题意确定2a ≥,将不等式恒成立转化为()sin cos 22t x x x x x ≤++--,进而证明()sin cos 220x x x x x ϕ=++--≤,考查了转化思想以及运算能力.【预测题10】已知函数()()ln 10f x m x kx m =++> (1)讨论()f x 的单调性;(2)若存在实数k ,使得()mxxf x e '≤恒成立的m 值有且只有一个,求k m +的值.【答案】(1)答案见解析;(2)2e k m +=. 【解析】(1)函数()f x 的定义域为()0,∞+,()m m kxf x k x x+'=+=. 当0k ≥时,()0f x '>,()f x 在(0,)+∞上单调递增; 当0k <时,令()0f x '=,解得mx k=-, 当0,m x k ∈-⎛⎫ ⎪⎝⎭时,()0f x '>,当,m x k ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '<.()f x ∴在0,m k ⎛-⎫ ⎪⎝⎭上单调递增,在,m k ⎛⎫-+∞ ⎪⎝⎭上单调递减. 综上所述,当0k ≥,()f x 在(0,)+∞上单调递增; 当0k <时,()f x 在0,m k ⎛-⎫ ⎪⎝⎭上单调递增,在,m k ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)()mxxf x e '≤恒成立,即0mx e kx m --≥恒成立 令()mxg x ekx m =--,则()mx g x me k '=-.①当0k ≤时,()0g x '>,()g x 单调递增,要使()0g x ≥在()0,∞+上恒成立,只需()010g m =-≥,01m ∴<≤,此时m 不唯一,不合题意;②当0k m <≤时,令()0g x '=,解得ln ln 0k mx m-=≤,()g x 在()0,∞+上单调递增. 要使()0g x ≥在()0,∞+上恒成立,只需()010g m =-≥,01m ∴<≤,此时m 不唯一,不合题意;③当k m >时,令()0g x '=,解得ln ln 0k mx m-=>,当ln ln 0,k m x m -⎛⎫∈ ⎪⎝⎭时,()0g x '<,()g x 单调递减, 当ln ln ,k m x m -⎛⎫∈+∞⎪⎝⎭时,()0g x '>,()g x 单调递增, ()()ln ln min ln ln ln ln k m k m kg x g ek m m m m --⎛⎫∴==--- ⎪⎝⎭, 要使()0g x ≥在()0,∞+上恒成立,且m 值唯一,只需ln ln 0k m g m -⎛⎫=⎪⎝⎭, 整理得2ln ln 10m m k k-+-=,令()2ln ln 1m h m m k k =-+-,则()22k m h m mk-'=,令()0h m '=,解得m =.当m ⎛∈ ⎝时,0h m,()h m 单调递增,当m ⎫∈+∞⎪⎪⎭时,0h m,()h m 单调递减.()max 1ln 2h m h ∴==,要使m 值唯一,只需()max 102h m ==,解得2e k =,m =,k m ∴+= 【名师点睛】本题考查利用函数不等式恒成立,关键就是将问题转化为()min 0g x ≥,并利用导数分析函数的单调性,进而求解.【预测题11】已知函数2()2ln 3f x x ax x =-+-. (1)讨论()f x 的单调性.(2)若对任意的[]1,2a ∈,总存在1x ,2x ,使得()()120f x f x +=,证明:124x x +≥.【答案】(1)答案见解析;(2)证明见解析.【解析】(1)2222'()2x ax f x x a x x-+=-+=.当2160a ∆=-≤,即44a -≤≤时,'()0f x ≥,所以()f x 在()0,∞+上单调递增.当2160a ∆=->,即4a或4a >时,令2220x ax -+=,得216a a x ±-=.当4a时,两根均为负数,则'()0f x >,所以()f x 在()0,∞+上单调递增;当4a >时,两根均为正数,所以()f x 在2160,4a a ⎛⎫-- ⎪ ⎪⎝⎭,2164a a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增,在22161644a a a a ⎛-+-⎪⎝⎭,上单调递减. 综上所述,当4a ≤时,()f x 在()0,∞+上单调递增;当4a >时,()f x 在2160,4a a ⎛⎫-- ⎪ ⎪⎝⎭,2164a a ⎛⎫+-+∞ ⎪ ⎪⎝⎭上单调递增,在22161644a a a a ⎛-+- ⎪⎝⎭,上单调递减.(2)因为()()120f x f x +=,所以221112222ln 32ln 30x ax x x ax x -+-+-+-=,整理得()221212122ln 2ln 60x x a x x x x +-+++-=,即()()()212121212622ln x x a x x x x x x +-+-=-. 令()22ln g x x x =-,则22(1)'()2x g x x x-=-=, 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()12g x g ≥=,即()121222ln 2x x x x -≥.因为()()2121262x x a x x +-+-≥,所以()()2121280x x a x x +-+-≥. 因为()()21212()8h a x x a x x =+-+-在[]1,2a ∈上单调递减, 所以()()21212(2)280h x x x x =+-+-≥,即()()1212420x x x x +-++≥. 因为12,0x x >,所以124x x +≥. 【预测题12】已知函数3231()3(0)2f x x a x x a a ⎛⎫=-++> ⎪⎝⎭. (1)讨论()f x 的单调性. (2)若1a >,且1,x a ⎛⎫∀∈+∞⎪⎝⎭,31()2f x a >,求a 的取值范围.(3)是否存在正数a ,使得()21f x x >-对()2,3x ∈恒成立?若存在,求a 的取值范围;若不存在,请说明理由.【答案】(1)答案见解析;(2)1,2⎛ ⎝⎭;(3)不存在,理由见解析. 【解析】(1)21'()333f x x a a ⎛⎫=-++ ⎪⎝⎭,令'()0f x =,解得x a =或1x a=, 当1a =时,'()0f x ≥,()f x 在R 单调递增, 当01a <<时,1a a>, 由'()0f x <,得1,x a a ⎛⎫∈ ⎪⎝⎭,由'()0f x >,得()1,,x a a ⎛⎫∈-∞+∞ ⎪⎝⎭,故()f x 在1,a a ⎛⎫ ⎪⎝⎭上单调递减,在(),a -∞,1,a ⎛⎫+∞ ⎪⎝⎭单调递增, 当1a >时,1a a<, 由'()0f x <,得1,x a a ⎛⎫∈⎪⎝⎭,由'()0f x >,得()1,,x a a ⎛⎫∈-∞+∞ ⎪⎝⎭,故()f x 在1,a a ⎛⎫⎪⎝⎭上单调递减,在1,a ⎛⎫-∞ ⎪⎝⎭,(),a +∞单调递增,综上:当1a =时,()f x 在R 单调递增, 当01a <<时,()f x 在1,a a ⎛⎫ ⎪⎝⎭上单调递减,在(),a -∞,1,a ⎛⎫+∞ ⎪⎝⎭单调递增,当1a >时,()f x 在1,a a ⎛⎫⎪⎝⎭上单调递减,在1,a ⎛⎫-∞ ⎪⎝⎭,(),a +∞单调递增;(2)因为1a >,所以()f x 在1,a a ⎛⎫⎪⎝⎭单调递减,在(),a +∞单调递增,故()3min 1()2f x f a a =>,整理得332a a <,又1a >,故12a <<,故a 的取值范围是⎛ ⎝⎭; (3)()21f x x >-,323112x x a a x ++⎛⎫+< ⎪⎝⎭在()2,3x ∈上恒成立,设211()g x x x x =++,3233122'()1x x g x x x x--=--=, 设3()2k x x x =--,则2'()31k x x =-,当()2,3x ∈时,'()0k x >,故()k x 在()2,3上单调递增,()()240k x k >=>, 故'()0g x >在()2,3恒成立,()g x 在()2,3单调递增,则11()(2)4g x g >=,又12a a +≥=,(当且仅当1a =时“=”成立), 故3111324a a ⎛⎫+≥> ⎪⎝⎭,故不存在正数a ,使得()21f x x >-对()2,3x ∈恒成立. 【名师点睛】本题的关键是由()21f x x >-变形为323112x x a a x++⎛⎫+< ⎪⎝⎭,构造新函数,利用导数的性质和基本不等式进行求解.【预测题13】已知函数()()ln 11f x x kx =+--. (1)讨论函数()f x 的单调性;(2)若关于x 的不等式()01xef x x ++≥对任意0x ≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析;(2)1k ≤.【解析】(1)()()ln 11f x x kx =+--,0x ≥,()1111k kxf x k x x --'=-=++. ①若0k ≤,则()0f x >′恒成立,故()f x 在[)0,+∞上单调递增. ②若01k <<,令()0f x '=,得110x=->.③若1k,则()0f x '≤恒成立,故()f x 在[)0,+∞上单调递减.综上所述,若0k ≤,()f x 在[)0,+∞上单调递增;若01k <<,()f x 在10,1k ⎛⎫- ⎪⎝⎭上单调递增,在11,k ⎛⎫-+∞⎪⎝⎭上单调递减;若1k ,()f x 在[)0,+∞上单调递减.(2)令()()1x e g x f x x =++,故()()ln 111xe g x x kx x =+-+-+,0x ≥所以()()2111x x g x k x x '=-+++,令()()()2111xxe h x g x k x x ='=-+++, ()()()()()()()222331111111xx x e x e x h x x x x ++-+'=-+=+++,下面证明1x e x ≥+,其中0x ≥. 令()1xx e x ϕ=--,0x ≥,则()10x x eϕ-'=≥.所以()x ϕ在[)0,+∞上单调递增,故()()00x ϕϕ≥=, 所以当0x ≥时,1x e x ≥+. 所以()()()()()()()()()222333111110111x x e x x x x x h x x x x +-+++-+'==+++≥≥,所以()g x '在[)0,+∞上单调递增,故()()01g x g k ''=-≥.①若10k -≥,即1k ≤,则()()010g x g k ''=-≥≥,所以()g x 在[)0,+∞上单调递增, 所以()()00g x g ≥=对0x ∀>恒成立,所以1k ≤符合题意. ②若10k -<,即1k >,此时()010g k '=-<,()()()4442222214441411414122k k kke ke e g k k k k k k k k k ⎡⎤⎢⎥⎢⎥'=-+>-=⋅-=⎢⎥+⎛⎫+++⎢⎥⎪⎝⎭⎣⎦221122k e k ⎡⎤⎛⎫⎢⎥ ⎪⎢⎥- ⎪⎢⎥ ⎪+⎢⎥⎝⎭⎣⎦,且据1k >及1xe x ≥+可得212122k e k k +>+≥,故221122ke k ⎛⎫⎪> ⎪ ⎪+⎝⎭,所以()40g k '>. 又()g x '的图象在[)0,+∞上不间断,所以存在()00,4x k ∈,使得()0g x '=, 且当()00,x x ∈时,()0g x '<,()g x 在()00,x 上单调递减, 所以()()000g x g <=,其中()00,4x k ∈,与题意矛盾, 所以1k >不符题意,舍去.综上所述,实数k 的取值范围是1k ≤.【名师点睛】利用导数研究含参函数的单调性,注意讨论的不重不漏;根据不等式恒成立求参数的取值范围,注意先猜后证、反证法的综合应用. 【预测题14】已知函数()2(23)xf x e m x x =+-.(1)若曲线()y f x =在点0(1,)P y 处的切线为:(1)0l e x y n +-+=,求,m n ; (2)当1m =时,若关于x 的不等式()()25312f x x a x ≥+-+在[)1,+∞上恒成立,试求实数a 的取值范围.【答案】(1)1,2m n ==-;(2)32a e ≤-. 【解析】(1)因为函数()2(23)x f x e m x x =+-的导数()(43)xf x e m x '=+-,所以由题意可得(1)1f e m e '=+=+,即1m =.则2()23xf x e x x =+-,点P 坐标为()1,1e -,因为点P 在直线:(1)0l e x y n +-+=上,所以2n =-, 故1,2m n ==-;(2)当1m =时,2()23x f x e x x =+-因为关于x 的不等式()()25312f x x a x ≥+-+在[)1,+∞上恒成立, 所以12x e x a x x≤--,在[)1,+∞上恒成立,设()12x e x g x x x =--,则()()()22211111122x x e x e x g x x x x --+'=-+=-, 由1xy e x =--的导数为1xy e '=-,当0x >时,0y '>,函数1xy e x =--递增,当0x <时,函数1xy e x =--递减,则10x e x --≥,即10x e x ≥+>,所以当1≥x 时,()()()22111111110222x e x x x x x -++-+-≥-=>, 则()12x e x g x x x=--在[)1,+∞递增,所以()()min 312g x g e ==-,则32a e ≤-. 【名师点睛】若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为()a f x >(或()a f x <),则(1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<. 【预测题15】已知函数()()xf x e ax a R =+∈.(1)讨论()f x 在()0,∞+上的单调性; (2)若对任意()0,x ∈+∞,()22ln 0x xe ax x a ++-≥恒成立,求a 的取值范围.【答案】(1)答案见解析;(2)[)(),00,e -+∞.【解析】(1)()x f x e a '=+,当1a ≥-时,因为0x >,所以e 1x >,所以()0xf x e a '=+>,所以()f x 在()0,∞+上的单调递增当1a <-时,()ln 0a ->,所以()ln x a >-时,()0f x '>;()ln x a <-时,()0f x '< 所以()f x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增, 综上可得当1a ≥-时,()f x 在()0,∞+上的单调递增,当1a <-时,()f x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增; (2)当1a ≥-且0a ≠时,由(1)可知()f x 在()0,∞+上的单调递增, 所以()()01f x f >=,所以0x >时,()22ln 0x xe ax x a++-≥恒成立,2ln 2ln 0xa e ax x a x ⇔+++-≥恒成立,当1a <-时,令()2ln 2ln xau x e ax x a x=+++-,因为2ln 2ln a y x a x=+-,由22ln 10a y x'=->得()ln x a >-,由22ln 10a y x'=-<得()0ln x a <<-,所以在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增, 由(1)可知()xf x e ax =+,在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增,所以()u x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增,所以()()()()()()()()()2ln min ln ln ln ln 2ln ln a a u x u a ea a a a a --=-=+-+-+---()()()()()ln ln ln ln 1a ea a a a a a a -=+-=-+-=--,所以()()ln 10a a --≥,解得1e a -≤<-, 综上可得a 的取值范围是[)(),00,e -+∞.【预测题16】已知函数2()2xf x e ax =--.(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积;(2)若()0xf x e -+≥恒成立,求实数a 的取值范围.【答案】(1)222e e+-;(2)(,1]-∞. 【解析】(1)因为2()2x f x e ex =--,所以)'(2xf x e ex =-,故'(1)k f e ==-.又(1)2f =-,所以切点坐标为(1,2)-,故函数()f x 在点(1,(1))f 处的切线方程为2(1)y e x +=--,即2y ex e =-+-,所以切线与坐标轴交点坐标分别为(0,2)e -,2,0e e -⎛⎫⎪⎝⎭, 故所求三角形面积为2212(2)442(2)22222e e e e e e e e e e ---+⎛⎫⨯-⨯===+- ⎪⎝⎭. (2)由()0xf x e -+≥,得220x x e e ax -+--≥恒成立,令2()2xxg x e eax -=+--,则()()g x g x -=,所以()g x 为偶函数.故只要求当0x ≥时,()0g x ≥恒成立即可.'()2x x g x e e ax -=--,设()2(0)xxh x e eax x -=--≥,故 '()2(0)x x h x e e a x -=+-≥, 设()2(0)xx H x e ea x -=+-≥,则'()(0)x x H x e e x -=-≥,显然'()H x 为(0,)+∞的増函数,故'()'(0)0H x H ≥=,即()H x 在(0,)+∞上单调递增,(0)22H a =-.当1a ≤时,(0)220H a =-≥,则有()h x 在(0,)+∞上单调递增,故()(0)0h x h ≥=, 则()g x 在(0,)+∞上单调递增,故()(0)0g x g ≥=,符合题意; 当1a >时,(0)220H a =-<,又1(ln 2)02H a a=>,故存在0(0,ln 2)x a ∈,使得()00H x =, 故()h x 在()00,x 上单调递减,在()0,x +∞上单调递增.当()00,x x ∈时,()(0)0h x h <=,故()g x 在()00,x 上单调递减, 故()(0)0g x g <=,与()0g x ≥矛盾. 综上,实数a 的取值范围为(,1]-∞.【名师点睛】解题的关键第一是构造函数,利用函数的奇偶性进行转化问题求解;第二是三次求导,利用导数的性质进行求解. 【预测题17】已知函数()()1ln f x a x a R x =+∈,()21g x x x x=--. (1)讨论()f x 的单调性;(2)若函数()()()F x f x g x =+存在两个极值点1x ,2x ,且曲线()y F x =在x 处的切线方程为()y G x =,求使不等式()()F x G x <成立的x 的取值范围.【答案】(1)答案见解析;(2)⎛ ⎝. 【解析】(1)()21-='ax f x x , 当0a ≤时,()0f x '<恒成立,函数()f x 在()0,∞+上单调递减, 当0a >时,易得当1x a >时,()0f x '>,当10x a<<时,()0f x '<, 故()f x 在1,a ⎛⎫+∞⎪⎝⎭上单调递增,在10,a ⎛⎫⎪⎝⎭上单调递减, (2)()()()2ln F x f x g x a x x x =+=+-,所以()2221a x x aF x x x x-+'=+-=,0x >,因为()()()F x f x g x =+存在两个极值点1x ,2x ,所以()220x x aF x x-+'==有两个不等正实数解,即220x x a -+=有两个不等式正根,所以18002a a∆=->⎧⎪⎨>⎪⎩,解得108a <<, 因为122a x x =,x ==所以1F '=-,ln 222a a a F =+所以曲线()y F x =在x =()ln 1222a a a y x ⎛⎛-+=- ⎝⎝, 即()()31ln 222a a a G x y x ==-+-, 令()()()23ln ln 222a a a h x F x G x x a x =-=+-+-, ()2220x ah x xx-+'==>,故()h x 在()0,∞+上单调递增,且0h =,故当0x <<时,()0h x <,即()()F x G x <,故x的范围⎛ ⎝. 【名师点睛】解不等式比较常用的方法是构造新函数,研究函数的单调性,明确函数的零点,即可明确不等式何时成立.【预测题18】已知函数()cos 2xf x e a x =+-,()f x '为()f x 的导函数.(1)讨论()f x '在区间π0,2⎛⎫⎪⎝⎭内极值点的个数;(2)若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,求实数a 的取值范围. 【答案】(1)分类讨论,答案见解析;(2)[)1,+∞.【解析】(1)由()cos 2xf x e a x =+-,得()sin xf x e a x '=-.令()sin xg x e a x =-()cos xg x e a x '=-.因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以e 1x>,0cos 1x <<. 当1a ≤时,()0g x '>,()g x 单调递增,即()f x '在区间π0,2⎛⎫⎪⎝⎭内无极值点;当1a >时,()sin xg x e a x ''=+,π0,2x ⎛⎫∈ ⎪⎝⎭, 所以()0g x ''>,所以()cos xg x e a x '=-在π0,2⎛⎫ ⎪⎝⎭单调递增.又()00cos010g e a a '=-=-<,ππ22ππcos 022g e a e ⎛⎫'=-=> ⎪⎝⎭,故存在0π0,2x ⎛⎫∈ ⎪⎝⎭,使()00g x '=且()00,x x ∈时,()0g x '<,()g x 单调递减; 0π,2x x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,所以0x x =为()g x 的极小值点,此时()f x '在区间π0,2⎛⎫⎪⎝⎭内存在一个极小值点,无极大值点.综上所述,当1a ≤时,()f x '在区间π0,2⎛⎫ ⎪⎝⎭内无极值点;当1a >时,()f x '在区间π0,2⎛⎫ ⎪⎝⎭内存在一个极小值点,无极大值点. (2)若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,则()0120f a =+-≥,所以1a ≥.下面证明当1a ≥时,()0f x ≥在π,02x ⎡⎤∈-⎢⎥⎣⎦恒成立. 因为π,02x ⎡⎤∈-⎢⎥⎣⎦时,0cos 1x ≤≤,所以1a ≥时,()cos 2cos 2xxf x e a x e x =+-≥+-.令()cos 2xh x e x =+-,π,02x ⎡⎤∈-⎢⎥⎣⎦,所以()sin xh x e x '=-令()sin xx e x ϕ=-()cos xx e x ϕ'=-.()sin x x e x ϕ''=+在区间π,02⎡⎤-⎢⎥⎣⎦单调递增.又ππ331ππsin 03322e e e ϕ---⎛⎫⎛⎫''-=+-=-<-< ⎪ ⎪⎝⎭⎝⎭, 所以()cos xx e x ϕ'=-在区间ππ,23⎡⎤--⎢⎥⎣⎦上单调递减.又ππ22ππcos 022e e ϕ--⎛⎫⎛⎫'-=--=> ⎪ ⎪⎝⎭⎝⎭, ππ331ππ11cos 03322e e e ϕ---⎛⎫⎛⎫'-=--=-<-< ⎪ ⎪⎝⎭⎝⎭,所以存在1ππ,23x ⎛⎫∈-- ⎪⎝⎭,使()10x ϕ'=,且1π,2x x ⎛⎫∈-⎪⎝⎭时,()0x ϕ'>,()h x '单调递增; ()1,0x x ∈时,()0x ϕ'<,()h x '单调递减,所以1x x =时,()h x '取得最大值,且()()1max h x h x ''=. 因为()10x ϕ'=,所以11cos xe x =,所以()h x 单调递减,所以π,02x ⎡⎤∈-⎢⎥⎣⎦时,()()00h x h ≥=,即()0f x ≥成立. 综上,若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,则a 的取值范围为[)1,+∞.【名师点睛】含参数分类讨论函数的单调性、极值,需要根据导函数的结构,对参数进行分类讨论.【预测题19】函数()sin (1cos )f x x x =⋅+,()(1)xg x a e =-(1)当0a <时,函数()()()F x f x g x =+在(0,)2x π∈有极值点,求实数a 的取值范围;(2)对任意实数[0,)x ∈+∞,都有()()f x g x ≤恒成立,求实数a 的取值范围. 【答案】(1)20a -<<;(2)2a ≥.【解析】(1)()sin (1cos )(1)xF x x x a e =++-,2()cos (1cos )sin (sin )2cos cos 1x x F x x x x x ae x x ae =++=-'-+++, ()4cos sin )sin sin (4cos 1)x x F x x x x ae x x ae =-'-+'+=-+(,因为(0,)2x π∈,所以sin 0,cos 0x x >>,又0a <,所以()F x ''<0,所以'()F x 在(0,)2π上递减,(0)20F a =+>',2()102F ae ππ'=-+<,所以20a -<<,(2)()()()G x g x f x =-=(1)sin (1cos )0xa e x x --+≥.因为()02F π≥,所以2(1)10a e π--≥,所以0a >,当[0,]2x π∈时,()()()G x g x f x '''=-=2(2cos cos 1)x ae x x -+-,()()()G x g x f x ''''''=-sin (4cos 1)x ae x x =++>0,所以'()G x 在[0,]2π上递增,(0)2G a '=-,2()102G ae ππ'=+>,①当(0)20G a =-<'即2a <时,0(0,)2x π∃∈使得0()0G x '=,所以当0(0,)x x ∈时'()0G x <,函数()G x 在区间0(0,)x 递减, 因为(0)0G =,所以当0(0,)x x ∈时,()0<G x 与条件()0G x ≥矛盾,②(0)20G a =-≥'时,即2a ≥时,22()(2cos cos 1)2(2cos cos 1)x x G x ae x x e x x =-+-≥-+-',因为22cos cos 1x x +-=2192[cos ]48x +-,cos [1,1]x ∈-, 所以22cos cos 1x x +-9[,2]8∈-, 而0x ,≥时22x e ≥,所以()G x '0≥,所以函数()G x 在区间[0,)+∞单调递增,因为(0)0G =,所以()0G x ≥, 综上:2a ≥.【预测题20】已知函数()x f x e ax =+,()()()()g x f x f x a R =--∈. (1)若直线y kx =与曲线()f x 相切,求k a -的值; (2)若()g x 存在两个极值点1x ,2x ,且()()12122g x g x x x e->--,求a 的取值范围.【答案】(1)k a e -=; (2)1,12e e -⎛⎫+-- ⎪⎝⎭.【解析】(1)设切点为()00,x y ,()xf x e a '=+,因为直线y kx =与曲线()f x 相切,所以0x e a k +=,000xe ax kx +=,所以()()010x a k --=,解得01x =,a k =(不成立,舍去), 所以k a e -=;(2)()2x x g x e e ax -=-+,()2x xg x e e a -'=++,①当1a ≥-时,()220g x a '≥+≥,所以()g x 在R 上单调递增,函数()g x 无极值,不符合题意,舍去. ②当1a <-时,()20xxg x e ea -'=++=,不妨设12x x <,解得(1ln x a =-,(2ln x a =-,可得函数()g x 在()1,x -∞单调递增,在()12,x x 单调递减,在()2,x +∞单调递增,符合题意.。
问题04 函数中的存在性与恒成立问题一、考情分析函数内容作为高中数学知识体系的核心,也是历年高考的一个热点.在新课标下的高考越来越注重对学生的综合素质的考察,恒成立与存在性问题便是一个考察学生综合素质的很好途径,它主要涉及到一次函数、二次函数、三角函数、指数函数和对数函数等常见函数的图象和性质及不等式等知识,渗透着换元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用,故备受高考命题者的青睐,成为高考能力型试题的首选. 二、经验分享(1) 设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a .(2) 对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 (3)根据方程有解求参数范围,若参数能够分离出来,可把求参数范围转化为求函数值域.(4) 利用分离参数法来确定不等式(),0f x λ≥,( D x ∈,λ为实参数)恒成立中参数λ的取值范围的基本步骤:①将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; ②求()f x 在x D ∈上的最大(或最小)值;③解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围.(5) 对于参数不能单独放在一侧的,可以利用函数图象来解.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.(6) 某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度.即把主元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果. 三、知识拓展(1)恒成立问题①. ∀x∈D,均有f(x)>A恒成立,则f(x)min>A;②. ∀x∈D,均有f(x)﹤A恒成立,则 f(x)ma x<A;③. ∀x∈D,均有f(x) >g(x)恒成立,则F(x)= f(x)- g(x) >0,∴ F(x)min >0;④. ∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)= f(x)- g(x) <0,∴ F(x) ma x <0;⑤. ∀x1∈D, ∀x2∈E,均有f(x1) >g(x2)恒成立,则f(x)min> g(x)ma x;⑥. ∀x1∈D, ∀x2∈E,均有f(x1) <g(x2)恒成立,则f(x) ma x < g(x) min.(2)存在性问题①. ∃x0∈D,使得f (x0)>A成立,则f(x) ma x >A;②. ∃x0∈D,使得f(x0)﹤A成立,则 f(x) min <A;③. ∃x0∈D,使得f(x0) >g(x0)成立,设F(x)= f(x)- g(x),∴F(x) ma x >0;④. ∃x0∈D,使得f(x0) <g(x0)成立,设F(x)= f(x)- g(x),∴F(x) min <0;⑤. ∃x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min;⑥. ∃x1∈D, ∃x2∈E,均使得f(x1) <g(x2)成立,则f(x) min < g(x) ma x.(3)相等问题若f(x)的值域分别为A,B,则⊆;①. ∀x1∈D, ∃x2∈E,使得f(x1)=g(x2)成立,则A B②∃x 1∈D, ∃x2∈E, 使得f(x1)=g(x2)成立,则A B≠∅.(4)恒成立与存在性的综合性问题①∀x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x)m in> g(x)m in;②∀x1∈D, ∃x2∈E, 使得f(x1) <g(x2)成立,则f(x)max < g(x)max.四、题型分析解决高中数学函数的存在性与恒成立问题常用以下几种方法:①函数性质法;②分离参数法;③主参换位法;④数形结合法等.(一) 函数性质法【例1】已知函数f(x)=x3-ax2+10,若在区间[1,2]内至少存在一个实数x,使得f(x)<0成立,求实数a的取值范围.【分析】本题实质是存在性问题【点评】 解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间[1,2]的关系;解法二是用的参数分离,由于ax 2>x 3+10中x 2∈[1,4],所以可以进行参数分离,而无需要分类讨论. 【牛刀小试】【2017山西大学附中第二次模拟】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a 的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D【解析】令()()()21,xg x e x h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()'21xg x ex =+,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e--.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12m e ⎡⎫∈⎪⎢⎣⎭. (二)分离参数法【例2】已知函数()ln f x ax x x =+的图象在点e x =(e 为自然对数的底数)处的切线的斜率为3. (1)求实数a 的值;(2)若2()f x kx ≤对任意0x >成立,求实数k 的取值范围. 【分析】(1)由'()l n 1f x a x =++结合条件函数()ln f x ax x x =+的图象在点e x =处的切线的斜率为3,可知'(e)3f =,可建立关于a 的方程:lne 13a ++=,从而解得1a =;(2)要使2()f x kx ≤对任意0x >恒成立,只需max2()[]f x k x ≥即可,而由(1)可知()ln f x x x x =+,∴问题即等价于求函数1ln ()xg x x+=的最大值,可以通过导数研究函数()g x 的单调性,从而求得其最值:221(1ln )ln '()x x xx g x x x⋅-+==-,令'()0g x =,解得1x =,当01x <<时,'()0g x >,∴()g x 在(0,1)上是增函数;当1x >时,'()0g x <,∴()g x 在(1,)+∞上是减函数,因此()g x 在1x =处取得最大值(1)1g =,∴1k ≥即为所求.(2)由(1)知,()ln f x x x x =+, ∴2()f x kx ≤对任意0x >成立1ln xk x+⇔≥对任意0x >成立, 令1ln ()xg x x +=,则问题转化为求()g x 的最大值, 221(1ln )ln '()x x xx g x x x ⋅-+==-,令'()0g x =,解得1x =, 当01x <<时,'()0g x >,∴()g x 在(0,1)上是增函数; 当1x >时,'()0g x <,∴()g x 在(1,)+∞上是减函数. 故()g x 在1x =处取得最大值(1)1g =,∴1k ≥即为所求.【点评】在函数存在性与恒成立问题中求含参数范围过程中,当其中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法.此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题.利用分离参数法来确定不等式(),0f x λ≥,(,x D λ∈为实参数)恒成立中参数λ的取值范围的基本步骤: (1)将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2)求()f x 在x D ∈上的最大(或最小)值;(3)解不等式()()max g f x λ≥ (或()()min g f x λ≤) ,得λ的取值范围. 【牛刀小试】【2017湖南省郴州市上学期第一次教学质量监测】已知函数()log a f x x =,()2log (22)a g x x t =+-,其中0a >且1a ≠,t R ∈.(1)若4t =,且1[,2]4x ∈时,()()()F x g x f x =-的最小值是-2,求实数a 的值; (2)若01a <<,且1[,2]4x ∈时,有()()f x g x ≥恒成立,求实数t 的取值范围. 【答案】(1)15;(2)[2,)+∞.(2)∵()()f x g x ≥恒成立,即log 2log (22)a a x x t ≥+-恒成立,∴1log log (22)2a a x x t ≥+-.又∵01a <<,1[,2]4x ∈,22x t ≤+-,22t x ≥-+∴恒成立,∴max (22)t x ≥-.令2117122)([,2])484y x x =-=-+∈,∴max 2y =.故实数t 的取值范围为[2,)+∞. (三)主参换位法【例3】已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数,(1)求a 的值;(2)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围.【分析】在第二小题所给条件中出现了两个字母:λ及t ,那么解题的关键恰恰就在于该把其中哪个字母看成是一个变量,另一个作为常数.而根据本题中的条件特征显然可将λ视作自变量,则上述问题即可转化为在(],1-∞-内关于λ的一次函数大于等于0恒成立的问题,问题即可求解.【解析】(1)1a =(2)由(1)知:()f x x =,()sin g x x x λ∴=+,()g x 在[]11-,上单调递减, ()cos 0g x x λ'∴=+≤cos x λ∴≤-在[]11-,上恒成立, 1λ∴≤-,[]max ()(1)sin1g x g λ=-=--, ∴只需2sin11t t λλ--≤++,2(1)sin110t t λ∴++++≥(其中1λ≤-)恒成立,由上述②结论:可令()2(1)sin110(1f t t λλλ=++++≥≤-),则2t 101sin110t t +≤⎧⎨--+++≥⎩, 21sin10t t t ≤-⎧∴⎨-+≥⎩,而2sin10t t -+≥恒成立,1t ∴≤-. 【点评】某些函数存在性与恒成立问题中,当分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度.即把主元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果.此类问题的难点常常因为学生的思维定势,易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,构造新的关于参数的函数,再来求解参数应满足的条件这样问题就轻而易举的得到解决了.【牛刀小试】若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,求实数x 的取值范围.12x <<【解析】()2211x m x ->-可转化为()21210m x x --+<,设()()21210f m m x x =--+<,则()f m是关于m 的一次型函数,要使()0f m <恒成立,只需()()221201220f x x f x x ⎧=-<⎪⎨-=--+<⎪⎩,12x <<. (四)数形结合法【例4】已知函数()222f x x kx =-+,在1x ≥-恒有()f x k ≥,求实数k 的取值范围.【分析】为了使题中的条件()f x k ≥在[)1,x ∈-+∞恒成立,应能想到构造出一个新的函数()()F x f x k =-,则可把原题转化成所构造新的函数在区间[)1,-+∞时恒大于等于0的问题,再利用二次函数的图象性质进行分类讨论,即可使问题得到圆满解决.【点评】如果题中所涉及的函数对应的图象、图形较易画出时,往往可通过图象、图形的位置关系建立不等式从而求得参数范围. 解决此类问题经常要结合函数的图象,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.常见的有两类函数:若二次函数()20y ax bx c a =++≠大于0恒成立,则有00a >⎧⎨∆<⎩,同理,若二次函数()20y ax bx c a =++≠小于0恒成立,则有0a <⎧⎨∆<⎩.若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解.【牛刀小试】【2017河北省武邑上学期第三次调研考试】已知定义在R 上的奇函数()f x 满足:当0x ≥时,()3f x x =,若不等式()()242f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是( )A .(,-∞ B .()C. ()),0-∞⋃+∞ D .(),-∞⋃+∞【答案】A(五)存在性之常用模型及方法 【例5】设函数()21ln 2a f x a x x bx -=+-,a R ∈且1a ≠.曲线()y f x =在点()()1,1f 处的切线的斜率为0.(1)求b 的值;(2)若存在[)1,x ∈+∞,使得()1af x a <-,求a 的取值范围. 【分析】(1)根据条件曲线()y f x =在点()()1,1f 处的切线的斜率为0,可以将其转化为关于a ,b 的方程,进而求得b 的值:()()1af x a x b x'=+--,()10f '=⇒()101a a b b +--=⇒=;(2)根据题意分析可得若存在[1,)x ∈+∞,使得不等式()1a f x a <-成立,只需min ()1af x a >-即可,因此可通过探求()f x 的单调性进而求得()f x 的最小值,进而得到关于a 的不等式即可,而由(1)可知()21ln 2a f x a x x x -=+-,则()()()11x a x a f x x---⎡⎤⎣⎦'=,因此需对a 的取值范围进行分类讨论并判断()f x 的单调性,从而可以解得a 的取值范围是()()11,-+∞.【解析】(1)()()1af x a x b x'=+--, 由曲线()y f x =在点()()1,1f 处的切线的斜率为0,得()10f '=, 即()10a a b +--=,1b =; 4分(2)由(1)可得,()21ln 2a f x a x x x -=+-, ()()()()()211111x a x a a x x a a f x a x x x x---⎡⎤--+⎣⎦'=+--==, 令()0f x '=,得11x =,21a x a=-,而21111a a a a --=--, ①当12a ≤时,11aa≤-, 在[)1,+∞上,()0f x '≥,()f x 为增函数,()()()min111122a a f x f ---==-=,令121a aa --<-,即2210a a +-<,解得11a <<. ②当11a <<时,1a >,()()()2minln 112111a a a a a f x f a a a a a a ⎛⎫==++> ⎪-----⎝⎭, 不合题意,无解,10分 ③当1a >时,显然有()0f x <,01a a >-,∴不等式()1af x a <-恒成立,符合题意,综上,a 的取值范围是()()11,+∞.【点评】解决函数中存在性问题常见方法有两种:一是直接法同上面所讲恒成立;二是间接法,先求其否定(恒成立),再求其否定补集即可解决.它的逻辑背景:原命题为",()"x M P x ∀∈的否定为",()"x M P x ∃∈⌝;原命题为",()"x M P x ∃∈的否定为“,()"x M P x ∀∈⌝.处理的原则就是:不熟系问题转化为熟悉问题. 【牛刀小试】已知=)(x f x x +221,=)(x g a x -+)1ln(, (1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围; (2)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.五、迁移运用1.【2018届江西省上高县高三上学期第四次月考】若不等式230xa x log -<对任意10,3x ⎛⎫∈ ⎪⎝⎭恒成立,则实数a 的取值范围为( ) A. [1,127)B. 1,127⎛⎫ ⎪⎝⎭C. 10,27⎛⎫ ⎪⎝⎭D. 10,27⎛⎤⎥⎝⎦【答案】A【解析】构造函数f (x )=3x 2,g (x )=-log a x, 10,3x ⎛⎫∈ ⎪⎝⎭∵不等式3x 2-log a x <0对任意10,3x ⎛⎫∈ ⎪⎝⎭恒成立,∴f (13)≤g(13)∴3•19- 13a log ≤0.∴0<a <1且a≥127∴实数a 的取值范围为[1127,),故选A 2.【2018届广西贵港市高三上学期12月联考】若不等式()()21313ln1ln33x xa x ++-⋅≥-⋅对任意的(],1x ∈-∞恒成立,则a 的取值范围是( )A. 10,3⎛⎤-∞ ⎥⎝⎦ B. 10,3⎡⎫+∞⎪⎢⎣⎭C. [)2,+∞D. (],2-∞ 【答案】D【解析】由题意结合对数的运算法则有: ()213133lnln 33x xxa ++-⋅≥,由对数函数的单调性有:()21313333x xxa ++-⋅≥,整理可得: 2133x x a +≤,由恒成立的条件有: 2min133x xa ⎛⎫+≤ ⎪⎝⎭,其中21313233xx xx y +⎛⎫==+≥ ⎪⎝⎭,当且仅当0x =时等号成立.即0x =时,函数2133x xy +=取得最小值2. 综上可得: 2a ≤.本题选择D 选项.3.【2018届福建省闽侯高三12月月考】已知函数()222,02,0x x x f x x x x ⎧-+≥=⎨-<⎩,若关于的不等式()()20f x af x ⎡⎤+<⎣⎦恰有个整数解,则实数的最大值是( )A. B. C. 5 D. 【答案】D4.【2018届甘肃省高台高三上学期第五次模拟】已知函数()1xf x x e =+,若对任意x R ∈, ()f x ax >恒成立,则实数a 的取值范围是( )A. (),1e -∞-B. (]1,1e -C. [)1,1e - D. ()1,e -+∞ 【答案】B【解析】函数()1x f x x e =+,对任意x R ∈, ()f x ax >恒成立,∴1x x ax e +>恒成立,即()11x a x e>-x 恒成立;设()()()1,1x g x h x a x e==-,x ∈R ;在同一坐标系内画出两个函数的图象,如图所示;则满足不等式恒成立的是h (x )的图象在g (x )图象下方,求()g x 的导数()'xg x e -=-,且过()g x 图象上点()00,x y 的切线方程为()000x y y e x x --=--,且该切线方程过原点(0,0),则000x y ex -=-⋅,即000x x e e x --=-⋅,解得01x =-;∴切线斜率为0x k e e -=-=-,∴应满足a −1>−e ,即a >1−e ;又a −1⩽0,∴a ⩽1,∴实数a 的取值范围是(1−e ,1].故选B.5.【2018届广东省五校高三12月联考】已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数1x , 2x 使得()10f x >,且()20f x >,则a 的取值范围是( ) A. ()ln3,2 B. [)2ln3,2- C. (]0,2ln3- D. ()0,2ln3- 【答案】C【解析】由题意可知, ()0f x >,即()()ln 2240,0x a x a a +--+>>, ()22ln 40ax a x x a ∴->-->,设()()2ln 4,2g x x x h x ax a =--=-,由()121'2x g x x x -=-=,可知()2ln 4g x x x =--,在10,2⎛⎫⎪⎝⎭上为减函数,在1,2⎛⎫+∞⎪⎝⎭上为增函数, ()2h x ax a =-的图象恒过点()2,0,在同一坐标系中作出()(),g x h x 的图象如下:若有且只有两个整数12,x x ,使得()10f x >,且()20f x >,则()()()(){11 33a h g h g >>≤,即0{2 23a a a ln >->-≤-,解得02ln3a <≤-,故选C.6.【2018届陕西省西安高三上学期期中】已知函数()3213f x x a x =-,若对于任意的[]12,0,1x x ∈,都有()()121f x f x -≤成立,则实数a 的取值范围是( )A. ⎡⎢⎣⎦B. ⎛ ⎝⎭C. ,00,33⎡⎫⎛-⋃⎪ ⎢⎪ ⎣⎭⎝⎦D. ,00,33⎛⎫⎛⎫-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】A7.【东北师范大学附属中学2018届高三第五次模拟】已知函数,,当时,不等式恒成立,则实数的取值范围为A .B .C .D .【答案】D 【解析】 不等式即, 结合可得恒成立,即恒成立,构造函数,由题意可知函数在定义域内单调递增,故恒成立,即恒成立,令,则,当时,单调递减;当时,单调递增;则的最小值为,据此可得实数的取值范围为.本题选择D选项.8.【山东省实验中学2019届高三第一次诊断】已知对任意的,总存在唯一的,使得成立(为自然对数的底数),则实数的取值范围是( )A. B. C. D.【答案】D【解析】9.【贵州省铜仁市第一中学2019届高三上学期第二次月考】设函数,其中,若存在唯一的整数,使得,则的取值范围是()A. B. C. D.【答案】B【解析】令,则,当时,,所以在上是单调减函数;当时,,所以在上是单调增函数;所以的图像如图所示:直线恒过点,设过的直线与曲线相切于点且切线方程为:,代入,故,解得或者,当时,,所以当时,直线可与在轴下方的图像相交.因为有且只有一个整数解,故曲线上的点在直线下方,在直线上方或在直线上,故即,故选B.10.【山东省安丘市、诸城市、五莲县、兰山区2019届高三10月联考】已知函数①f(x)=x+1;②f(x)=-2;③f(x)=;④f(x)=lnx;⑤f(x)=cosx。
双变量存在---恒成立问题恒成立问题、存在性问题归根到底是最值问题.1 恒成立问题(1)∀x∈D,f(x)≥0恒成立⟺在D上的f(x)min≥0;(2)∀x∈D,f(x)≤0恒成立⟺在D上的f(x)max≤0;2 存在性问题(1)∃x∈D,f(x)≥0恒成立⟺在D上的f(x)max≥0;(2)∃x∈D,f(x)≤0恒成立⟺在D上的f(x)min≤0;3双变量存在—恒成立问题(1)∀x1∈D,∀x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)min≥g(x)max;(2)∀x1∈D,∃x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)min≥g(x)min;(3)∃x1∈D,∀x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)max≥g(x)max;(4)∃x1∈D,∃x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)max≥g(x)min;4 常见处理方法方法1 直接构造函数法:求f(x)≥g(x)恒成立⇔ℎ(x)=f(x)−g(x)≥0恒成立.恒成立.方法2 分离参数法:求f(x)≥a∙g(x)(其中g(x)>0)恒成立⇔a≤f(x)g(x)方法3 变更主元:题型特征(已知谁的范围把谁作为主元);方法4 数形结合法:求f(x)−g(x)≥0恒成立⇔证明y=f(x)在y=g(x)的上方;方法5 同构法:对不等式进行变形,使得不等式左右两边式子的结构一致,再通过构造的函数单调性进行求解;方法6 放缩法:利用常见的不等式或切线放缩或三角函数有界性等手段对所求不等式逐步放缩达到证明所求不等式恒成立的目的;学习各种方法时,要注意理解它们各自之间的优劣性,有了比较才能快速判断某种题境中采取哪种方法较简洁,建议学习时一题多解,多发散思考.【典题1】已知两个函数f(x)=8x2+16x−k,g(x)=2x3+5x2+4x,其中k为实数.(1)对任意x∈[−3,3],都有f(x)≤g(x)成立,求k的取值范围;(2)存在x∈[−3,3],使f(x)≤g(x)成立,求k的取值范围;(3)对任意x1,x2∈[−3,3],都有f(x1)≤g(x2),求k的取值范围.【解析】(1)设ℎ(x)=g(x)−f(x)=2x3−3x2−12x+k问题转化为x∈[−3,3]时,ℎ(x)≥0恒成立,故ℎ(x)min≥0;易得ℎ(x)min≥−45+k,由k−45≥0⇒k≥45.(2)据题意:存在x∈[−3,3],使f(x)≤g(x)成立⇔ℎ(x)=g(x)−f(x)≥0在x∈[−3,3]有解,易得ℎ(x)max=k+7,于是k≥−7.(3) 问题转化为f(x)max≤g(x)min ,x∈[−3,3],易得g(x)min=g(−3)=−21,f(x)max=f(3)=120−k,则120−k≤−21⇒k≥141.【点拨】①第一问是恒成立问题,第二问是存在性问题,第三问是双变量成立问题;②第三问怎么确定f(x)max≤g(x)min,即到底是函数最大值还是最小值呢?可把问题转化为第一、二问的问题,具体如下,先把g(x2)看成定值m,那∀x1∈[−3,3],都有f(x1)≤m,当然是要f(x)max≤m;再把f(x1)看成定值n,那∀x2∈[−3,3],都有n≤g(x2),当然是g(x)min≥n;故问题转化为f(x)max≤g(x)min.其他形式的双变量成立问题同理.x3+2x2−3x+c.若对∀x1∈(0 ,+∞),∃x2∈[1 ,3],使f(x1)=【典题2】已知函数f(x)=x2e−x,g(x)=−13g(x2)成立,则c的取值范围是.【解析】(若要满足f(x1)=g(x2)成立,则y=g(x)的值域包含y=f(x)的值域)因为f(x)=x2e−x,x∈(0 ,+∞),,令f′(x)=0,解得x=2,所以f′(x)=x(2−x)e x故f(x)在(0 ,2)递增,在(2 ,+∞)递减,故f(x)max=f(2)=4,e2而x →0时,f(x)→0,x →+∞时,f(x)→+∞, 故f(x)∈(0 ,4e 2],因为g (x )=−13x 3+2x 2−3x +c ,g ′(x )=−(x −3)(x −1), 所以当x ∈[1 ,3]时,g′(x)>0,故g(x)在[1 ,3]递增, 则g (x )min =g(1)=−43+c ,g (x )max =g(3)=c , 故g(x)∈[−43+c ,c],若对∀x 1∈(0 ,+∞),∃x 2∈[1 ,3],使f(x 1)=g(x 2)成立, 则(0 ,4e2]⊆[−43+c ,c],故{−43+c ≤04e2≤c,解得:4e 2≤c ≤43.【典题3】 已知函数f (x )=lnx −x +1,x ∈(0 ,+∞),g (x )=sinx −ax(a ∈R). (1)求f(x)的最大值;(2)若对∀x 1∈(0 ,+∞),总存在x 2∈(0 ,π2),使得f (x 1)<g(x 2)成立,求实数a 的取值范围;(3)证明不等式sin(1n)n +sin(2n)n +⋅⋅⋅+sin(n n)n <e e−1(其中e 是自然对数的底数).【解析】(1)过程略,当x =1时f(x)取得最大值为f(1)=0;(2)解:对∀x 1∈(0 ,+∞),总存在x 2∈(0 ,π2),使得f(x 1)<g(x 2)成立,等价于f (x )max <g (x )max 成立,由(1)知,f (x )max =0, 则问题等价于g (x )max >0, 因为g (x )=sinx −ax ,所以g ′(x )=cosx −a , 当x ∈(0 ,π2)时,cosx ∈(0 ,1),(利用三角函数的有界性)①当a ≥1时,若x ∈(0 ,π2),g′(x)<0,g(x)单调递减,g(x)<g(0)=0,不合题意; ②当0<a <1时,∃x 0∈(0 ,π2),使得g′(x 0)=0, 若x ∈(0 ,x 0),g′(x)>0,若x ∈(x 0 ,π2)时,g′(x)<0, 即当g (x )max =g(x 0)>g(0)=0,则∃x2∈(0 ,π2),使得g(x2)>0,符合题意;③当a≤0时,若x∈(0 ,π2),g′(x)>0,g(x)单调递增,g(x)>g(0)=0,则∃x2∈(0 ,π2),使得g(x2)>0,符合题意,综上可知,所求实数a的范围是(−∞ ,1);(3)证明:由(2)可知,当a=1时,若x∈(0 ,1],sinx<x,令x=kn (k≤n ,k ,n∈N∗),(kn)n∈(0 ,1],有sin(kn )n<(kn)n,再由(1)可得lnx<x﹣1,则ln kn ≤kn−1=k−nn,即n⋅ln kn≤k﹣n⇒ln(kn)n≤k﹣n,∴(kn)n≤e k−n,∴(1n )n+(2n)n+...+(nn)n≤e1−n+e2−n+...+e n−n=e1−n(1−e n)1−e=e−e1−ne−1<ee−1则sin(1n )n+sin(2n)n+...+sin(nn)n<(1n)n+(2n)n+...+(nn)n<ee−1.(放缩法证明,利用不等式sinx<x和lnx<x﹣1,要熟悉常见恒等式)1(★★) 已知1<a<4,函数f(x)=x+9x,∃x1∈[1 ,a] ,x2∈[a ,4],使得f(x1)f(x2)≥80,则a的取值范围.【答案】(1,4−√7]【解析】f′(x)=1−9x2=x2−9x,令f′(x)=0,得x=±3,所以在(1,3)上,f′(x)>0,f(x)单调递增,在(3,4)上,f′(x)<0,f(x)单调递减,f(1)=10,f(4)=6.25,f(3)=6,若∃x1∈[1,a],x2∈[a,4],使得f(x1)f(x2)≥80,只需x1∈[1,a],x2∈[a,4],使得[f(x1)f(x2)]max≥80,而f(x1)max=f(1)=10,所以f(x2)max≥8,过点B作BC⊥y轴,与函数f(x)的图象交于点C,令x+9x=6.25,解得x=4或2.25,所以当x∈[2.25,4]时,f(x)∈[6,6.25],所以x2∈(1,2.25),所以a∈(1,2.25),才能使得x2∈[a,4]时,f(x2)max≥8,即f(a)≥8,所以a+9a≥8,解得a≥4+√7(舍去)或a≤4−√7,所以1<a≤4−√7,所以实数a的取值范围为(1,4−√7],故答案为:(1,4−√7].2(★★)已知函数f(x)=x+4x ,g(x)=2x+a,若任意x1∈[12,1],都存在x2∈[2 ,3],使得f(x1)≥g(x2),则实数a的取值范围是.【答案】(-∞,1]【解析】任意x1∈[12,1],都存在x2∈[2,3],使得f(x1)≥g(x2),⇔f(x1)min≥[g(x2)]min,x1∈[12,1],x2∈[2,3],对于函数f(x)=x+4x ,x∈[12,1],f′(x)=1−4x2=x2−4x2<0,因此函数f(x)在x∈[12,1]上单调递减,∴f(x)min=f(1)=5.对于函数g(x)=2x+a,在x∈[2,3]单调递增,∴g(x)min=4+a.∴5≥4+a,解得a≤1.∴实数a的取值范围是(-∞,1].故答案为:(-∞,1].3(★★★)已知函数f(x)=−x|x−a|,若对任意的x1∈(2 ,+∞),都存在x2∈(−1 ,0),使得f(x1)f(x2)=−4,则实数a的最大值为.【答案】1【解析】①a≥2时,当x≥a时,f(x)=-x(x-a),当x<a时,f(x)=-x(a-x),画出y=f(x)的图象(如右图):x1∈(2,+∞)时,f(x1)∈(-∞,0],而对任意的x1∈(2,+∞),都存在x2∈(-1,0),使得f(x1)•f(x2)=-4,要求f(x2)∈(0,+∞).而x2∈(-1,0)时,令f(-1)=a,则有f(x2)∈(0,a),不符题意;②a<2时,当x≥a时,f(x)=-x(x-a),当x<a时,f(x)=-x(a-x),画出y=f(x)的图象(如下图):当x1∈(2,+∞)时,f(x1)∈(-∞,f(2)),即f(x1)∈(-∞,2a-4),则f(x2)∈(0,22−a)时,f(x1)f(x2)=-4成立才有可能;x2∈(-1,0),则f(x2)∈(0,f(-1)),f(-1)=a+1,需满足f(-1)≥22−a ,即1+a≥22−a,即(a+1)(2-a)≥2,a(a-1)≤0,解得0≤a≤1,所以a的最大值为1.故答案为:1.4(★★★) 已知函数f(x)=lnx,若对任意的x1 ,x2∈(0 ,+∞),都有[f(x1)−f(x2)](x12−x22)>k(x1x2+x22)恒成立,则实数k的最大值是.【答案】0【解析】∵f(x)=lnx,∴f(x1)-f(x2)=lnx1−lnx2=ln x1x2,∵[f(x1)-f(x2)](x12-x22)>k(x1x2+x22)恒成立,且x1,x2∈(0,+∞),∴x 1x 2+x 22>0,x 1+x 2>0, 得k <lnx 1x 2(x 12−x 22)x 1x 2+x 22=x 1x 2lnx 1x 2−ln x1x 2,令t =x 1x 2,g (t )=tlnt -lnt ,(t >0且t ≠1),则g ′(t )=lnt +1−1t,令g ′(t )=0,得t =1. ∴当t ∈(0,1)时,g ′(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g ′(t )>0,g (t )单调递增, ∴g (t )min >g (1)=0. ∴k ≤0.则实数k 的最大值是0. 5(★★★) 设f(x)=2x 2x+1,g (x )=ax +5−2a(a >0). (1)求f(x)在x ∈[0,1]上的值域;(2)若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g(x 0)=f(x 1)成立,求a 的取值范围. 【答案】(1) [0 ,1] (2) 52≤a ≤4 【解析】(1)法一:(导数法)f′(x)=4x(x+1)−2x 2(x+1)2=2x 2+4x (x+1)2≥0在x ∈[0,1]上恒成立.∴f(x)在[0,1]上增, ∴f(x)值域[0,1].法二:f(x)={0 x =021x +1x 2x ∈(0,1],用复合函数求值域.法三:f(x)=2x 2x+1=2(x +1)+2x+1−4用双勾函数求值域.(2)f(x)值域[0,1],g(x)=ax +5-2a(a >0)在x ∈[0,1]上的值域[5-2a ,5-a]. 由条件,只须[0,1]⊆[5-2a ,5-a]. ∴{5−2a ≤05−a ≥1⇒52≤a ≤4. 6(★★★) 设函数f(x)=lnx −2ax−1−a 在开区间(0 ,12)内有极值. (1)求实数a 的取值范围;(2)若x 1∈(0 ,1) ,x 2=(1 ,+∞).求证:f (x 1)−f(x 2)>2ln2+32.【答案】(1)(−∞ ,−14)(2)略【解析】(1)解:函数f(x)的定义域是(0,1)∪(1,+∞),f′(x)=x2−(2−2a)x+1x(x−1)2,由f′(x)=0在(0,12)内有解,令g(x)=x2-(2-2a)x+1,由g(0)=1>0,所以g(12)=122−2−2a2+1<0,解得:a<−14,即a的取值范围是(-∞,−14);(2)证明:由(1)f′(x)<0,令g(x)=x2-(2-2a)x+1=(x-α)(x-β),不妨设0<α<12,则β>2,则αβ=1,α+β=2-2a,故f′(x)<0⇔α<x<1,1<x<β,由f′(x)>0⇔x<α或x>β,得f(x)在(0,α)内递增,在(α,1)内递减,在(1,β)内递减,在(β,+∞)递增,由x1∈(0,1),得f(x1)≤f(α)=lnα−2aα−1−a,由x2∈(1,+∞),得f(x2)≥f(β)=lnβ−2aβ−1−a,所以f(x2)-f(x1)≥f(β)-f(α),因为αβ=1,α+β=2-2a,a<−14,所以f(β)-f(α)=lnβ−2aβ−1−a-lnα+2aα−1+a=lnβ-ln1β+2a•(11β−1−1β−1)≥2lnβ+β−1β,令h(β)=2lnβ+β−1β(β>2),则h′(β)=2β+1+1β2>0,(β>2),所以h(β)在(2,+∞)上单调递增故h(β)>h(2)=2ln2+3,2.所以f(x2)-f(x1)>2ln2+32。
专题4 数列中的存在性与恒成立问题1.(2021·湖北·襄阳四中模拟预测)已知正项数列{}n a 的前n 项和n S 满足()2*41,nna S n N +=∈.数列{}nb 满足2*1221,n n b b n n n N ++=++∈(1)求数列{}n a 的通项公式;(2)试问:数列{}n n b S -是否构成等比数列(注:n S 是数列{}n a 的前n 项和)?请说明理由;(3)若11,b =是否存在正整数n,使得211155(1)1111nnk k k k k kkk b b b ==+-≤≤++∑成立?若存在求所有的正整数n ;否则,请说明理由.【答案】(1)21n a n =-;(2)不构成,理由见解析;(3)存在,10n =. 【解析】 【分析】(1)由11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,得到{}n a 是等差数列,即可得解;(2)首先求出n S ,则2n n n b S b n -=-,即可得到11n n b S ++-,再由1n n b b ++,即可得到11()n n n n b S b S ++-=--,即可得证;(3)由(2)可得2k b k =,所求不等式即2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑.设21()1f k k k =-+,利用裂项相消法可得到4211((1)(1))12nk k f f n k k ==-+++∑,同理,有24211((1)(1)),21,*12(1)11((1)(1)),2,*2nk k f f n n m m N k k k f f n n m m N =⎧++=-∈⎪+⎪-=⎨++⎪-+=∈⎪⎩∑,再由题意求出n 的值; 【详解】解:(1)由于2(1),4n n a S n N *+=∈,故2111(1)14a S a +=⇒=;2n ≥时22114(1),4(1)n n n n S a S a --=+=+;作差得,221114(1)(1)()(2)0n n n n n n n a a a a a a a ---=+-+⇔+--=.由于{}n a 是正项数列,故12n n a a --=,{}n a 是等差数列,21n a n =-;所以222(1)(211)44n n a n S n +-+=== (2)由于22111,(1)n n n n n n b S b n b S b n +++-=--=-+,2221221(1)n n b b n n n n ++=++=++,故11()n n n n b S b S ++-=--.由于1111b S b -=-,所以 当11b ≠时,111n n n nb S b S ++-=--,数列{}n n b S -构成等比数列;当11b =时,数列{}n n b S -不构成等比数列.(3)若11b =,由(2)知2k b k =,于是,所求不等式即2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑.设21()1f k k k =-+,则21(1).1f k k k +=++ 故224222222111121(1)(1)12(1)2(1)(1)nn n k k k k k k k k k k k k k k k k k ===++--+==+++-++-+∑∑∑()11()(1)2nk f k f k ==-+∑ 1((1)(1))2f f n =-+ 同理,有22242221111(1)(1)(1)(1)12(1)(1)nnkkk k k k k k k k k k k k k ==++++-+-=-++++-+∑∑ ()11((1)(1)),21,*12(1)()(1)12((1)(1)),2,*2k k nf f n n m m N f k f k f f n n m m N =⎧++=-∈⎪⎪=∑-++=⎨⎪-+=∈⎪⎩由于11155((1)(1))(1)222111f f n f ++>=>,故而只能有2,*n m m N =∈.于是,2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑ 1551((1)(1))((1)(1)),(2,*)21112f f n f f n n m m N ⇔-+≤≤-+=∈ 155((1)(1)),(2,*)2111f f n n m m N ⇔-+==∈ 21111,(2,*)10n n n m m N n ⇔++==∈⇔=综上所述,所有符合条件的正整数n 只有10n = 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.2.(2021·全国·模拟预测)从①()()126n n n a a S ++=,且12a <;①11a =,()1122n n n a a a n -++=≥,且存在2m ≥,*m ∈N 使得5m S =,()()11111311m m m S m S m -+++-=-;①若1n n a a d --=(常数),且()*162+⋅=+∈N n n n n a S a ,12a <,这三个条件中任选一个,补充在下面题目的横线中,并解答.已知各项均为正数的数列{}n a 的前n 项和为n S ,______. (1)求数列{}n a 的通项公式; (2)设12nn n a b -=,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,32n a n =-;(2)118(34)2n n T n -⎛⎫=-+⋅ ⎪⎝⎭. 【解析】 【分析】(1)选①:根据n S 与n a 的关系式可求出数列{}n a 的通项公式;选①:根据题意可得出数列{}n a 是等差数列,数列n S n ⎧⎫⎨⎬⎩⎭是首项为1a ,公差为2d 的等差数列,从而可求出数列{}n a 的通项公式;选①:令1n =,可求出1a ;然后根据n S 与n a 的关系式可求出数列{}n a 的公差,从而可求出数列{}n a 的通项公式;(2)根据(1)中求出的数列{}n a 的通项公式,然后利用错位相减法可求出数列{}n b 的前n 项和n T . (1)选①:当n =1时,()()111126a a a ++=,因为12a <,所以解得11a =; 当2n ≥时,因为()()126n n n a a S ++=,所以()()111126n n n a a S ---++=,两式相减,得2211336n n n n n a a a a a ---+-=,即()()1130n n n n a a a a --+--=,因为0n a >,所以13n n a a --=,所以数列{}n a 是首项为1,公差为3的等差数列, 故()13132n a n n =+-=-.选①:由()1122n n n a a a n -++=≥,知数列{}n a 是等差数列, 因为()111122nn n na dS n a dnn -+-==+, 所以数列n S n ⎧⎫⎨⎬⎩⎭是首项为1a ,公差为2d 的等差数列,所以11211m m m S S S m m m -++=-+,即111011m m S S m m m-++=-+, 所以21311110m m m-=-,又因为2m ≥,*m ∈N ,所以解得m =2; 设等差数列{}n a 的公差为d ,则2125S a d =+=,因为11a =,所以解得d =3,所以()13132n a n n =+-=-. 选①:因为1n n a a d --=,所以数列{}n a 是等差数列, 因为162+⋅=+n n n a a S ,所以()11622n n n S a n a --⋅=+≥,两式相减,得()116n n n n a a a a +-=-,即()622n n a a n d ⋅≥=,又0n a >,所以d =3.当n =1时,11262⋅=+S a a ,即()111623a a a ⋅+=+,因为12a <,所以解得11a =, 故()13132n a n n =+-=-,即32n a n =-. (2)由(1)得()1113222n n n n a b n --⎛⎫==-⋅ ⎪⎝⎭,所以()01211111147322222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()123111111473222222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减,得()2111111133222222n nn T n -⎡⎤⎛⎫⎛⎫⎛⎫=+⨯+++--⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦11112213112n -⎛⎫- ⎪⎝⎭=+⋅--()()113243422n n n n ⎛⎫⎛⎫-⋅=-+⋅ ⎪ ⎪⎝⎭⎝⎭,则118(34)2n n T n -⎛⎫=-+⋅ ⎪⎝⎭.3.(2021·上海静安·一模)对于数列{}n a :若存在正整数0n ,使得当0n n ≥时,n a 恒为常数,则称数列{}n a 是准常数数列.现已知数列{}n a 的首项1a a =,且11,n n a a n *+=-∈N .(1)若32a =,试判断数列{}n a 是否是准常数数列; (2)当a 与0n 满足什么条件时,数列{}n a 是准常数数列?写出符合条件的a 与0n 的关系;(3)若()(,1)*∈+∈N a k k k ,求{}n a 的前3k 项的和3k S (结果用k 、a 表示).【答案】(1)取02n =时,n a 恒等于12,数列{}n a 是准常数数列;(2)答案见解析; (3)2322k k a ⎛⎫-++ ⎪⎝⎭.【解析】 【分析】 (1)将32a =代入已知条件,即可求出()122n a n =≥; (2)根据已知条件,对a 进行分类讨论,分别写出答案即可;(3)由()(,1)*∈+∈N a k k k 和11n n a a +=-分别求出2a ,3a ,…,k a ,1k a +,2k a +,…,31k a -,3k a 的值,将前k 项放在一起,后2k 项中,从1k +项起,每相邻两项的和为定值,这样即可求解3k S .(1)由132a =得,231122a =-=,当2n ≥时,n a 恒等于12,数列{}n a 是准常数数列,取02n =即可;(2)①11,11=1,1n n n n nn a a a a a a +-≥⎧=-⎨-+<⎩,①1n a ≥时,1+≠n n a a ,而当1n a <时,若存在0n ,当0n n ≥时,1n n a a +=,则必有12n a =, 若01a <<时,则211a a =-,3211a a a a =-==,此时只需2111a a a =-=,112a =, 故存在12a =,12n a =,取01n =(取大于等于1的正整数也可以),数列{}n a 是准常数数列. 若11a a =≥,不妨设[),1a m m ∈+,m *∈N ,则[)10,1m a a m +=-∈, 2111m m a a a m ++=-=-+,若21m m a a ++=,则1a m a m -+=-,所以221m a =-或12a m =+,取01n m =+,当0n n ≥时,12n a =(0221a n =-,取大于等于12a +的0n 皆可)若10a a =<,不妨设(],1a l l ∈-+,l *∈N ,则(]1,a l l -∈-,所以(]21,1a a l l =-+∈+,321a a a =-=-,41a a =--,…,()(]210,1l a a l +=---∈,所以()32111l l a a a l ++=-=----⎡⎤⎣⎦,若32l l a a ++=,则221a l =-+或12a l =-+, 取02n l =+,当0n n ≥,12n a =( 0232n a -+=,取大于等于32a -+的0n 皆可以) 存在a 和0n :112a =,12n a =,01n ≥;112a m =+,01n m ≥+;112a m =-+, 02n m ≥+(其中m N *∈,n *∈N ),(a 为某个整数m 加上12时,数列{}n a 是准常数数列).(3)①()(,1)*∈+∈N a k k k ,且11n n a a +=-,①21a a =-,32a a =-,…,()1k a a k =--,()10,1k a a k +=-∈,2111k k a a k a ++=-=+-,321k k a a a k ++=-=-, 4311k k a a k a ++=-=+-,…,31k a a k -=-,31k a k a =+-.所以312312313k k k k k k S a a a a a a a a ++-=+++⋅⋅⋅++++⋅⋅⋅+()()()()1231234313k k k k k k k a a a a a a a a a a ++++-=+++⋅⋅⋅++++++⋅⋅⋅++ ()()()121a a a a k k =+-+-+⋅⋅⋅+--+()1112k ka k k +-=+--2322k k a ⎛⎫=-++ ⎪⎝⎭.4.(2021·四川自贡·一模(理))已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,________,28b =,1334b b -=.在以下三个条件中任选一个①530S =,①425S a =,①3523a a b -=,补充在上面横线上,并作答.(1)求数列{}n a ,{}n b 的通项公式;(2)是否存在正整数k .使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34k T >?若存在,求k 的最小值;若不存在,说明理由.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,2n a n =,11162n n b -⎛⎫=⨯ ⎪⎝⎭(2)存在,且k 的最小值为4 【解析】 【分析】(1)根据已知条件求得等差数列{}n a 的首项和公差,求得等比数列{}n b 的首项和公比,从而求得数列{}n a ,{}n b 的通项公式.(2)先求得,n k S T ,由34k T >求得k 的最小值. (1)设等比数列{}n b 的公比为q ,0q >,则1211834b q b b q =⎧⎨-=⎩解得11216q b ⎧=⎪⎨⎪=⎩,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭. 31411622a b ⎛⎫==⨯= ⎪⎝⎭,设等差数列{}n a 的公差为d ,若选①,则()1510101030,2,2122n a d d d a n n +=+===+-⨯=.若选①,则()()()11465,8652,2,2122n a d a d d d d a n n +=++=+==+-⨯=. 若选①,则()()()1113248,228,2,2122n a d a d a d d a n n +-+=+===+-⨯=. (2)由于12,2n a a n ==,所以()2212n nS n n n +=⋅=+, 1111n S n n =-+, 所以111111311223114k T k k k =-+-++-=->++,11,14,341k k k >+>>+,所以正整数k 的最小值为4. 5.(2022·天津·南开中学二模)已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an }前n 项和为Sn ,且满足S 3=a 4,a 3+a 5=2+a 4 (1)求数列{an }的通项公式; (2)求数列{an }前2k 项和S 2k ;(3)在数列{an }中,是否存在连续的三项am ,am +1,am +2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m 的值;若不存在,说明理由.【答案】(1)*12,21,.23,2n n n n k a k N n k -=-⎧⎪=∈⎨⎪⋅=⎩ (2)213k k -+ (3)存在,1 【解析】 【分析】(1)设等差数列的公差为d ,等比数列的公比为q ,由已知条件列方程组求得,d q 后可得通项公式; (2)按奇数项与偶数项分组求和;(3)按m 分奇偶讨论,利用122m m m a a a ++=+,寻找k 的解. (1)设等差数列的公差为d ,等比数列的公比为q , 则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 5=1+2d . ①S 3=a 4,①1+2+(1+d )=2q ,即4+d =2q ,又a 3+a 5=2+a 4,①1+d +1+2d =2+2q ,即3d =2q ,解得d =2,q =3. ①对于k ①N *,有a 2k -1=1+(k -1)•2=2k -1,故*12,21,.23,2n n n n k a k N n k -=-⎧⎪=∈⎨⎪⋅=⎩ (2)S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=[1+3+…+(2k -1)]+2(1+3+32+…+3k -1)=()2213(121)13213kk k k k -+-+=-+-.(3)在数列{an }中,仅存在连续的三项a 1,a 2,a 3,按原来的顺序成等差数列,此时正整数m 的值为1,下面说明理由若am =a 2k ,则由am +am +2=2am +1,得2×3k -1+2×3k =2(2k +1). 化简得4•3k -1=2k +1,此式左边为偶数,右边为奇数,不可能成立. 若21m k a a -=,则由am +am +2=2am +1,得(2k -1)+(2k +1)=2×2×3k -1 化简得k =3k -1,令()*13k k k T k N -=∈,则111120333k k k k k k k kT T +-+--=-=<. 因此,1=T 1>T 2>T 3>…,故只有T 1=1,此时k =1,m =2×1-1=1.综上,在数列{an }中,仅存在连续的三项a 1,a 2,a 3,按原来的顺序成等差数列,此时正整数m 的值为1. 6.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,①等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16n T <.【答案】(1)选择条件见解析,21n a n =+ (2)证明见解析 【解析】 【分析】(1)根据选择条件求解(2)数列求和后证明,使用裂项相消法 (1)若选①,21a -为11a -与31a +的等比中项,则()()()2132111a a a -+=-,由{}n a 为等差数列,315S =,得2315a =,①25a =,把25a =代入上式,可得()()4616d d -+=,解得2d =或4d =-(舍) ①13a =,21n a n =+;若选①,3q =为等比数列{}n b 的公比,且1124,b a b a ==, 可得213b b =,即413a a =,即有113)3a d a +=(,即123a d =; 又315S =,可得11332152a d +⨯⨯=,即15a d +=,解得12,3d a ==, 此时21n a n =+; (2) ①()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, ①11111111112355721232323n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪+++⎝⎭⎝⎭; ①16n T <,得证 7.(2022·浙江绍兴·模拟预测)已知数列{}n a 是公差不为0的等差数列,11a =,且1a ,2a ,4a 成等比数列;数列{}n b 的前n 项和是n S ,且21n n S b =-,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式; (2)设1n n n c +m ,使得()22221232313n m n n a c c c c x b +-++++>对任意*n ∈N 恒成立?若存在,求m 的最小值;若不存在,请说明理由.【答案】(1)n a n =,12n n b -=;(2)存在,5﹒ 【解析】 【分析】(1)设等差数列{}n a 的公差为()0d d ≠,根据1a ,2a ,4a 成等比数列求出d 即可求其通项公式;根据n S 与n b 关系即可求{}n b 的通项公式通项公式; (2)利用裂项相消法求{2nc }前m 项和,设()2313n n n a d b +-=,根据1n n d d +-正负判断{n d }单调性,求出其最大项,{2nc }前m 项和大于该最大值即可求出m 的范围和最小值. (1)设等差数列{}n a 的公差为()0d d ≠,①1a ,2a ,4a 成等比数列,①2214a a a =. ①()2113d d +=+,解得1d =,①()11n a a n d n =+-=.当1n =时,11121b S b ==-,①11b =.当2n ≥时,1122n n n n n b S S b b --=-=-,①12n n b b -=.①{}n b 是以1为首项,以2为公比的等比数判,①12n n b -=.(2)由题意得n c =()()22222211111n n c n n n n +==-++. ①22212m c c c +++()()2222222211111111122311m m m m =-+-++-+--+()2111m =-+.设()()123133132n n n n a n d b ++--==,则()()()1212312313314222n n n n n n n n d d ++++----=-=,①当1n =,2,3时,1n n d d +>;当4n =时,45d d =;当5n ≥时,1n n d d +<, ①数列{}n d 的最大项为453132d d ==, ①()21311321m ->+,整理得()2132m +>,①存在正整数m ,且m 的最小值是5.8.(2022·辽宁辽阳·二模)①{}2nn a 为等差数列,且358a =;①21n a n ⎧⎫⎨⎬-⎩⎭为等比数列,且234a =.从①①两个条件中任选一个,补充在下面的问题中,并解答. 在数列{}n a 中,112a =,________. (1)求{}n a 的通项公式;(2)已知{}n a 的前n 项和为n S ,试问是否存在正整数p ,q ,r ,使得n n r S p qa +=-?若存在,求p ,q ,r 的值;若不存在,说明理由. 【答案】(1)212n nn a -=; (2)存在,3p =,4q =,2r =﹒ 【解析】 【分析】(1)若选①,则可根据等差数列性质求出{}2nn a 的公差d ,根据等差数列通项公式可求2n n a ,从而求得n a ;若选①,则可证明等比数列概念求出21n a n ⎧⎫⎨⎬-⎩⎭的公比,根据等比数列通项公式可求21n a n -,从而求得n a ; (2)根据n a 通项公式的特征,采用错位相减法即可求其前n 项和,将其化为n n r S p qa +=-形式即可得p 、q 、r 的值. (1) 若选①:设等差数列{}2nn a 的公差为d ,则33122512312a a d --===-,①()1222121nn a a n n =+-=-,即212n nn a -=. 若选①:设等比数列21n a n ⎧⎫⎨⎬-⎩⎭的公比为q ,则2112212211a q a⨯-==⨯-, ①11112121122n nn a a n -⎛⎫⎛⎫=⨯= ⎪ ⎪-⨯-⎝⎭⎝⎭, 即212n nn a -=; (2) 21321222n nn S -=+++,231113212222n n n S +-=+++, 则两式相减得,23111111212222222n nn n S +-⎛⎫=+⨯+++- ⎪⎝⎭ 12n S =111121214212212n n n ++⎛⎫- ⎪-⎝⎭=+--12n S =132322n n ++=-,①2332n nn S +=-. ①()22221233343422n n n n n n S a +++-+=-=-⨯=-, ①存在正整数p ,q ,r ,使得n n r S p qa +=-,且3p =,4q =,2r =.9.(2021·河北衡水中学三模)已知数列{}n a 的前n 项和为n S ,且满足13a =,()122n n a xa n n -=+-≥,其中x ∈R .(1)若1x =,求出n a ;(2)是否存在实数x ,y 使{}n a yn +为等比数列?若存在,求出n S ,若不存在,说明理由.【答案】(1)2382n n n a -+=;(2)存在,()21242n n n n S ++=--.【解析】 【分析】(1)将1x =代入,由递推关系求出通项公式,并检验当1n =时是否满足,即可得到结果;(2)先假设存在实数x ,y 满足题意,结合已知条件求出满足数列{}n a yn +是等比数列的实数x ,y 的值,运用分组求和法求出n S 的值. 【详解】(1)由题可知:当1x =时有:12n n a a n --=-,当2n ≥时,()()()()()()121321213012232n n n n n a a a a a a a a n ---=+-+-+⋅⋅⋅+-=++++⋅⋅⋅+-=+,又13a =满足上式,故()()22138322nn n n n a ---+=+=. (2)假设存在实数x ,y 满足题意,则当2n ≥时,由题可得:()()111n n n n a yn x a y n a xa xy y n xy --+=+-⇔=+--⎡⎤⎣⎦, 和题设12n n a xa n -=+-对比系数可得:1xy y -=,22xy x -=-⇔=,1y =.此时121n n a na n -+=+-,114a +=, 故存在2x =,1y =使得{}n a yn +是首项为4,公比为2的等比数列. 从而()()1112121224122nn n n n n n n n a n a n S a a a ++-++=⇒=-⇒=++⋅⋅⋅+=--. 所以()21242n n n n S ++=--. 【点睛】方法点睛:数列求和方法:(1)等差等比公式法(2)错位相减法(3)分组求和法(4)倒序相加法(5)裂项相消法.10.(2022·浙江·模拟预测)已知递增的等差数列{}n a 满足:11a =,且5813,,a a a 成等比数列.数列{}n b 满足:()32n n S b n *=+∈N ,其中n S 为{}n b 的前n 项和.(1)求数列{}{},n n a b 的通项公式; (2)设n n c T =为数列{}n c 的前n 项和,是否存在实数λ,使得不等式n n T S λ≤≤对一切n *∈N 恒成立?若存在,求出λ的值;若不存在,说明理由.【答案】(1)21n a n =-,()112n n b n -*⎛⎫=-∈ ⎪⎝⎭N(2)存在,12λ= 【解析】 【分析】(1)设{}n a 的公差为(0)d d >,根据5813,,a a a 成等比数列,由2(17)(14)(112)d d d +=++求解,由()32n n S b n *=+∈N ,利用数列的通项与前n 项和的关系求解;得()1132*--=+∈n n S b n N ,(2)由(1)23n n b S +=,得到()min 12n S =,nc 12=,利用裂项相消法求得n T ,再由不等式n n T S λ≤≤对一切n *∈N 恒成立求解. (1)解:设{}n a 的公差为(0)d d >, 则2(17)(14)(112)d d d +=++, 所以2,21n d a n ==-. 当1n =时,11b =;当2n ≥时,由()32n n S b n *=+∈N ,得()1132*--=+∈n n S b n N ,两式相减得:12n n b b -=-, 所以{}n b 是以1为首项,以12-为公比的等比数列,所以()112n n b n -*⎛⎫=-∈ ⎪⎝⎭N(2)23n n b S +=,显然()2min 12n b b ==-, 所以()min 12n S =, 由21n a n =-得==n c1122==,故1112222n T ⎛=+++ ⎝, 112⎛= ⎝. 显然12n T <恒成立,且当n →∞时,12n T →,所以存在唯一实数12λ=.11.(2022·江西·二模(理))已知等差数列{}n a 中,12a =,公差0d >,其前四项中去掉某一项后(按原来的顺序)恰好构成一个等比数列. (1)求d 的值. (2)令11n n n b a a +=,数列{}n b 的前n 项和为n S ,若212n S λλ<--对n +∀∈N 恒成立,求λ取值范围. 【答案】(1)2; (2)12λ≤-或32λ≥.【解析】 【分析】(1)根据给定条件,写出等差数列{}n a 前4项,按去掉的项讨论求解作答.(2)由(1)求出等差数列{}n a 的通项,再利用裂项相消法求出n S 并讨论其单调性,列式计算作答. (1)等差数列{}n a 的前四项为2,2,22,23d d d +++,若去掉第一项,则有2(22)(2)(23)d d d +=++,解得0d =,不符合题意, 若去掉第二项,则有2(22)2(23)d d +=+,解得0d =,或12d =-,不符合题意,若去掉第三项,则有2(2)2(23)d d +=+,解得0d =(舍去),或2d =, 若去掉第四项,则有2(2)2(22)d d +=+,解得0d =,不符合题意, 所以2d =. (2)由(1)知22(1)2na n n =+-=,11(2(22411))1n n b n n n ==+-+,于是得1111111111[(1)()()()](1)422334141n S n n n =-+-+-++-=-++,显然数列{}n S 是递增数列,恒有14n S <,因212n S λλ<--对n +∀∈N 恒成立,于是有21124λλ--≥,解得12λ≤-或32λ≥,所以λ取值范围是12λ≤-或32λ≥.12.(2022·浙江·效实中学模拟预测)已知等差数列{}n a 中,公差0d ≠,35a =,2a 是1a 与5a 的等比中项,设数列{}n b 的前n 项和为n S ,满足()*41n n S b n =-∈N .(1)求数列{}n a 与{}n b 的通项公式;(2)设n n n c a b =,数列{}n c 的前n 项和为n T ,若118n T λ⎛⎫+≤ ⎪⎝⎭对任意的*n ∈N 恒成立,求实数λ的取值范围.【答案】(1)21n a n =-,13nn b ⎛⎫=- ⎪⎝⎭(2)2485λ-≤≤ 【解析】 【分析】(1)对于等差数列{}n a 直接列方程322155a a a a =⎧⎨=⋅⎩求解,数列{}n b 根据11,1,2n n n S n b S S n -=⎧=⎨-≥⎩求解;(2)利用错位相减法可得1411883nn n T +⎛⎫=-+- ⎪⎝⎭,根据题意讨论得:当n 是奇数时,min8341n n λ⎛⎫⋅-≤ ⎪+⎝⎭;当n 是偶数时,min 8341n n λ⎛⎫⋅≤ ⎪+⎝⎭,再通过定义证明数列8341n n ⎧⎫⋅⎨⎬+⎩⎭的单调性,进入确定相应情况的最值. (1)①322155a a a a =⎧⎨=⋅⎩ 则()()12111254a d a d a a d +=⎧⎪⎨+=⋅+⎪⎩,解得112a d =⎧⎨=⎩或150a d =⎧⎨=⎩(舍去)①()12121n a n n =+-=-. 又①41n n S b =-,当1n =时,1141b b =-,则113b =-,当2n ≥时,1141n n S b --=-,则14n n n b b b -=-,即113n n b b -=-, 则数列{}n b 是以首项113b =-,公比为13-的等比数列,①1111333n nn b -⎛⎫⎛⎫⎛⎫=-⋅-=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. (2)()1213nn c n ⎛⎫=-- ⎪⎝⎭,()()123111111135232133333n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⋅⋅⋅+--+-- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()()23411111111352321333333nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+⨯-+⨯-+⋅⋅⋅+--+-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得:()231411111221333333n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+---- ⎪ ⎪⎡⎤⎢⎥⎢ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎣⎦()111111111112123633623n n n n n -++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-----=--+-⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=①1411883nn n T +⎛⎫=-+- ⎪⎝⎭①118n T λ⎛⎫+≤ ⎪⎝⎭对任意的*n ∈N 恒成立,即411183n n λ+⎛⎫-≤ ⎪⎝⎭对任意的*n ∈N 恒成立 ①当n 是奇数时,411183n n λ+-⋅≤任意的*n ∈N '恒成立 ①8341nn λ⋅-≤+对任意的*n ∈N 恒成立①当n 是偶数时,411183n n λ+⋅≤对任意的*n ∈N 恒成立 ①8341nn λ⋅≤+对任意的*n ∈N 恒成立令8341nn c n ⋅=+,()()()11164138383045414541n n n n n n c c n n n n ++-⋅⋅-=-=>++++对任意的*n ∈N 恒成立 ①{}n c 为递增数列 ①当n 是奇数时,则245λ-≤,即245λ≥-①当n 是偶数时,则8λ≤ ①2485λ-≤≤. 13.(2022·浙江省临安中学模拟预测)各项均为正数的数列{}n a 的前n 项和为n S ,21122n n n S a a =+,数列{}n b 为等比数列,且1224,==b a b a . (1)求数列{}n a 、{}n b 的通项公式;(2)记()232,3,nn n n n n b n a a c n b +⎧-⋅⎪⋅⎪=⎨⎪⎪⎩为奇数为偶数,n T 为数列{}n c 的前n 项和,对任意的n *∈N .2λ≥n T 恒成立,求2n T 及实数的λ取值范围.【答案】(1)n a n =,2nn b =(2)212211214n n n T n +=--+,1712λ≤【解析】 【分析】(1)先求出1a ,再当2n ≥时,由21122n n n S a a =+,得21111122n n n S a a ---=+,两式相减化简可得11n n a a --=,从而可得数列{}n a 是公差为1,首项为1的等差数列,则可求出n a ,从而可求出12,b b ,进而可求出n b , (2)当n 为奇数时,利用裂项相消求和法可求出1321n c c c -++⋯+,当n 为偶数时,利用等比数列的求和公式求出242n c c c ++⋯+,从而可求出2n T ,进而可求出实数的λ取值范围 (1)①21122n nn S a a =+①, ①21111122a a a =+,①10a ≠,①11a = 当2n ≥时,21111122n n n S a a ---=+①, 由①-①得221111112222n n n n n a a a a a --+-=- ①2211n n n n a a a a --+=-,又0n a >,①11n n a a --=,①数列{}n a 是公差为1,首项为1的等差数列. ①n a n =①122b a ==,244==b a ,数列{}n b 为等比数列, ①2,2n n q b ==(2)n 为奇数时,212121(65)222(21)(21)2121-+--⋅==-+-+-+k k k k k c k k k k①131321272(65)21335(21)(21)-⨯-⋅++⋯+=++⋯+⨯⨯-+nn n c c c n n 133521211212122222222221335212112121-+++⎛⎫⎛⎫⎛⎫=-++-++⋯+-+=-+=- ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭n n n n n n n n n 为偶数时,223324==k k kc ①2421231133314411444414⎛⎫⨯- ⎪⎝⎭++⋯+=++⋯+==--n n n n c c c①()()2121213212422121211214214++-=++⋯++++⋯+=-+-=--++n n n n n n n T c c c c c c n n①0n c >,①{}2n T 单调递增, ①221712≥=n T T ,①1712λ≤ 14.(2022·江苏·阜宁县东沟中学模拟预测)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值. 【答案】(1)n a n = (2)最小值为23【解析】 【分析】(1)设等差数列的公差为d ,由33n n a a =及等差数列的通项公式得到1a d =,则n a nd =,再根据等比中项的性质得到方程,求出d ,即可得解;(2)由(1)可得11121212n n n c +⎛⎫=- ⎪++⎝⎭,利用裂项相消法求和得到n R ,即可得到23n R <,从而求出λ的取值范围,即可得解; (1)解:设等差数列的公差为d ,由33n n a a =得[]11(31)3(1)a n d a n d +-=+-,则1a d =, 所以1(1)n a a n d nd =+-=.因为12a 、31a +、8a 成等比数列,所以()231812a a a +=⋅,即2(31)28d d d +=⋅,所以27610d d --=,解得1d =或17d =-,因为{}n a 为正项数列,所以0d >,所以1d =,所以n a n =.(2)由(1)可得()()()()1111122112121212121212n n n a n n n n a a n n c +++++⎛⎫===- ⎪++++++⎝⎭,所以1223111111111122121212121212312n n n n R ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥+++++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为对任意n *∈N 均有23n R <,所以23λ≥,所以实数λ的最小值为2315.(2022·山东潍坊·模拟预测)已知{}n a 和{}n b 均为等差数列,111a b ==,312a a a =+,542b b a =+,记{11max n c b na =-,22b na -,…,}n n b na -(n=1,2,3,…),其中{1max x , 2x ,⋯,}s x 表示1x ,2x ,⋯,sx 这s 个数中最大的数.(1)计算1c ,2c ,3c ,猜想数列{}n c 的通项公式并证明;(2)设数列()()132n n c c ⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n S ,若24n S m m <-+对任意n *∈N 恒成立,求偶数m 的值.【答案】(1)10c =,21c =-,32c =-,1n c n =-,证明见解析 (2)2m = 【解析】 【分析】(1)设等差数列{}n a ,{}n b 的公差分别为1d ,2d ,利用111a b ==,312a a a =+,542b b a =+,利用通项公式可得11122d d +=+,211d d =+,可得n a ,n b .根据10c =,21c =-,32c =-.猜想数列{}n c 的通项公式1n c n =-,证明数列{}k k b na -为单调递减数列,即可得出结论.(2)1111(3)(2)(1)(2)12n nc c n n n n ==---++++,利用裂项求和方法即可得出n S ,根据24n S m m <-+对任意*n N ∈恒成立即可得出m 的取值范围.(1)解:设等差数列{}n a 和{}n b 的公差为1d 、2d , 那么()()()11221121114131d d d d d ⎧+=++⎪⎨+=+++⎪⎩,解得1212d d =⎧⎨=⎩,①n a n =,21n b n =-,那么,111110c b a =-=-=,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=-,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-,猜想{}n c 的通项公式为1n c n =-,当3n ≥时,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-<,所以数列{}k k b na -关于*N k ∈单调递减, 所以{}112211max ,,,1n n n c b na b na b na b na n =---=-=-;(2) 解:()()()()()()111113221123121n n c c n n n n n n ===---++++----⎡⎤⎡⎤⎣⎦⎣⎦,所以1111111123341222⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭n S nn n , 因为24n S m m <-+对任意n *∈N 恒成立,所有2142m m -+≥,解得4422m +≤≤,所以2m =. 16.(2022·天津·耀华中学一模)设数列{}()*n a n ∈N 是公差不为零的等差数列,满足369a a a +=,25796a a a +=.数列{}()*n b n ∈N 的前n 项和为n S ,且满足423n n S b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)在1b 和2b 之间插入1个数11x ,使1b ,11x ,2b 成等差数列;在2b 和3b 之间插入2个数21x ,22x ,使2b ,21x ,22x ,3b 成等差数列;……;在n b 和1n b +之间插入n 个数1n x ,2n x ,…,nn x ,使n b ,1n x ,2n x ,…,nn x ,1n b +成等差数列.(i )求()()()11212231323312n n n nn T x x x x x x x x x =++++++++++;(ii )是否存在正整数m ,n ,使12m n ma T a +=成立?若存在,求出所有的正整数对(),m n ;若不存在,请说明理由.【答案】(1)n a n =;11123n n b -⎛⎫=⨯ ⎪⎝⎭.(2)(i )n T 123343n n +⎛⎫=- ⎪⎝⎭;(ii )存在;(9,2)和(3,3).【解析】 【分析】(1)设}n a {的公差为d ,根据题意列式求出1a 和d 即可求出n a ;根据11n n n b S S ++=-可求出n b ; (2)(i )根据等差中项的性质得到()123411357(21)2n n n T b b b b n b nb +=+++++-+,再根据错位相减法可求出n T ;(ii )根据n T 和{}n a 的通项公式得到23213n n m +=-,推出211,13m ⎡⎫-∈⎪⎢⎣⎭,令233n nn c +=,推出{}n c 的单调性,根据单调性可知,只有2c 和31,13c ⎡⎫∈⎪⎢⎣⎭,由此可求出结果.(1)设}n a {的公差为d ,0d ≠,则()111211125846648a d a d a d a d a d a d +++=+⎧⎪⎨+++=+⎪⎩,解得11a d ==, 所以1(1)11n a a n d n n =+-=+-=. 由423n n S b +=得11423b b +=,得112b =, 11423n n S b +++=,所以114()2()330n n n n S S b b ++-+-=-=,所以11422n n n b b b +++=,即113n n b b +=,所以11123n n b -⎛⎫=⨯ ⎪⎝⎭.综上所述:n a n =;11123n n b -⎛⎫=⨯ ⎪⎝⎭.(2)(i )依题意得12112b b x +=,2321222()2b b x x ++=,343132333()2b b x x x +++=, 45414243444()2b b x x x x ++++=,,123n n n nn x x x x ++++1()2n n n b b ++=, 所以()()()11212231323312n n n nn T x x x x x x x x x =++++++++++2334451122()3()4()()22222n n b b b b b b n b b b b ++++++=+++++()123411357(21)2n n b b b b n b nb +=+++++-+012311111111111111()3()5()7()(21)()()2232323232323n n n n -⎛⎫=⨯+⨯⨯+⨯⨯+⨯⨯++-⋅⨯+⋅⨯ ⎪⎝⎭012311111111()3()5()7()(21)()()4333333n n n n -⎛⎫=+⨯+⨯+⨯++-⋅+⋅ ⎪⎝⎭令0123111111()3()5()7()(21)()33333n n R n -=+⨯+⨯+⨯++-⋅,则1234111111()3()5()7()(21)()333333n n R n =+⨯+⨯+⨯++-⋅,所以13n n R R -=12311111112()()()()(21)()33333n n n -⎛⎫+++++--⋅ ⎪⎝⎭, 所以1111()213312(21)()13313n n n R n -⎛⎫- ⎪⎝⎭=+⨯--⋅-, 所以113(1)()3n n R n -=-+⋅,所以11()43n n n T R n ⎛⎫=+⋅ ⎪⎝⎭1113433n n n n -+⎛⎫=-+ ⎪⎝⎭123343n n +⎛⎫=- ⎪⎝⎭,(ii )假设存在正整数m ,n ,使12m n m a T a +=,即12313432n n m m ++⎛⎫-= ⎪⎝⎭,即23213n n m+=-成立, 因为210m->,所以2m >,所以3m ≥,所以211,13m ⎡⎫-∈⎪⎢⎣⎭,令233n nn c +=,则1125253233(23)3n n n nn c n n c n ++++==++2512544n n n +=<+++, 所以数列{}n c 单调递减,1513c =>,279c =,313c =,当4n ≥时,4111813n c c ≤=<,所以由27219c m ==-,得9m =;由31213c m==-,得3m =, 所以存在正整数m ,n ,使12m n ma T a +=,且所有的正整数对(,)m n 为:(9,2)和(3,3). 17.(2022·天津河北·一模)设数列{}n a 的前n 项和14n n S -=, (1)求数列{}n a 的通项公式; (2)令19(3)(3)nn n n a b a a +=++,记数列{}n b 前n 项和为n T ,求n T ;(3)利用第二问结果,设λ是整数,问是否存在正整数n ,使等式13758n n T a λ++=成立?若存在,求出λ和相应的n 值;若不存在,说明理由.【答案】(1)21,134,2n n n a n -=⎧=⎨⨯≥⎩;(2)171841n --+(3)当4λ=时,存在正整数2n =,使等式13758n n T a λ++=成立,当4,λ≠时,不存在正整数n 使等式13758n n T a λ++=成立. 【解析】 【分析】(1)直接由n a 与n S 的关系求解;(2)将(1)中求得的结果代入n b ,化简后利用裂项相消法求和; (3)将λ表示为含n 的等式,利用λ是整数,找出符合条件的n 即可. 【详解】(1)令n =1得,111a S ==;当n 2≥时,2134n n n n a S S --=-=⨯,所以21,134,2n n n a n -=⎧=⎨⨯≥⎩ (2)当2n ≥时,234n n a -=⨯,此时22119934(3)(3)(343)(343)n n n n n n n a b a a ---+⨯⨯==++⨯+⨯+ 21114141n n --=-++,又111293(3)(3)8a b a a ==++①213,1811,24141n n n n b n --⎧=⎪⎪=⎨⎪-≥⎪++⎩.故1138T b ==,当2n ≥时,2221323131111()()841414141n T ----=+-+-+++++ 32211111()()41414141n n n n ----+-+-++++171841n -=-+.(3)若1n =, 则等式13758n n T a λ++=为37858λ+=,52λ=不是整数,不符合题意; 若2n ≥,则等式13758n n T a λ++=为11717841548n n λ---+=+⨯,11154554141n n n λ---⨯==-++ ①λ是整数, ①141n -+必是5的因数, ①2n ≥时1415n -+≥ ①当且仅当2n =时,1541n -+是整数,从而4λ=是整数符合题意.综上可知,当4λ=时,存在正整数2n =,使等式13758n n T a λ++=成立, 当4,λ≠时,不存在正整数n 使等式13758n n T a λ++=成立 【点睛】本题考查了数列的通项与前n 项和的关系,考查了裂项求和法,考查了分析问题解决问题的能力及逻辑思维能力,属于难题.18.(2022·四川达州·二模(理))已知数列{}n a 满足11a =,12n n a a +=+,n S 为{}n a 的前n 项和. (1)求{}n a 的通项公式;(2)设()1nn n b S =-,数列{}n b 的前n 项和n T 满足20n T mn ->对一切正奇数n 恒成立,求实数m 的取值范围.【答案】(1)21n a n =-; (2)1m <-. 【解析】 【分析】(1)利用等差数列的定义可得数列{}n a 是首项为1,公差为2的等差数列,即求; (2)由题可得当 n 为奇数时,()12n n n T +=-,进而可得21122n n n T m <=--对一切正奇数n 恒成立,即得. (1)①11a =,12n n a a +=+, ①12n n a a +-=,①数列{}n a 是首项为1,公差为2的等差数列, ①()12121n a n n =+-=-; (2)由题可得()21212n n n S n +-==,①()()211nnn n b S n =-=-,①()221121n n b b n n n ++=-++=+,n 为奇数, ①当 n 为奇数,且3n ≥时,()22222123451nn T n =-+-+-++-()()()221212372322n n n n n n n -⋅+=+++--=-=-, 当1n =时,11T =-也适合, 故当 n 为奇数时,()12n n n T +=-, 又20n T mn ->对一切正奇数n 恒成立,①2111222n T m n n n n+<=-=--对一切正奇数n 恒成立, 又11122n--≥-, ①1m <-.19.(2022·天津市宁河区芦台第一中学模拟预测)设数列{}n a 的前n 项和为n S ,且满足()*N n n a S n -=∈321.(1)求数列{}n a 的通项公式;(2)记()()n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩12123,为奇数,为偶数,数列{}n b 的前2n 项和为2n T ,若不等式()nnn n nT n λ⎛⎫-<+⋅- ⎪+⎝⎭2241132941对一切*N n ∈恒成立,求λ的取值范围. 【答案】(1)13-=n n a (2)⎛⎫- ⎪⎝⎭3546,. 【解析】【分析】(1)利用n a 与n S 的关系即可求解;(2)根据裂项相消法和错位相减法求出数列{}n b 的前2n 项和为2n T ,再将不等式的恒成立问题转化为求最值问题即可求解.(1)由题意,当1n = 时,1113211a a a -=⇒=, 当2n ≥ 时, 11321n n a S ---=,所以()n n n n a a S S -----=113320, 即 13n n a a -=, ∴ 数列{}n a 是首项为1,公比为3的等比数列,11133n n n a --∴=⨯=故数列{}n a 的通项公式为13-=n n a . (2)()()12123n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩,为奇数,为偶数,由 (1),得当n 为偶数时,13n n n n nb a -==, 当n 为奇数时, 11142123n b n n ⎛⎫=- ⎪-+⎝⎭,设数列{}n b 的前2n 项中奇数项的和为n A ,所以n nA n n n ⎛⎫=-+-+⋯+-=⎪-++⎝⎭11111114559434141, 设数列{}n b 的前2n 项中偶数项的和为n B , n n B n -⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1321111242333①n n B n +⎛⎫⎛⎫⎛⎫=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭352111112429333②,由-①②两,得()n n n n n n B n ++-⎛⨯⎫⎛⎫=⨯+⋯-⎛⎫=-⨯ ⎪++-⎪⎝⎭⨯ ⎪ ⎝⎭⎝⎭-21211321111139281111229332331319, 整理得()nn n B +⎛⎫=-⋅ ⎪⎝⎭38927132329,故,()nn n n n n T A B n +⎛⎫=+=+-⋅ ⎪+⎝⎭23892714132329,n nn n n T n ⎛⎫⎛⎫∴+⋅-=-⋅ ⎪ ⎪+⎝⎭⎝⎭2241272713294132329.∴ 不等式()nnn n n T n λ⎛⎫-<+⋅-⎪+⎝⎭2241132941对一切*N n ∈恒成立, 即不等式()nnλ⎛⎫-<-⋅ ⎪⎝⎭27271132329对一切*N n ∈恒成立,()xf x ⎛⎫=-⋅ ⎪⎝⎭2727132329在R 上是单调增。