往年河北省中考数学真题及答案
- 格式:doc
- 大小:726.23 KB
- 文档页数:10
2018年河北省中考数学试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.103.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(3分)图中三视图对应的几何体是()A.B.C.D.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 414.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.216.(2分)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=.18.(3分)若a,b互为相反数,则a2﹣b2=.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9分)如图,∠A=∠B=50°,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设∠BPN=α.(1)求证:△APM ≌△BPN ;(2)当MN=2BN 时,求α的度数;(3)若△BPN 的外心在该三角形的内部,直接写出α的取值范围.24.(10分)如图,直角坐标系xOy 中,一次函数y=﹣12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.【解答】解:三角形具有稳定性.故选:A.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.10【解答】解:∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.3.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【解答】解:该图形的对称轴是直线l3,故选:C.4.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.5.(3分)图中三视图对应的几何体是()A.B.C.D.【解答】解:观察图形可知选项C符合三视图的要求,故选:C.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ.故选:D.7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁【解答】解:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s甲2=s丁2<s乙2=s丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D.10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个【解答】解:①﹣1的倒数是﹣1,原题错误,该同学判断正确;②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④20=1,原题正确,该同学判断正确;⑤2m2÷(﹣m)=﹣2m,原题正确,该同学判断正确;故选:B.11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【解答】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 【解答】解:∵原正方形的周长为acm,∴原正方形的边长为a4 cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(a4+2)cm,则新正方形的周长为4(a4+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 4【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.14.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁【解答】解:∵x2−2xx−1÷x21−x=x2−2xx−1•1−xx2=x2−2xx−1•−(x−1)x2=x(x−2)x−1•−(x−1)x=−(x−2)x=2−x x,∴出现错误是在乙和丁,故选:D.15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID ,∴∠BAI=∠AID ,∴AD=DI ,同理可得:BE=EI ,∴△DIE 的周长=DE +DI +EI=DE +AD +BE=AB=4,即图中阴影部分的周长为4,故选:B .16.(2分)对于题目“一段抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确【解答】解:∵抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点∴①如图1,抛物线与直线相切,联立解析式{y =−x(x −3)+c y =x +2得x 2﹣2x +2﹣c=0△=(﹣2)2﹣4(2﹣c )=0解得c=1②如图2,抛物线与直线不相切,但在0≤x ≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c 的最小值=2,但取不到,c 的最大值=5,能取到∴2<c ≤5又∵c 为整数∴c=3,4,5综上,c=1,3,4,5故选:D.二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=2.【解答】解:√−12−3=√4=2,故答案为:2.18.(3分)若a,b互为相反数,则a2﹣b2=0.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.故答案为:0.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是14;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是21.【解答】解:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:360180−2x=18090−x,以∠APB为内角的正多边形的边数为:360 x,∴图案外轮廓周长是=18090−x﹣2+360x﹣2+360x﹣2=18090−x+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则会标的外轮廓周长是=18090−30+72030﹣6=21,故答案为:14,21.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了3人.【解答】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5(3)因为4册和5册的人数和为27,即最多补查了3人.故答案为3.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.23.(9分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.【解答】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵{∠A=∠BPA=PB∠APM=∠BPN,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.24.(10分)如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.【解答】解:(1)把C (m ,4)代入一次函数y=﹣12x +5,可得4=﹣12m +5,解得m=2, ∴C (2,4),设l 2的解析式为y=ax ,则4=2a , 解得a=2,∴l 2的解析式为y=2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2,y=﹣12x +5,令x=0,则y=5;令y=0,则x=10,∴A (10,0),B (0,5), ∴AO=10,BO=5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k=32;当l 2,l 3平行时,k=2;当11,l 3平行时,k=﹣12;故k 的值为32或2或﹣12.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.【解答】解:(1)如图1中,由n⋅π⋅26180=13π,解得n=90°, ∴∠POQ=90°, ∵PQ ∥OB , ∴∠PQO=∠BOQ ,∴tan ∠PQO=tan ∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ 与⊙O 相切时时,x 的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设QH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.此时x的值为﹣31.5.综上所述,满足条件的x的值为﹣16.5或31.5或﹣31.5.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【解答】解:(1)由题意,点A (1,18)带入y=kx得:18=k1∴k=18设h=at 2,把t=1,h=5代入 ∴a=5 ∴h=5t 2(2)∵v=5,AB=1 ∴x=5t +1 ∵h=5t 2,OB=18 ∴y=﹣5t 2+18 由x=5t +1则t=15(x −1)∴y=﹣15(x −1)2+18=−15x 2+25x +895当y=13时,13=﹣15(x −1)2+18解得x=6或﹣4 ∵x ≥1 ∴x=6 把x=6代入y=18xy=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米) (3)把y=1.8代入y=﹣5t 2+18 得t 2=8125解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰好落在滑道y=18 x上此时,乙的坐标为(1+1.8v乙,1.8)由题意:1+1.8v乙﹣(1+5×1.8)>4.5∴v乙>7.52017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。
河北中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 圆的周长公式是C=2πrB. 圆的周长公式是C=πdC. 圆的面积公式是A=πr^2D. 圆的面积公式是A=πd^2答案:A2. 已知x+y=5,x-y=3,求x和y的值。
A. x=4,y=1B. x=3,y=2C. x=1,y=4D. x=2,y=3答案:A3. 计算下列哪个表达式的值等于10?A. 3x + 7B. 2x - 5C. 5x - 3D. 4x + 6答案:C4. 下列哪个二次方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 2x + 1 = 0D. x^2 - 5x + 6 = 0答案:A5. 一个等腰三角形的底边长为6,高为4,求其周长。
A. 12B. 16C. 18D. 20答案:C6. 一个数的平方根是3,这个数是多少?A. 6B. 9C. 12D. 15答案:B7. 一个正数的倒数是1/4,这个正数是多少?A. 4B. 1/4C. 1/2D. 2答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 计算下列哪个表达式的值等于-2?A. 3x - 5B. 2x + 3C. 4x - 6D. 5x + 7答案:A10. 一个直角三角形的两条直角边长分别为3和4,求斜边长。
A. 5B. 6C. 7D. 8答案:A二、填空题(每题3分,共15分)11. 一个数的立方是8,这个数是______。
答案:212. 一个数的相反数是-7,这个数是______。
答案:713. 一个数的绝对值是10,这个数可能是______或______。
答案:10或-1014. 一个等差数列的首项是2,公差是3,第5项是______。
答案:1715. 一个等比数列的首项是3,公比是2,第3项是______。
答案:24三、解答题(每题10分,共40分)16. 已知一个二次函数y=ax^2+bx+c,其中a=1,b=-6,c=5,求该函数的顶点坐标。
2024年河北邯郸中考数学试题及答案一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .2.下列运算正确的是( ) A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a ÷=3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥4.下列数中,能使不等式516x -<成立的x 的值为( ) A .1B .2C .3D .45.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的( )A .角平分线B .高线C .中位线D .中线6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )A .B .C .D .7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( ) A .若5x =,则100y = B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍8.若a ,b 是正整数,且满足8282222222a b a a a b b b++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯个相加个相乘,则a 与b 的关系正确的是( ) A .38a b +=B .38a b =C .83a b +=D .38a b =+9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( ) A .1B 21C 21D .12110.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,ABC 中,AB AC =,AE 平分ABC 的外角CAN ∠,点M 是AC 的中点,连接BM 并延长交AE 于点D ,连接CD . 求证:四边形ABCD 是平行四边形. 证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠, ∴①______.又∵45∠=∠,MA MC =, ∴MAD MCB △≌△(②______).∴MD MB =.∴四边形ABCD 是平行四边形.若以上解答过程正确,①,②应分别为( ) A .13∠=∠,AAS B .13∠=∠,ASA C .23∠∠=,AASD .23∠∠=,ASA11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=( )A .115︒B .120︒C .135︒D .144︒12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D13.已知A 为整式,若计算22A y xy y x xy-++的结果为x yxy -,则A =( )A .xB .yC .x y +D .x y -14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若nm SS =,则m 与n 关系的图象大致是( )A .B .C .D .15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”()2,1P 按上述规则连续平移3次后,到达点()32,2P ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为( ) A .()6,1或()7,1B .()15,7-或()8,0C .()6,0或()8,0D .()5,1或()7,1二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分) 17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为 . 18.已知a ,b ,n 均为正整数. (1)若101n n <<+,则n = ;(2)若1,1n a n n b n -<<<+,则满足条件的a 的个数总比b 的个数少 个. 19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ; (2)143B C D △的面积为 .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤) 20.如图,有甲、乙两条数轴.甲数轴上的三点A ,B ,C 所对应的数依次为4-,2,32,乙数轴上的三点D ,E ,F 所对应的数依次为0,x ,12.(1)计算A ,B ,C 三点所对应的数的和,并求ABAC的值; (2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值. 21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b + 2a b + a b -a b + 22a b + 2a2a b +a b -2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值; (2)求CP 的长及sin APC ∠的值.23.情境 图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的. 该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示. (说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下: 当0x p ≤<时,80xy p=; 当150p x ≤≤时,()2080150x p y p-=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线) 公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格. (1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩; (2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分) 95 100 105 110 115 120 125 130 135 140 145 150人数 1 2 2 5 8 10 7 16 20 15 9 5①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率. 25.已知O 的半径为3,弦25MN =,ABC 中,90,3,32ABC AB BC ∠=︒==.在平面上,先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B 与点N 重合时,求劣弧AN 的长;(2)当OA MN ∥时,如图2,求点B 到OA 的距离,并求此时x 的值; (3)设点O 到BC 的距离为d .①当点A 在劣弧MN 上,且过点A 的切线与AC 垂直时,求d 的值; ②直接写出d 的最小值.26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上. 淇淇说:无论t 为何值,2C 总经过一个定点. 请选择其中一人的说法进行说理. (3)当4t =时, ①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .参考答案1.A【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键. 由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>- ∴气温变化为先下降,然后上升,再上升,再下降.故选:A .2.C【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .3.A【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键. 根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B、C、D选项不符合题意,故选:A.4.A【分析】本题考查了解不等式,不等式的解,熟练掌握解不等式是解题的关键.解不等式,得到75x<,以此判断即可.【详解】解:∵516x-<,∴75x<.∴符合题意的是A故选A.5.B【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC⊥,从而可得答案.【详解】解:由作图可得:BD AC⊥,∴线段BD一定是ABC的高线;故选B6.D【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有3列,每列上小正方体个数从左往右分别为3、1、1.故选:D.7.C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x 度,能使用y 天.∴500xy =, ∴500y x=, 当5x =时,100y =,故A 不符合题意;当125y =时,5004125x ==,故B 不符合题意; ∵0x >,0y >,∴当x 减小,则y 增大,故C 符合题意;若x 减小一半,则y 增大一倍,表述正确,故D 不符合题意;故选:C .8.A【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可. 【详解】解:由题意得:()8822a b ⨯=, ∴38222a b ⨯=,∴38a b +=,故选:A .9.C【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程221a a +=,利用公式法求解即可.【详解】解:由题意得:221a a +=,解得:1x =1x =故选:C .10.D【分析】本题考查平行四边形的判定,全等三角形的判定与性质,根据等边对等角得3ABC ∠=∠,根据三角形外角的性质及角平分线的定义可得23∠∠=,证明MAD MCB △≌△,得到MD MB =,再结合中点的定义得出MA MC =,即可得证.解题的关键是掌握:对角线互相平分的四边形是平行四边形.【详解】证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠, ∴①23∠=∠.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②ASA ).∴MD MB =.∴四边形ABCD 是平行四边形.故选:D .11.B【分析】本题考查了多边形的内角和,正多边形的每个内角,邻补角,熟练掌握知识点是解决本题的关键.先求出正六边形的每个内角为120︒,再根据六边形MBCDEN 的内角和为720︒即可求解ENM NMB ∠+∠的度数,最后根据邻补角的意义即可求解.【详解】解:正六边形每个内角为:()621801206-⨯︒=︒,而六边形MBCDEN 的内角和也为()62180720-⨯︒=︒,∴720B C D E ENM NMB ∠+∠+∠+∠+∠+∠=︒,∴7204120240ENM NMB ∠+∠=︒-⨯︒=︒,∵1802360ENM NMB βα+∠++∠=︒⨯=︒,∴360240120αβ+=︒-︒=︒,故选:B .12.B【分析】本题考查的是矩形的性质,坐标与图形,分式的值的大小比较,设(),A a b ,AB m =,AD n =,可得(),D a b n +,(),B a m b +,(),C a m b n ++,再结合新定义与分式的值的大小比较即可得到答案.【详解】解:设(),A a b ,AB m =,AD n =,∵矩形ABCD ,∴AD BC n ==,AB CD m ==,∴(),D a b n +,(),B a m b +,(),C a m b n ++, ∵b b b n a m a a +<<+,而b b n a m a m+<++, ∴该矩形四个顶点中“特征值”最小的是点B ;故选:B .13.A【分析】本题考查了分式的加减运算,分式的通分,平方差公式,熟练掌握分式的加减运算法则是解题的关键. 由题意得22y x y A x xy xy xy y -+=++,对2y x y x xy xy -++进行通分化简即可. 【详解】解:∵22A y xy y x xy-++的结果为x y xy -,∴22y x y A x xy xy xy y -+=++, ∴()()()()()2222x y x y y x x A xy x y xy x y xy x y xy y xy y -++===+++++, ∴A x =,故选:A .14.C【分析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为R ,根据扇形的面积公式表示出23R S π=,进一步得出2360120n S n n R S π==,再代入n m S S =即可得出结论.掌握扇形的面积公式是解题的关键.【详解】解:设该扇面所在圆的半径为R ,221203603R R S ππ==, ∴23R S π=,∵该折扇张开的角度为n ︒时,扇面面积为n S , ∴223360360360120n R S R n n n nS S π=⨯⨯===π, ∴1120120120n S m n S nSn S ====, ∴m 是n 的正比例函数,∵0n ≥,∴它的图像是过原点的一条射线.故选:C .15.D【分析】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.设一个三位数与一个两位数分别为10010x y z ++和10m n +,则20,5,2,mz nz ny nx a ====,即4=m n ,可确定1,2n y ==时,则4,5,m z x a ===,由题意可判断A 、B 选项,根据题意可得运算结果可以表示为:()1000411002541001025a a a +++=+,故可判断C 、D 选项.【详解】解:设一个三位数与一个两位数分别为10010x y z ++和10m n +如图:则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz=,即4=m n , ∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .16.D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .17.89【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,89出现的次数最多,∴以上数据的众数为89.故答案为:89.18. 3 2【分析】本题考查的是无理数的估算以及规律探究问题,掌握探究的方法是解本题的关键;(1)由34即可得到答案;(2)由n 1-,n ,1n +为连续的三个自然数,1,1n n n n -<<<+,可得<再利用完全平方数之间的数据个数的特点探究规律即可得到答案.【详解】解:(1)∵34<,而1n n <+, ∴3n =; 故答案为:3;(2)∵a ,b ,n 均为正整数.∴n 1-,n ,1n +为连续的三个自然数,而1,1n n n n -<<+,<<观察0,1,2,3,4,5,6,7,8,9,,而200=,211=,224=,239=,2416=, ∴()21n -与2n 之间的整数有()22n -个,2n 与()21n +之间的整数有2n 个,∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个), 故答案为:2. 19. 1 7【分析】(1)根据三角形中线的性质得112ABDACDABC S S S △△△,证明()11SAS AC D ACD ≌,根据全等三角形的性质可得结论;(2)证明()11SAS AB D ABD ≌,得111AB D ABD S S ==△△,推出1C 、1D 、1B 三点共线,得1111112AB C AB D AC D S S S △△△,继而得出141148AB C AB C S S △△,131133AB D AB D S S ==△△,证明33C AD CAD △∽△,得3399C AD CAD S S ==△△,推出43334123AC D C AD S S ==△△,最后代入431314143AC D D AB D AB C B C S S S S =+-△△△△即可.【详解】解:(1)连接11B D 、12B D 、12B C 、13B C 、33C D , ∵ABC 的面积为2,AD 为BC 边上的中线, ∴112122ABDACDABC S S S △△△,∵点A ,1C ,2C ,3C 是线段4CC 的五等分点, ∴1122334415AC AC C C C C C C CC =====,∵点A ,1D ,2D 是线段3DD 的四等分点, ∴11223314AD AD D D D D DD ====, ∵点A 是线段1BB 的中点, ∴1112AB AB BB ==, 在11AC D △和ACD 中, 1111AC AC C AD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴()11SAS AC D ACD ≌,∴111AC D ACD S S ==△△,11C D A CDA ∠=∠, ∴11AC D △的面积为1, 故答案为:1;(2)在11AB D 和ABD △中,1111AB AB B AD BAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴()11SAS AB D ABD ≌,∴111AB D ABD S S ==△△,11B D A BDA ∠=∠, ∵180BDA CDA ∠+∠=︒,∴1111180B D A C D A ∠+∠=︒, ∴1C 、1D 、1B 三点共线, ∴111111112AB C AB D AC D S S S △△△,∵1122334AC C C C C C C ===, ∴14114428AB C AB C S S △△,∵11223AD D D D D ==,111AB D S =△, ∴13113313AB D AB D S S ==⨯=△△, 在33AC D △和ACD 中, ∵333AC AD AC AD==,33C AD CAD ∠=∠, ∴33C AD CAD △∽△,∴3322339C AD CADS AC SAC ⎛⎫=== ⎪⎝⎭, ∴339919C AD CAD S S ==⨯=△△, ∵1122334AC C C C C C C ===, ∴43334491233AC D C AD S S ==⨯=△△, ∴41433131412387AC D AB C B C D D AB S S S S =+-=+-=△△△△, ∴143B C D △的面积为7, 故答案为:7.【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键. 20.(1)30,16(2)2x =【分析】本题考查的是数轴上两点之间的距离的含义,一元一次方程的应用,理解题意是解本题的关键;(1)直接列式求解三个数的和即可,再分别计算,AB AC ,从而可得答案; (2)由题意可得,对应线段是成比例的,再建立方程求解即可.【详解】(1)解:∵甲数轴上的三点A ,B ,C 所对应的数依次为4-,2,32, ∴423230-++=,()24246AB =--=+=,()32432436AC =--=+=, ∴61366AB AC ==; (2)解:∵点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐, ∴DE DFAB AC=, ∴12636x =, 解得:2x =; 21.(1)13(2)填表见解析,49【分析】(1)先分别求解三个代数式当1,2a b ==-时的值,再利用概率公式计算即可; (2)先把表格补充完整,结合所有可能的结果数与符合条件的结果数,利用概率公式计算即可.【详解】(1)解:当1,2a b ==-时,1a b +=-,20a b +=,()123a b -=--=,∴取出的卡片上代数式的值为负数的概率为:13;(2)解:补全表格如下:a b + 2a b + a b -a b + 22a b + 32a b + 2a2a b + 32a b + 42a b + 3aa b - 2a 3a 22a b -∴所有等可能的结果数有9种,和为单项式的结果数有4种, ∴和为单项式的概率为49.【点睛】本题考查的是代数式的值,正负数的含义,多项式与单项式的概念,利用列表法求解简单随机事件的概率,掌握基础知识是解本题的关键. 22.(1)45︒,142m 334【分析】本题考查的是解直角三角形的应用,理解仰角与俯角的含义以及三角函数的定义是解本题的关键;(1)根据题意先求解1CE PE ==m ,再结合等腰三角形的性质与正切的定义可得答案; (2)利用勾股定理先求解2CP =m ,如图,过C 作CH AP ⊥于H ,结合1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ,再建立方程求解x ,即可得到答案.【详解】(1)解:由题意可得:PQ AE ⊥, 2.6PQ =m , 1.6AB CD EQ ===m ,4AE BQ ==()m ,3AC BD ==()m ,∴431CE =-=()m , 2.6 1.61PE =-=()m ,90CEP ∠=︒, ∴CE PE =,∴45PCE β=∠=︒,1tan tan 4PE PAE AE α=∠==; (2)解:∵1CE PE ==m ,90CEP ∠=︒, ∴22112CP =+=m , 如图,过C 作CH AP ⊥于H ,∵1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m , ∴()22249x x AC +==, 解得:317x = ∴317CH =m, ∴31733417sin 2CH APC CP ∠===. 23.(1)1EF =;(2)BE GE AH GH ===,22BE =BP 222- 【分析】本题考查的是正方形的性质,等腰直角三角形的判定与性质,勾股定理的应用,二次根式的混合运算,本题要求学生的操作能力要好,想象能力强,有一定的难度. (1)如图,过G '作G K FH ''⊥于K ,结合题意可得:四边形FOG K '为矩形,可得FO KG '=,由拼接可得:HF FO KG '==,可得AHG ,H G D '',AFE △为等腰直角三角形,G KH ''为等腰直角三角形,设H K KG x ''==,则2H G H D x '''==,再进一步解答即可; (2)由AFE △为等腰直角三角形,1EF AF ==;求解22BE =-,再分别求解,,GE AH GH ;可得答案,如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线,或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线,再进一步求解BP 的长即可.【详解】解:如图,过G '作G K FH ''⊥于K , 结合题意可得:四边形FOG K '为矩形, ∴FO KG '=,由拼接可得:HF FO KG '==, 由正方形的性质可得:45A ∠=︒,∴AHG ,H G D '',AFE △为等腰直角三角形, ∴G KH ''为等腰直角三角形, 设H K KG x ''==, ∴2H G H D x '''==,∴2AH HG x ==,HF FO x ==, ∵正方形的边长为2, 22222+= ∴2OA∴22x x x ++=, 解得:21x =-, ∴()()()2121211EF AF x ==+=+-=;(2)∵AFE △为等腰直角三角形,1EF AF ==; ∴22AE EF ==, ∴22BE =-, ∵()222122GE H G x ==-'='=-,222AH GH x ===-,∴BE GE AH GH ===;如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线,此时2BP '=222P Q ''=+=,符合要求,或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线, 此时2CP CQ ==222PQ =+=, ∴22BP =综上:BP 222-24.(1)甲、乙的报告成绩分别为76,92分 (2)125(3)①130;②95%【分析】(1)当100p =时,甲的报告成绩为:809576100y ⨯==分,乙的报告成绩为:()201301008092150100y ⨯-=+=-分;(2)设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分,①10x p ≤<时和②140150p x ≤-≤时均不符合题意,③11040,150x p p x ≤-<≤≤时,()1209280150x p y p-==+-丙⑤,()1804064x y p-==丁⑥,解得1125,140p x ==;(3)①共计100名员工,且成绩已经排列好,则中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,故中位数为130;②当130p >时,则8013090p⨯=,解得10401309p =<,故不成立,舍;当130p ≤时,则()201309080150p p -=+-,解得110p =,符合题意,而由表格得到原始成绩为110及110以上的人数为100595-=,故合格率为:95100%95%100⨯=. 【详解】(1)解:当100p =时,甲的报告成绩为:809576100y ⨯==分, 乙的报告成绩为:()201301008092150100y ⨯-=+=-分;(2)解:设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分, ①10x p ≤<时,18092x y p==丙①,()1804064x y p-==丁②,由①-②得320028p=, ∴8007p =, ∴1800929207131807x p ⨯==≈>,故不成立,舍; ②140150p x ≤-≤时,()1209280150x p y p -==+-丙③,()120406480150x p y p--==+-丁④,由③-④得:80028150p=-,∴8507p =, ∴185020792808501507x ⎛⎫- ⎪⎝⎭=+-, ∴19707x =, ∴16908504077x p -=<=,故不成立,舍; ③11040,150x p p x ≤-<≤≤时,()1209280150x p y p-==+-丙⑤,()1804064x y p-==丁⑥,联立⑤⑥解得:1125,140p x ==,且符合题意,综上所述125p =;(3)解:①共计100名员工,且成绩已经排列好, ∴中位数是第50,51名员工成绩的平均数, 由表格得第50,51名员工成绩都是130分, ∴中位数为130; ②当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍; 当130p ≤时,则()201309080150p p-=+-,解得110p =,符合题意,∴ 由表格得到原始成绩为110及110以上的人数为()10012295-++=, ∴合格率为:95100%95%100⨯=. 【点睛】本题考查了函数关系式,自变量与函数值,中位数的定义,合格率,解分式方程,熟练知识点,正确理解题意是解决本题的关键. 25.(1)π(2)点B 到OA 的距离为2;3(3)①33d =-;②23【分析】(1)如图,连接OA ,OB ,先证明AOB 为等边三角形,再利用等边三角形的性质结合弧长公式可得答案;(2)过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO ,证明四边形BIOH 是矩形,可得BH OI =,BI OH =,再结合勾股定理可得答案;(3)①如图,由过点A 的切线与AC 垂直,可得AC 过圆心,过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒,可得四边形KOJB 为矩形,可得OJ KB =,再进一步利用勾股定理与锐角三角函数可得答案;②如图,当B 为MN 中点时,过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J , OL OJ >,此时OJ 最短,如图,过A 作AQ OB ⊥于Q ,而3AB AO ==,证明1BQ OQ ==,求解223122AQ =-=,再结合等角的三角函数可得答案.【详解】(1)解:如图,连接OA ,OB ,∵O 的半径为3,3AB =,∴3OA OB AB ===,∴AOB 为等边三角形,∴60AOB ∠=︒,∴AN 的长为60π3π180;(2)解:过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO ,∵OA MN ∥,∴90IBH BHO HOI BIO ∠=∠=∠=∠=︒,∴四边形BIOH 是矩形,∴BH OI =,BI OH =,∵5MN =OH MN ⊥,∴5MH NH ==3OM =,∴222OH OM MH BI -=,∴点B 到OA 的距离为2;∵3AB =,BI OA ⊥,∴225AI AB BI -∴35OI OA AI BH =-==,∴3553x BN BH NH ==+==;(3)解:①如图,∵过点A 的切线与AC 垂直,∴AC 过圆心,过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒,∴四边形KOJB 为矩形,∴OJ KB =,∵3AB =,32BC =,∴2233AC AB BC =+=,∴31cos 333AB AK BAC AC AO∠====, ∴3AK =,∴33OJ BK ==-,即33d =-;②如图,当B 为MN 中点时,过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,∴90OJL ∠>︒,∴OL OJ >,此时OJ 最短,如图,过A 作AQ OB ⊥于Q ,而3AB AO ==,∵B 为MN 中点,则OB MN ⊥,∴由(2)可得2OB =,∴1BQ OQ ==,∴223122AQ =-=,∵90ABC AQB ∠=︒=∠,∴90OBJ ABO ABO BAQ ∠+∠=︒=∠+∠,∴OBJ BAQ ∠=∠,∴tan tan OBJ BAQ ∠=∠, ∴22OJ BQ BJ AQ == 设OJ m =,则22BJ m =, ∴()22222m m+=, 解得:23m =(不符合题意的根舍去), ∴d 的最小值为23.【点睛】本题属于圆的综合题,难度很大,考查了勾股定理的应用,矩形的判定与性质,垂径定理的应用,锐角三角函数的应用,切线的性质,熟练的利用数形结合的方法,作出合适的辅助线是解本题的关键.26.(1)12a =,()2,2Q - (2)两人说法都正确,理由见解析(3)①410=-y x ;②112-112+(4)2n t m =+-【分析】(1)直接利用待定系数法求解抛物线的解析式,再化为顶点式即可得到顶点坐标;(2)把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-,再检验即可,再根据函数化为2122y x xt =-+-,可得函数过定点; (3)①先求解P 的坐标,再利用待定系数法求解一次函数的解析式即可;②如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意),可得4x =±()46J --,交点()4K +,再进一步求解即可;(4)如图,由题意可得2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同,如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP ,可得四边形APBQ 是平行四边形,当点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,此时M 与B 重合,N 与A 重合,再进一步利用中点坐标公式解答即可.【详解】(1)解:∵抛物线21:2C y ax x =-过点(4,0),顶点为Q . ∴1680a -=, 解得:12a =, ∴抛物线为:()221122222y x x x =-=--, ∴()2,2Q -;(2)解:把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-,当0x =时, ∴222221111:()2222222C y x t t t t =--+-=-+-=-, ∴()0,2-在2C 上,∴嘉嘉说法正确; ∵22211:()222C y x t t =--+- 2122x xt =-+-, 当0x =时,=2y -, ∴22211:()222C y x t t =--+-过定点()0,2-; ∴淇淇说法正确;(3)解:①当4t =时,()2222111:()246222C y x t t x =--+-=--+, ∴顶点()4,6P ,而()2,2Q -,设PQ 为y ex f =+,∴4622e f e f +=⎧⎨+=-⎩, 解得:410e f =⎧⎨=-⎩, ∴PQ 为410=-y x ; ②如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意),∴4x =±∴交点()426,6J --,交点()426,6K +,由直线l PQ ∥,设直线l 为4y x b =+, ∴(44266b -+=-, 解得:8622b =,∴直线l 为:48622y x =+, 当486220y x =+=时,11262x =- 此时直线l 与x 轴交点的横坐标为11262- 同理当直线l 过点()426,6K +,直线l 为:48622y x =-, 当46220y x =-=时,11262x =+ 此时直线l 与x 轴交点的横坐标为11262+ (4)解:如图,∵()21222y x =--,22211:()222C y x t t =--+-, ∴2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同,如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP ,∴四边形APBQ 是平行四边形,当点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d , 此时M 与B 重合,N 与A 重合,∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭, ∴L 的横坐标为2t 2+, ∵21,22M m m m ⎛⎫- ⎪⎝⎭,()2211,222N n n t t ⎡⎤--+-⎢⎥⎣⎦, ∴L 的横坐标为2m n +, ∴222m n t ++=, 解得:2n t m =+-;【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,一次函数的综合应用,二次函数的平移与旋转,以及特殊四边形的性质,理解题意,利用数形结合的方法解题是关键.。
图3省数学中考2009年~2013年近五年中考真题汇总附答案2009年省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷Ⅰ前,考生务必将自己的、号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试卷上无效.一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3(1)-等于( )A .-1B .1C .-3D .32.在实数围,x 有意义,则x 的取值围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15C .10D .54.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形,则∠APB 等于( )A .30°B .45°C .60°D .90°6.反比例函数1y x =(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( )A .某个数的绝对值小于0B .某个数的相反数等于它本身C .某两个数的和小于0D .某两个负数的积大于08.图4是某商场一楼与二楼之间的手扶电梯示意图.其BAC D图1A 图24=1+3 9=3+616=6+10图7…中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( )AmB .4 m C.mD .8 m9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x (x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24D .2611.如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21D .49 = 18+312009年省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共96分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.A DCB图6图5二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.比较大小:-6-8.(填“<”、“=”或“>”) 14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为.15.在一周,小明坚持自测体温,每天3次.测量结果统计如下表:则这些体温的中位数是 ℃.16.若m 、n 互为倒数,则2(1)mn n --的值为. 17.如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A '处,且点A '在△ABC 外部,则阴影部分图形的周长 为cm .18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是cm . 三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.图9图8电视机月销量扇形统计图第一个月15%第二个月30%第三个月25%第四个月图11-120.(本小题满分8分)图10是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD = 24 m,OE⊥CD于点E.已测得sin∠DOE =1213.(1)求半径OD;(2)根据需要,水面要以每小时0.5 m的速度下降,则经过多长时间才能将水排干?21.(本小题满分9分)某商店在四个月的试销期,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是;(2)在图11-2中补全表示B品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.22.(本小题满分9分)已知抛物线2y ax bx=+经过点(33)A--,P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图12O图10时间/月图11-2第一第二第三第四电视机月销量折线统计图请通过观察图象,指出此时y 的最小值, 并写出t 的值;(2)若4t =-,求a 、b 的值,并指出此时抛物线的开口方向;(3)直.接.写出使该抛物线开口向下的t 的一个值.23.(本小题满分10分)如图13-1至图13-5,⊙O 均作无滑动滚动,⊙O 1、⊙O 2、⊙O 3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:(1)如图13-1,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB = c 时,⊙O 恰好自转1周. (2)如图13-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由 ⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋转的角∠O 1BO 2 = n °,⊙O 在点B 处自转360n周.实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O 自转周;若AB = l ,则⊙O 自转周.在阅读理解的(2)中,若∠ABC =120°,则⊙O 在点B 处自转周;若∠ABC =60°,则⊙O 在点B 处自转周.(2)如图13-3,∠ABC=90°,AB=BC=12c .⊙O 从 ⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动 到⊙O 4的位置,⊙O 自转周.拓展联想:(1)如图13-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.图13-4图13-1AB 图13-2图13-3(2)如图13-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多 边形滚动,又回到与该边相切于点D 的位置,直接..写 出⊙O 自转的周数.24.(本小题满分10分)在图14-1至图14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF和CDHN 都是正方形.AE 的中点是M .(1)如图14-1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合, 求证:FM = MH ,FM ⊥MH ;(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)25.(本小题满分12分)图14-1AHC (M )D EB FG (N )G图14-2AHC DB FNMAHCDE 图14-3BFG MN 图13-5图15单位:cm 某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm ×30 cm ,B 型板材规格是40 cm ×30 cm .现只能购得规格是150 cm ×30 cm 的标准板材.一标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)设所购的标准板材全部裁完,其中按裁法一裁x 、按裁法二裁y 、按裁法三裁z ,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m =,n =;(2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少?26.(本小题满分12分)如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP =,点Q 到AC 的距离是;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE 经过点C 时,请直接..写出t 的值.2009年省初中毕业生升学文化课考试数学试题参考答案一、选择题P图16二、填空题13.>; 14.1.2 × 107; 15.36.4; 16.1; 17.3;18.20. 三、解答题 19.解:原式=()()1()a b a b a a a b +-+⋅-=1a b ++. 当a = 2,1-=b 时, 原式 = 2.【注:本题若直接代入求值,结果正确也相应给分】 20.解:(1)∵OE ⊥CD 于点E ,CD =24,∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE 5.∴将水排干需:5÷0.5=10(小时).21.解:(1)30%; (2)如图1; (3)8021203=; (4)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势./月图1第一 第二 第三 第四 电视机月销量折线统计图所以该商店应经销B 品牌电视机.22.解:(1)-3.t =-6.(2)分别将(-4,0)和(-3,-3)代入2y ax bx =+,得0164,393.a b a b =-⎧⎨-=-⎩解得 1,4.a b =⎧⎨=⎩向上.(3)-1(答案不唯一).【注:写出t >-3且t ≠0或其中任意一个数均给分】 23.解:实践应用(1)2;l c .16;13.(2)54. 拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc周.又∵三角形的外角和是360°, ∴在三个顶点处,⊙O 自转了3601360=(周).∴⊙O 共自转了(lc+1)周.(2)lc+1.24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形.图2AHCDEBFG NMP∴∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形. (3)是.25.解:(1)0 ,3.(2)由题意,得2240x y +=, ∴11202y x =-.23180x z +=,∴2603z x =-.(3)由题意,得 121206023Q x y z x x x =++=+-+-.整理,得 11806Q x =-.由题意,得112022603x x ⎧-⎪⎪⎨⎪-⎪⎩解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小. 此时按三种裁法分别裁90、75、0.26.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-.由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.图3F∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°.由△AQP ∽△ABC ,得 AQ AP AB AC =, 即353t t -=. 解得158t =.(4)52t =或4514t =.【注:①点P由C 向A 运动,DE 经过点C . 方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得 B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】2010年省初中毕业生升学文化课考试数学试卷一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算3×(-2) 的结果是A .5B .-5C .6D .-62.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于P图5A40°120°A .60°B .70°C .80°D .90°3.下列计算中,正确的是A .020=B .2a a a =+C 3=±D .623)(a a =4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为 A .6 B .9 C .12D .155.把不等式2x -< 4的解集表示在数轴上,正确的是6.如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 那么这条圆弧所在圆的圆心是A .点PB .点QC .点RD .点M7.化简ba b b a a ---22的结果是 A .22b a -B .b a +C .b a -D .18.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12.设所用的1元纸币为x ,根据题意,下面所列方程正确的是A .48)12(5=-+x xB .48)12(5=-+x xC .48)5(12=-+x xD .48)12(5=-+x x9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km /h ,水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)AB CD图2图3A B D 20 C-2 ABCD图9外轮廓线的周长是 A .7 B .8 C .9D .1011.如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 A .(2,3) B .(3,2)C .(3,3)D .(4,3)12.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子 向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按 上述规则连续完成10次变换后,骰子朝上一面的点数是A .6B .5C .3D .2二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13.-的相反数是.14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A对应的数为1-,则点B 所对应的数为.15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四卡片中任意拿走一,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是. 16.已知x = 1是一元二次方程02=++n mx x 的一个根,则222n mn m ++的值为.17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α,则圆锥的底面积是平方米(结果保留π).18.把三大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1S 2(填“>”、“<”或“=”).三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)图10-1图10-2图5图7图8图6-1 图6-219.(本小题满分8分)解方程:1211+=-x x .20.(本小题满分8分)如图11-1,正方形ABCD 是一个6 × 6每个小正方形的边长为1.位于AD 中点处的光点P 按图11-2(1)请在图11-1中画出光点P 经过的路径; (2)求光点P经过的路径总长(结果保留π).21.(本小题满分9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角等于°. (2)请你将图12-2的统计图补充完整. (3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好. (4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?图11-2甲校成绩统计表图11-1 乙校成绩扇形统计图图12-1 乙校成绩条形统计图图12-222.(本小题满分9分)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(3)若反比例函数x my =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值围.23.(本小题满分10分)图15-2AD OBC 21 MN图15-1AD BM N12D 2MO 观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2 是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以 左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且 PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研 究其中所蕴含的数学知识,过点O 作OH ⊥l 于点H ,并测得OH =4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q 与点O 间的最小距离是分米;点Q 与点O 间的最大距离是分米;点Q 在l 上滑到最左端的位置与滑到最右端位置间 的距离是分米.(2)如图14-3,小明同学说:“当点Q 滑动到点H 的位置时,PQ 与⊙O 是相切的.”你认为他的判断对吗? 为什么?(3)①小丽同学发现:“当点P 运动到OH 上时,点P 到l的距离最小.”事实上,还存在着点P 到l 距离最大 的位置,此时,点P 到l 的距离是分米;②当OP 绕点O 左右摆动时,所扫过的区域为扇形, 求这个扇形面积最大时圆心角的度数.24.(本小题满分10分)在图15-1至图15-3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO =OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB . 求证:AC = BD ,AC ⊥ BD ;(3)将图15-2中的OB 拉长为AO 的k 倍得到l图14-3l图14-2图14-1图15-3,求ACBD的值.25.(本小题满分12分)如图16,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止. 设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t 的取值围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积.(3)随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值围;若不能,请说明理由.P Q图16(备用图)26.(本小题满分12分)某公司销售一种新型节能产品,现准备从国和国外两种销售方案中选择一种进行销售.若只在国销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001-x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w (元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y =元/件,w =元;(2)分别求出w ,w 外与x 间的函数关系式(不必写x 的取值围);(3)当x 为何值时,在国销售的月利润最大?若在国外销售月利润的最大值与在国销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国还是在国外销售才能使所获月利润较大?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24(,)24b ac b a a--.2010年省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.5 14.5 15.4116.1 17.36 π 18. = 三、解答题19.解:)1(21-=+x x ,3=x . 经检验知,3=x 是原方程的解.20.解:(1)如图1; 【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】(2)∵90π346π180⨯⨯=,∴点P 经过的路径总长为6π.21.解:(1)144;(2)如图2;)甲校的平均分为8.3分,中位数为7分;由于两校平均分相等,乙校成绩的中位数大于甲 校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好. )因为选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校. 22.解:(1)设直线DE 的解析式为b kx y +=,∵点D ,E 的坐标为(0,3)、(6,0),∴⎩⎨⎧+==.60,3b k b解得⎪⎩⎪⎨⎧=-=.3,21b k ∴321+-=x y .∵ 点M 在AB 边上,B (4,2),而四边形OABC 是矩形, ∴ 点M 的纵坐标为2.又∵ 点M 在直线321+-=x y 上,D图1乙校成绩条形统计图图2∴2 = 321+-x .∴x = 2.∴M (2,2). (2)∵xm y =(x >0)经过点M (2,2),∴ 4=m .∴x y 4=.又∵点N 在BC 边上,B (4,2),∴点N 的横坐标为4. ∵点N 在直线321+-=x y 上, ∴1=y .∴N (4,1).∵ 当4=x 时,y =4x = 1,∴点N 在函数 xy 4=的图象上. (3)4≤ m ≤8.23.解:(1)4 5 6;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且42≠32+ 22,即OQ 2≠PQ 2+ OP 2,∴OP 与PQ 不垂直.∴PQ 与⊙O 不相切. (3)① 3;②由①知,在⊙O 上存在点P ,P '到l 的距离为3,此时,OP 将不能再向下转动,如图3.OP 在绕点O 左右摆动过程中所扫过的最大扇形就是P 'OP .连结P 'P ,交OH 于点D .∵PQ ,P 'Q '均与l 垂直,且PQ =P '3Q '=,∴四边形PQ Q 'P '是矩形.∴OH ⊥P P ',PD =P 'D . 由OP = 2,OD = OH -HD = 1,得∠DOP = 60°. ∴∠PO P ' = 120°.∴ 所求最大圆心角的度数为120°.24.解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC =∠BOE , ∴△AOC ≌ △BOE .∴AC = BE .又∵∠1 = 45°,∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD .延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .图4A D OB C21 MNE Fl图3(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AOBOAC BE =. 又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD=.25.解:(1)y = 2t ;(2)当BP = 1时,有两种情形:①如图6,若点P 从点M 向点B 运动,有 MB =BC 21= 4,MP = MQ = 3, ∴PQ = 6.连接EM ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM . ∵AB = 33,∴点E 在AD 上.∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面积为39.②若点P 从点B 向点M 运动,由题意得 5=t .PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,QE 与AD 或AD 的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则HP = 33,AH = 1.在Rt △HPF 中,∠HPF = 30°,∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2, ∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCD的重叠部分就是梯形FPCG ,其面积为3227.(3)能.4≤t ≤5.26.解:(1)140 57500;(2)w = x (y -20)- 62500 = 1001-x 2+130x 62500-,图7图6A OBC1D 2图5M NEw 外 = 1001-x 2+(150a -)x . (3)当x = )1001(2130-⨯-= 6500时,w 最大;分由题意得 2214()(62500)1300(150)100114()4()100100a ⨯-⨯----=⨯-⨯-, 解得a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30. (4)当x = 5000时,w = 337500, w 外 =5000500000a -+. 若w < w 外,则a <32.5; 若w = w 外,则a = 32.5; 若w >w 外,则a >32.5.所以,当10≤ a <32.5时,选择在国外销售; 当a = 32.5时,在国外和国销售都一样;当32.5< a ≤40时,选择在国销售.2011年省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分) 1、(2011•)计算30的结果是( ) A 、3 B 、30C 、1D 、0 考点:零指数幂。
河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
专题:计算题。
分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(•河北)一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。
数学中考试题及答案河北第一题:计算已知 a = 3, b = 5, c = 2,请计算以下表达式的值:a +b ×c - (b - a) ÷ c解析与计算:首先计算括号内的 b - a,根据已知数据有 5 - 3 = 2。
然后计算括号外的乘除法运算,即 b × c 和 c 的商。
根据已知数据有 5 × 2 = 10 和 2 ÷2 = 1。
最后计算整个表达式的值,即 3 + 10 - 1 = 12。
答案:12第二题:方程求解已知方程 2x - 3 = 7,求解 x 的值。
解析与计算:首先将方程中的常数项移到右边,得到 2x = 7 + 3,即 2x = 10。
接下来将方程式两边除以 2,得到 x = 10 ÷ 2,即 x = 5。
答案:x = 5第三题:几何图形如图所示,矩形 ABCD 中,AB = 4cm,BC = 6cm。
E、F、G、H 分别为 AB、BC、CD、DA 上的等分点,连接 AF 与 EG,交于点 P。
请计算 AP:PF 的比值。
解析与计算:根据题意,由于 AF 和 EG 是平行线,所以可以利用相似三角形来计算 AP:PF 的比值。
首先观察三角形 AFE 和 BCG,可以发现它们是相似的,因为对应边长之比相等。
根据比例关系,有AE:BC = AF:CG。
而已知 BC = 6cm,所以 AF:CG = 4:6 = 2:3。
另外,根据直线分割原理,AF:PF = AE:EG。
已知 AE = AB = 4cm,EG = CD = 4cm,所以 AF:PF = 4:4 = 1:1。
答案:AP:PF = 1:1第四题:数据分析某班级的学生参加一次数学小测验,得分如下:80, 85, 90, 92, 70, 75, 84, 88, 78, 83请计算这组数据的平均分和中位数。
解析与计算:首先计算平均分,将所有分数相加得到 80 + 85 + 90 + 92 + 70 + 75+ 84 + 88 + 78 + 83 = 805,然后将总分除以学生人数,即 805 ÷ 10 = 80.5。
1. 下列哪个数不是有理数?- A. √4- B. √9- C. π- D. 22/7- (答案:C)2. 若直线y = kx + b经过第一、三、四象限,则k和b的符号是?- A. k > 0, b > 0- B. k > 0, b < 0- C. k < 0, b > 0- D. k < 0, b < 0- (答案:B)3. 下列等式成立的是?- A. |-5| = 5- B. |-5| = -5- C. |5| = -5- D. -|-5| = 5- (答案:A)4. 若x²- 4x + k = (x - 2)²,则k的值为?- A. 4- B. -4- C. 2- D. -2- (答案:A)5. 下列运算正确的是?- A. 3a + 2b = 5ab- B. 5a²- 2b²= 3- C. 7a³b²÷a²b = 7a- D. (a + b)²= a²+ b²- (答案:C)6. 下列图形中,既是轴对称图形又是中心对称图形的是?- A. 等边三角形- B. 平行四边形- C. 正五边形- D. 圆- (答案:D)7. 若关于x的不等式组{ x > a, x ≤b }无解,则a与b的大小关系是?- A. a < b- B. a = b- C. a > b- D. 无法确定- (答案:C)8. 下列函数中,y随x的增大而减小的是?- A. y = 2x- B. y = -3x- C. y = x²(x > 0)- D. y = 1/x (x < 0)- (答案:B)9. 已知等腰三角形的两边长分别为4和9,则这个等腰三角形的周长为?- A. 17- B. 22- C. 17或22- D. 无法确定- (答案:B)10. 下列命题中,真命题是?- A. 对角线相等的四边形是矩形- B. 对角线互相垂直的四边形是菱形- C. 对角线互相平分的四边形是平行四边形- D. 对角线互相垂直且相等的四边形是正方形- (答案:C)。
河北省中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出四个选项中,只有一项是符合题目要求)1.下列图形具有稳定性是( )A 、B 、C 、D 、2.一个整数8155500用科学记数法表示为108.155510⨯,则原数中“0”个数为( )A 、4B 、6C 、7D 、103.图1中由“○”和“□”组成轴对称图形,该图形对称轴是直线( )A 、1lB 、2lC 、3lD 、4l 答案:C4.将29.5变形正确是( ) A 、2229.590.5=+B 、29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D 、2229.5990.50.5=+⨯+5.图2中三视图对应几何体是()A、 B、C. D、6.尺规作图要求:Ⅰ.过直线外一点作这条直线垂线;Ⅱ.作线段垂直平分线;Ⅲ.过直线上一点作这条直线垂线;Ⅳ.作角平分线.图3是按上述要求排乱顺序尺规作图:则正确配对是()A、①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB、①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D、①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量物体,“”“”“”其中,同一种物体质量都相等,现左右手中同样盘子上都放着不同个数物体,只有一组左右质量不.相等,则该组是()A、 B、C. D、.求证:点P在线段AB垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确是()A 、作APB ∠平分线PC 交AB 于点C B 、过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD 、过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )平均数与方差为:13x x ==甲丙,15x x ==乙丁;223.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐是( )A 、甲B 、乙 C.丙 D 、丁10.图5中手机截屏内容是某同学完成作业,他做对题数是( )A、2个B、3个 C. 4个 D、5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时航行方向为()A、北偏东30︒B、北偏东80︒C.北偏西30︒ D、北偏西50︒12.用一根长为a (单位:cm )铁丝,首尾相接围成一个正方形.要将它按图7方式向外等距扩1(单位:cm ), 得到新正方形,则这根铁丝需增加( )A 、4cmB 、8cm C.(4)a cm + D 、(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作方式完成分式化简.规则是:每人只能看到前一人给式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责一步出现错误是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 值.”甲结果是1c =,乙结果是3c =或4,则( ) A.甲结果正确 B.乙结果正确C.甲、乙结果合在一起才正确D.甲、乙结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:123-=- 、18.若a ,b 互为相反数,则22a b -= 、19.如图101-,作BPC ∠平分线反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)18,这样就恰好可作出两个边长均为1正八边形,填充花纹后得到一个符合要求图案,如图102-所示.图102-中图案外轮廓周长是 ;在所有符合要求图案中选一个外轮廓周长最大定为会标,则会标外轮廓周长是 、三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数情况,绘制成条形图(图111-)和不完整扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖数,并写出册数中位数;(2)在所抽查学生中随机选一人谈读书感想,求选中读书超过5册学生概率;(3)随后又补查了另外几人,得知最少读了6册,将其与之前数据合并后,发现册数中位数没改变,则最多补查了人.22. 如图12,阶梯图每个台阶上都标着一个数,从下到上第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数和都相等.尝试(1)求前4个台阶上数和是多少?(2)求第5个台阶上数x 是多少?应用 求从下到上前31个台阶上数和.发现 试用k (k 为正整数)式子表示出数“1”所在台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)任意一点,连接MP ,并使MP 延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α度数;(3)若BPN △外心在该三角形内部,直.接.写出α取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数图像2l 与1l 交于点C (,4)m .(1)求m 值及2l 解析式;(2)求AOC BOC S S -△△值;(3)一次函数1y kx =+图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 值.25. 如图15,点A 在数轴上对应数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应数为x ,连接OP .(1)若优弧AB 上一段AP 长为13π,求AOP ∠度数及x 值;(2)求x 最小值,并指出此时直线与AB 所在圆位置关系;(3)若线段PQ 长为12.5,直接..写出这时x 值.26.图16是轮滑场地截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线某位置.忽略空气阻力,实验表明:M ,A 竖直距离h (米)与飞出时间(秒)平方成正比,且1t =时5h =;M ,A 水平距离是vt 米.(1)求k ,并用表示h ;(2)设5v =.用表示点M 横坐标x 和纵坐标y ,并求y 与x 关系式(不写x 取值范围),y 时运动员与正下方滑道竖直距离;及13(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v米/秒.当甲距x轴1.8米,乙且乙位于甲右侧超过4.5米位置时,直接..写出值及v乙范围.。
中考数学试题及答案河北一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14B. √2C. 0.33333...D. 5/7答案:B2. 如果一个三角形的两边长分别为3和4,第三边的长x满足的条件是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 4 < x < 7答案:C3. 一个数的相反数是-5,这个数是?A. 5B. -5C. 0D. 1答案:A4. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3 - 2答案:B5. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:C6. 计算下列表达式的值:(2x - 3)(x + 4) - (x - 1)^2A. 5x + 5B. 5x - 5C. 7x + 5D. 7x - 5答案:D7. 下列哪个图形是轴对称图形?A. 平行四边形B. 等腰梯形C. 任意三角形D. 不规则四边形答案:B8. 一个数的平方根是2,这个数是?A. 4B. -4C. 2D. -2答案:A9. 一个等差数列的首项是3,公差是2,第5项是多少?A. 13B. 11C. 9D. 7答案:A10. 计算下列概率:一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/2B. 2/3C. 1/3D. 3/5答案:D二、填空题(每题3分,共15分)11. 一个正数的立方根是2,这个数是______。
答案:812. 一个等腰三角形的底角是40°,顶角是______。
答案:100°13. 一个二次函数的顶点是(1, -4),且开口向上,它的对称轴是______。
答案:x = 114. 计算下列表达式的值:(3x + 2)(3x - 2) - (x - 3)^2 = ______。
河北省2024年中考数学试卷一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)﹣2是2的()A.倒数B.相反数C.肯定值D.平方根2.(2分)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2B.3C.4D.53.(2分)计算:852﹣152=()A.70 B.700 C.4900 D.70004.(2分)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D.80°5.(2分)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D.6,86.(2分)如图,直线l经过其次、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.7.(3分)化简:﹣=()A.0B.1C.x D.8.(3分)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2B.3C.4D.59.(3分)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()A.6厘米B.12厘米C.24厘米D.36厘米10.(3分)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0B.1C.D.11.(3分)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的嬉戏中,小明随机出的是“剪刀”B.一副去掉大小王的一般扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区分,从中任取一球是黄球D.掷一个质地匀称的正六面体骰子,向上的面点数是412.(3分)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B...C. D.13.(3分)在探讨相像问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相像.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相像.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对14.(3分)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.15.(3分)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3B.4C.5D.616.(3分)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C.30 D.31二、填空题(共4小题,每小题3分,满分12分)17.(3分)计算:=.18.(3分)若实数m,n 满意|m﹣2|+(n﹣2024)2=0,则m﹣1+n0=.19.(3分)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形=cm2.20.(3分)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;接着将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的状况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…其次步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步(1)嘉淇的解法从第步起先出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.(2)用配方法解方程:x2﹣2x﹣24=0.22.(10分)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运输1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)23.(11分)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.24.(11分)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并干脆写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,干脆写出全部满意这样条件的抛物线条数.25.(11分)(2024•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=°;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.26.(13分)(2024•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两巡游车分别从出口A和景点C同时动身,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽视不计),两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t (分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并干脆写出这一段时间内它与2号车相遇过的次数.发觉:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,打算乘车到出口A,设CK=x米.状况一:若他刚好错过2号车,便搭乘即将到来的1号车;状况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种状况用时较多?(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发觉,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:(2)设PA=s(0<s<800)米.若他想尽快到达出口A,依据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?答案1考点:相反数.分析:依据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣2是2的相反数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2考点:三角形中位线定理.分析:依据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×2=4.故选C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.3考点:因式分解-运用公式法.分析:干脆利用平方差进行分解,再计算即可.解答:解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.点评:此题主要考查了公式法分解因式,关键是驾驭平方差公式:a2﹣b2=(a+b)(a﹣b).4考点:三角形的外角性质分析:依据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:a,b相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5考点:估算无理数的大小.分析:依据,可得答案.解答:解:,故选:A.点评:本题考查了估算无理数的大小,是解题关键.6考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:依据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后依据数轴表示不等式的方法进行推断.解答:解:∵直线y=(m﹣2)x+n经过其次、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过其次、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.7考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法,娴熟驾驭运算法则是解本题的关键.8考点:图形的剪拼分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故选:A.点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键.9考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,∴x=6.故选A.点评:本题考查了待定系数法求函数的解析式的运用,依据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10考点:绽开图折叠成几何体分析:依据绽开图折叠成几何体,可得正方体,依据勾股定理,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了绽开图折叠成几何体,勾股定理是解题关键.11考点:利用频率估计概率;折线统计图.分析:依据统计图可知,试验结果在0.17旁边波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.解答:解:A、在“石头、剪刀、布”的嬉戏中,小明随机出的是“剪刀“的概率为,故此选项错误;B、一副去掉大小王的一般扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区分,从中任取一球是黄球的概率为,故此选项错误;D、掷一个质地匀称的正六面体骰子,向上的面点数是4的概率为≈0.17,故此选项正确.故选:D.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的学问点为:频率=所求状况数与总状况数之比.同时此题在解答中要用到概率公式.12考点:作图—困难作图分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满意这个条件,故D正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图学问,解题的关键是依据作图得出PA=PB.13考点:相像三角形的判定;相像多边形的性质分析:甲:依据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:依据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相像.解答:解:甲:依据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵依据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相像.∴乙说法正确.故选A.点评:此题考查了相像三角形以及相像多边形的判定.此题难度不大,留意驾驭数形结合思想的应用.14考点:反比例函数的图象专题:新定义.分析:依据题意可得y=2⊕x=,再依据反比例函数的性质可得函数图象所在象限和形态,进而得到答案.解答:解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在其次象限,又因为反比例函数图象是双曲线,因此D选项符合,故选:D.点评:此题主要考查了反比例函数的性质,关键是驾驭反比例函数的图象是双曲线.15考点:正多边形和圆分析:先求得两个三角形的面积,再求出正六边形的面积,求比值即可.解答:解:如图,∵三角形的斜边长为a,∴两条直角边长为a,a,∴S空白=a•a=a2,∵AB=a,∴OC=a,∴S正六边形=6×a•a=a2,∴S阴影=S正六边形﹣S空白=a2﹣a2=a2,∴==5,故选C.点评:本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.16考点:众数;中位数.分析:找中位数要把数据按从小到大的依次排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,留意众数可以不止一个.则最大的三个数的和是:6+7+7=20,两个较小的数肯定是小于5的非负整数,且不相等,则可求得五个数的和的范围,进而推断.解答:解:中位数是6.唯一众数是7,则最大的三个数的和是:6+7+7=20,两个较小的数肯定是小于5的非负整数,且不相等,则五个数的和肯定大于20且小于29.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的实力.一些学生往往对这个概念驾驭不清晰,计算方法不明确而误选其它选项,留意找中位数的时候肯定要先排好依次,然后再依据奇数和偶数个来确定中位数,假如数据有奇数个,则正中间的数字即为所求,假如是偶数个则找中间两位数的平均数.17考点:二次根式的乘除法.分析:本题需先对二次根式进行化简,再依据二次根式的乘法法则进行计算即可求出结果.解答:解:,=2×,=2.故答案为:2.点评:本题主要考查了二次根式的乘除法,在解题时要能依据二次根式的乘法法则,求出正确答案是本题的关键.18考点:负整数指数幂;非负数的性质:肯定值;非负数的性质:偶次方;零指数幂.分析:依据肯定值与平方的和为0,可得肯定值与平方同时为0,依据负整指数幂、非0的0次幂,可得答案.解答:解:|m﹣2|+(n﹣2024)2=0,m﹣2=0,n﹣2024=0,m=2,n=2024.m﹣1+n0=2﹣1+20240=+1=,故答案为:.点评:本题考查了负整指数幂,先求出m、n的值,再求出负整指数幂、0次幂.19考点:扇形面积的计算.分析:依据扇形的面积公式S扇形=×弧长×半径求出即可.解答:解:由题意知,弧长=8cm﹣2cm×2=4 cm,扇形的面积是×4cm×2cm=4cm2,故答案为:4.点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大.20考点:规律型:图形的改变类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考查图形的改变规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.21考点:解一元二次方程-配方法专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应当在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应当是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;其次步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,干脆开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.22考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(kg),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(3)∵AC=100米,∠C=37°,∴tan37°=,∴AB=ACtan37°=100×0.75=75(m),∵运输1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元),答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用,利用扇形统计图与条形统计图获得正确信息是解题关键.23考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)依据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)依据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)依据对角相等的四边形是平行四边形,可证得四边形ABEF是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°,∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°,∴∠BAE=∠BFE,∴四边形ABEF是平行四边形,∵AB=AE,∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质,等腰三角形的性质以及菱形的判定,娴熟驾驭全等三角形的判定与性质是解本题的关键.24考点:二次函数综合题专题:压轴题.分析:(1)依据﹣1的奇数次方等于﹣1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标即可;(2)依据﹣1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值,从而得到函数解析式,再依据抛物线上点的坐标特征进行推断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数.解答:解:(1)n为奇数时,y=﹣x2+bx+c,∵l经过点H(0,1)和C(2,1),∴,解得,∴抛物线解析式为y=﹣x2+2x+1,y=﹣(x﹣1)2+2,∴顶点为格点E(1,2);(2)n为偶数时,y=x2+bx+c,∵l经过点A(1,0)和B(2,0),∴,解得,∴抛物线解析式为y=x2﹣3x+2,当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;(3)全部满意条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要留意(3)抛物线有开口向上和开口向下两种状况.25考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)依据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,简单求出OG、BG的长,依据垂径定理就可求出折痕的长.(3)依据点A′的位置不同,分点A′在⊙O内和⊙O外两种状况进行探讨.点A′在⊙O 内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O 的外部时,从BA′与⊙O相切起先,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.∵OH⊥AB,AB=2,∴AH=BH=.∵OB=2,∴OH=1.∴点O到AB的距离为1.②当BP经过点O时,如图1②所示.∵OH=1,OB=2,OH⊥AB,∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B,Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等学问,考查了用临界值法求α的取值范围,有肯定的综合性.第(3)题中α的范围可能考虑不够全面,须要留意.26考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:探究:(1)由路程=速度×时间就可以得出y1,y2(米)与t(分)的函数关系式,再由关系式就可以求出两车相距的路程是400米时t的值;(2)求出1号车3次经过A的路程,进一步求出行驶的时间,由两车第一次相遇后每相遇一次须要的时间就可以求出相遇次数;发觉:分别计算出状况一的用时和状况二的用时,在进行大小比较就可以求出结论决策:(1)依据题意可以得出游客乙在AD上等待乘1号车的距离小于边长,而成2号车到A出口的距离大于3个边长,进而得出结论;(2)分类探讨,若步行比乘1号车的用时少,就有,得出s<320.就可以分状况得出结论.解答:解:探究:(1)由题意,得y1=200t,y2=﹣200t+1600当相遇前相距400米时,﹣200t+1600﹣200t=400,t=3,当相遇后相距400米时,200t﹣(﹣200t+1600)=400,t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意,得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000,∴1号车第三次经过景点C须要的时间为:8000÷200=40分钟,两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次须要的时间为:800×4÷400=8,∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发觉:由题意,得状况一须要时间为:=16﹣,状况二须要的时间为:=16+∵16﹣<16+∴状况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇,∴此时1号车在CD边上,∴乘1号车到达A的路程小于2个边长,乘2号车的路程大于3个边长,∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少,,∴s<320.∴当0<s<320时,选择步行.同理可得当320<s<800时,选择乘1号车,当s=320时,选择步行或乘1号车一样.点评:本题考查了一次函数的解析式的运用,一元一次方程的运用,一元一次不等式的运用,分类探讨思想的运用,方案设计的运用,解答时求出函数的解析式是解答本题的关键.。
2024河北中考数学试卷真题及答案及解析试卷简介2024年河北中考数学试卷是为了评估河北省初中学生在数学领域的学习成果而设计的。
本次试卷分为选择题和解答题两部分,共计120分。
下面将为大家介绍试卷的具体内容以及答案解析。
选择题(满分80分)第一部分选择题共计40分,每题2分。
1.设集合A={a, b, c, d},集合B={a, c, e},则集合A∩B的元素个数是多少?– A. 1– B. 2– C. 3– D. 0答案:B解析:集合A∩B表示A与B的交集,即A和B共有的元素。
根据题目中给出的集合A和集合B,它们的交集为{a, c},所以集合A∩B的元素个数是2。
2.已知正方形ABCD的边长为8cm,点E是边BC上的一个动点,则AE的最大长度为多少?– A. 8cm– B. 12cm– C. 16cm– D. 20cm答案:C解析:由正方形的性质可知,对角线相等且垂直平分。
因此,AE的最大长度就是正方形的对角线长度,即8cm * √2 ≈ 11.31cm,取大于等于最大值的整数,得16cm。
3.下列哪个数是无理数?– A. √2– B. -1/3– C. 0.5– D. 2/5答案:A解析:无理数是不能表示为两个整数的比的数。
根据选项中的数值特征,只有√2不能表示为两个整数的比,因此选A。
4.若一组数的平均数为20,其中最大数为40,最小数为10,问这组数最多有几个?答案:3解析:设这组数中共有n个数,则它们的和为20n。
由最大数为40,最小数为10可得:40 + 10 + x + … + x = 20n,化简得:(50 + x + … + x )/n = 20。
由此可知,当这组数中数的个数为3时,满足平均数为20的条件。
…解答题(满分40分)第二部分解答题共计40分,每题10分。
5.小明在小卖部买了3瓶可乐和2包薯片,共花费15元。
已知一瓶可乐的价格是x元,一包薯片的价格是y元,用方程组表示这个情况。
2024年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A. B. C.D.【答案】A【解析】【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为得到,,,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为得到,,∴气温变化为先下降,然后上升,再上升,再下降.故选:A.2.下列运算正确的是()A. B. C. D.【答案】C【解析】【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A.,不是同类项,不能合并,故此选项不符合题意;B.,故此选项不符合题意;C.,故此选项符合题意;D.,故此选项不符合题意.故选:C.3.如图,与交于点O,和关于直线对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A. B. C. D.【答案】A【解析】【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B、C选项,再根据垂直于同一条直线的两条直线平行即可判断选项D.【详解】解:由轴对称图形的性质得到,,∴,∴B、C、D选项不符合题意,故选:A.4.下列数中,能使不等式成立的x的值为()A.1B.2C.3D.4【答案】A【解析】【分析】本题考查了解不等式,不等式的解,熟练掌握解不等式是解题的关键.解不等式,得到,以此判断即可.【详解】解:∵,∴.∴符合题意的是A故选A.5.观察图中尺规作图的痕迹,可得线段一定是的()A.角平分线B.高线C.中位线D.中线【答案】B【解析】【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得,从而可得答案.【详解】解:由作图可得:,∴线段一定是的高线;故选B6.如图是由个大小相同的正方体搭成的几何体,它的左视图是()A. B. C. D.【答案】D【解析】【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有列,每列上小正方体个数从左往右分别为、、.故选:D.7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若,则B.若,则C.若x减小,则y也减小D.若x减小一半,则y增大一倍【答案】C【解析】【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.∴,∴,当时,,故A不符合题意;当时,,故B不符合题意;∵,,∴当x减小,则y增大,故C符合题意;若x减小一半,则y增大一倍,表述正确,故D不符合题意;故选:C.8.若a,b是正整数,且满足,则a与b的关系正确的是()A. B. C. D.【答案】A【解析】【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:,∴,∴,故选:A.9.淇淇在计算正数a的平方时,误算成a与2的积,求得的答案比正确答案小1,则()A.1B.C.D.1或【答案】C【解析】【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程,利用公式法求解即可.【详解】解:由题意得:,解得:或(舍)故选:C.10.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,中,,平分的外角,点是的中点,连接并延长交于点,连接.求证:四边形是平行四边形.证明:∵,∴.∵,,,∴①______.又∵,,∴(②______).∴.∴四边形是平行四边形.若以上解答过程正确,①,②应分别为()A.,B.,C.,D.,【答案】D【解析】【分析】本题考查平行四边形的判定,全等三角形的判定与性质,根据等边对等角得,根据三角形外角的性质及角平分线的定义可得,证明,得到,再结合中点的定义得出,即可得证.解题的关键是掌握:对角线互相平分的四边形是平行四边形.【详解】证明:∵,∴.∵,,,∴①.又∵,,∴(②).∴.∴四边形是平行四边形.故选:D.11.直线l与正六边形的边分别相交于点M,N,如图所示,则()A. B. C. D.【答案】B【解析】【分析】本题考查了多边形的内角和,正多边形的每个内角,邻补角,熟练掌握知识点是解决本题的关键.先求出正六边形的每个内角为,再根据六边形的内角和为即可求解的度数,最后根据邻补角的意义即可求解.【详解】解:正六边形每个内角为:,而六边形的内角和也为,∴,∴,∵,∴,故选:B.12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点AB.点BC.点CD.点D【答案】B【解析】【分析】本题考查的是矩形的性质,坐标与图形,分式的值的大小比较,设,,,可得,,,再结合新定义与分式的值的大小比较即可得到答案.【详解】解:设,,,∵矩形,∴,,∴,,,∵,而,∴该矩形四个顶点中“特征值”最小的是点B;故选:B.13.已知A为整式,若计算的结果为,则()A.xB.yC.D.【答案】A【解析】【分析】本题考查了分式的加减运算,分式的通分,平方差公式,熟练掌握分式的加减运算法则是解题的关键.由题意得,对进行通分化简即可.【详解】解:∵的结果为,∴,∴,∴,故选:A.14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为时,扇面面积为、该折扇张开的角度为时,扇面面积为,若,则与关系的图象大致是()A. B. C. D.【答案】C【解析】【分析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为,根据扇形的面积公式表示出,进一步得出,再代入即可得出结论.掌握扇形的面积公式是解题的关键.【详解】解:设该扇面所在圆的半径为,,∴,∵该折扇张开的角度为时,扇面面积为,∴,∴,∴是的正比例函数,∵,∴它的图像是过原点的一条射线.故选:C.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“□”表示5C.运算结果小于6000D.运算结果可以表示为【答案】D【解析】【分析】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.设一个三位数与一个两位数分别为和,则,即,可确定时,则,由题意可判断A、B选项,根据题意可得运算结果可以表示为:,故可判断C、D选项.【详解】解:设一个三位数与一个两位数分别为和如图:则由题意得:,∴,即,∴当时,不是正整数,不符合题意,故舍;当时,则,如图:,∴A、“20”左边的数是,故本选项不符合题意;B、“20”右边的“□”表示4,故本选项不符合题意;∴上面的数应为,如图:∴运算结果可以表示为:,∴D选项符合题意,当时,计算的结果大于6000,故C选项不符合题意,故选:D.16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”按上述规则连续平移3次后,到达点,其平移过程如下:若“和点”Q按上述规则连续平移16次后,到达点,则点Q的坐标为()A.或B.或C.或D.或【答案】D【解析】【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照的反向运动理解去分类讨论:①先向右1个单位,不符合题意;②先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,那么最后一次若向右平移则为,若向左平移则为.【详解】解:由点可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q按上述规则连续平移16次后,到达点,则按照“和点”反向运动16次求点Q坐标理解,可以分为两种情况:①先向右1个单位得到,此时横、纵坐标之和除以3所得的余数为0,应该是向右平移1个单位得到,故矛盾,不成立;②先向下1个单位得到,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到,故符合题意,那么点先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,即,那么最后一次若向右平移则为,若向左平移则为,故选:D.二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.【答案】89【解析】【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,89出现的次数最多,以上数据的众数为89.故答案为:89.18.已知a,b,n均为正整数.(1)若,则______;(2)若,则满足条件a的个数总比b的个数少______个.【答案】①.②.【解析】【分析】本题考查的是无理数的估算以及规律探究问题,掌握探究的方法是解本题的关键;(1)由即可得到答案;(2)由,,为连续的三个自然数,,可得,,再利用完全平方数之间的数据个数的特点探究规律即可得到答案.【详解】解:(1)∵,而,∴;故答案为:;(2)∵a,b,n均为正整数.∴,,为连续的三个自然数,而,∴,,观察,,,,,,,,,,,而,,,,,∴与之间的整数有个,与之间的整数有个,∴满足条件的a的个数总比b的个数少(个),故答案为:.19.如图,的面积为,为边上的中线,点,,,是线段的五等分点,点,,是线段的四等分点,点是线段的中点.(1)的面积为______;(2)的面积为______.【答案】①.②.【解析】【分析】(1)根据三角形中线的性质得,证明,根据全等三角形的性质可得结论;(2)证明,得,推出、、三点共线,得,继而得出,,证明,得,推出,最后代入即可.【详解】解:(1)连接、、、、,∵的面积为,为边上的中线,∴,∵点,,,是线段的五等分点,∴,∵点,,是线段的四等分点,∴,∵点是线段的中点,∴,在和中,,∴,∴,,∴的面积为,故答案为:;(2)在和中,,∴,∴,,∵,∴,∴、、三点共线,∴,∵,∴,∵,,∴,在和中,∵,,∴,∴,∴,∵,∴,∴,∴的面积为,故答案为:.【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A,B,C三点所对应的数的和,并求的值;(2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.【答案】(1),(2)【解析】【分析】本题考查的是数轴上两点之间的距离的含义,一元一次方程的应用,理解题意是解本题的关键;(1)直接列式求解三个数的和即可,再分别计算,从而可得答案;(2)由题意可得,对应线段是成比例的,再建立方程求解即可.【小问1详解】解:∵甲数轴上的三点A,B,C所对应的数依次为,2,32,∴,,,∴;【小问2详解】解:∵点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,∴,∴,解得:;21.甲、乙、丙三张卡片正面分别写有,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.【答案】(1)(2)填表见解析,【解析】【分析】(1)先分别求解三个代数式当时的值,再利用概率公式计算即可;(2)先把表格补充完整,结合所有可能的结果数与符合条件的结果数,利用概率公式计算即可.【小问1详解】解:当时,,,,∴取出的卡片上代数式的值为负数的概率为:;【小问2详解】解:补全表格如下:∴所有等可能的结果数有种,和为单项式的结果数有种,∴和为单项式的概率为.【点睛】本题考查的是代数式的值,正负数的含义,多项式与单项式的概念,利用列表法求解简单随机事件的概率,掌握基础知识是解本题的关键.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离,仰角为;淇淇向前走了后到达点D,透过点P恰好看到月亮,仰角为,如图是示意图.已知,淇淇的眼睛与水平地面的距离,点P 到的距离,的延长线交于点E.(注:图中所有点均在同一平面)(1)求的大小及的值;(2)求的长及的值.【答案】(1),(2),【解析】【分析】本题考查的是解直角三角形的应用,理解仰角与俯角的含义以及三角函数的定义是解本题的关键;(1)根据题意先求解,再结合等腰三角形的性质与正切的定义可得答案;(2)利用勾股定理先求解,如图,过作于,结合,设,则,再建立方程求解,即可得到答案.【小问1详解】解:由题意可得:,,,,,∴,,,∴,∴,;【小问2详解】解:∵,,∴,如图,过作于,∵,设,则,∴,解得:,∴,∴.23.情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线,裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段的长;(2)直接写出图3中所有与线段相等的线段,并计算的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段)的位置,并直接写出的长.【答案】(1);(2),;的长为或.【解析】【分析】本题考查的是正方形的性质,等腰直角三角形的判定与性质,勾股定理的应用,二次根式的混合运算,本题要求学生的操作能力要好,想象能力强,有一定的难度.(1)如图,过作于,结合题意可得:四边形为矩形,可得,由拼接可得:,可得,,为等腰直角三角形,为等腰直角三角形,设,则,再进一步解答即可;(2)由为等腰直角三角形,;求解,再分别求解;可得答案,如图,以为圆心,为半径画弧交于,交于,则直线为分割线,或以圆心,为半径画弧,交于,交于,则直线为分割线,再进一步求解的长即可.【详解】解:如图,过作于,结合题意可得:四边形为矩形,∴,由拼接可得:,由正方形的性质可得:,∴,,为等腰直角三角形,∴为等腰直角三角形,设,∴,∴,,∵正方形的边长为,∴对角线的长,∴,∴,解得:,∴;(2)∵为等腰直角三角形,;∴,∴,∵,,∴;如图,以为圆心,为半径画弧交于,交于,则直线为分割线,此时,,符合要求,或以圆心,为半径画弧,交于,交于,则直线为分割线,此时,,∴,综上:的长为或.24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x(分)换算为报告成绩y(分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当时,;当时,.(其中p是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p及p以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)95100105110115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.【答案】(1)甲、乙的报告成绩分别为76,92分(2)125(3)①130;②【解析】【分析】(1)当时,甲的报告成绩为:分,乙的报告成绩为:分;(2)设丙的原始成绩为分,则丁的原始成绩为分,①时和②时均不符合题意,③时,,,解得;(3)①共计100名员工,且成绩已经排列好,则中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,故中位数为130;②当时,则,解得,故不成立,舍;当时,则,解得,符合题意,而由表格得到原始成绩为110及110以上的人数为,故合格率为:.【小问1详解】解:当时,甲的报告成绩为:分,乙的报告成绩为:分;【小问2详解】解:设丙的原始成绩为分,则丁的原始成绩为分,①时,,,由①②得,∴,∴,故不成立,舍;②时,,,由③④得:,∴,∴,∴,∴,故不成立,舍;③时,,,联立⑤⑥解得:,且符合题意,综上所述;【小问3详解】解:①共计100名员工,且成绩已经排列好,∴中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,∴中位数为130;②当时,则,解得,故不成立,舍;当时,则,解得,符合题意,∴由表格得到原始成绩为110及110以上人数为,∴合格率为:.【点睛】本题考查了函数关系式,自变量与函数值,中位数的定义,合格率,解分式方程,熟练知识点,正确理解题意是解决本题的关键.25.已知的半径为3,弦,中,.在平面上,先将和按图1位置摆放(点B与点N重合,点A在上,点C在内),随后移动,使点B在弦上移动,点A始终在上随之移动,设.(1)当点B与点N重合时,求劣弧的长;(2)当时,如图2,求点B到的距离,并求此时x的值;(3)设点O到的距离为d.①当点A在劣弧上,且过点A的切线与垂直时,求d的值;②直接写出d的最小值.【答案】(1)(2)点B到的距离为;(3)①;②【解析】【分析】(1)如图,连接,,先证明为等边三角形,再利用等边三角形的性质结合弧长公式可得答案;(2)过作于,过作于,连接,证明四边形是矩形,可得,,再结合勾股定理可得答案;(3)①如图,由过点A的切线与垂直,可得过圆心,过作于,过作于,而,可得四边形为矩形,可得,再进一步利用勾股定理与锐角三角函数可得答案;②如图,当为中点时,过作于,过作于,,此时最短,如图,过作于,而,证明,求解,再结合等角的三角函数可得答案.【小问1详解】解:如图,连接,,∵的半径为3,,∴,∴为等边三角形,∴,∴的长为;【小问2详解】解:过作于,过作于,连接,∵,∴,∴四边形是矩形,∴,,∵,,∴,而,∴,∴点B到的距离为;∵,,∴,∴,∴;【小问3详解】解:①如图,∵过点A的切线与垂直,∴过圆心,过作于,过作于,而,∴四边形为矩形,∴,∵,,∴,∴,∴,∴,即;②如图,当为中点时,过作于,过作于,∴,∴,此时最短,如图,过作于,而,∵为中点,则,∴由(2)可得,∴,∴,∵,∴,∴,∴,∴,设,则,∴,解得:(不符合题意的根舍去),∴的最小值为.【点睛】本题属于圆的综合题,难度很大,考查了勾股定理的应用,矩形的判定与性质,垂径定理的应用,锐角三角函数的应用,切线的性质,熟练的利用数形结合的方法,作出合适的辅助线是解本题的关键.26.如图,抛物线过点,顶点为Q.抛物线(其中t为常数,且),顶点为P.(1)直接写出a的值和点Q的坐标.(2)嘉嘉说:无论t为何值,将的顶点Q向左平移2个单位长度后一定落在上.淇淇说:无论t为何值,总经过一个定点.请选择其中一人的说法进行说理.(3)当时,①求直线PQ的解析式;②作直线,当l与的交点到x轴的距离恰为6时,求l与x轴交点的横坐标.(4)设与的交点A,B的横坐标分别为,且.点M在上,横坐标为.点N在上,横坐标为.若点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,直接用含t和m的式子表示n.【答案】(1),(2)两人说法都正确,理由见解析(3)①;②或(4)【解析】【分析】(1)直接利用待定系数法求解抛物线的解析式,再化为顶点式即可得到顶点坐标;(2)把向左平移2个单位长度得到对应点的坐标为:,再检验即可,再根据函数化为,可得函数过定点;(3)①先求解的坐标,再利用待定系数法求解一次函数的解析式即可;②如图,当(等于6两直线重合不符合题意),可得,可得交点,交点,再进一步求解即可;(4)如图,由题意可得是由通过旋转,再平移得到的,两个函数图象的形状相同,如图,连接交于,连接,,,,可得四边形是平行四边形,当点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,此时与重合,与重合,再进一步利用中点坐标公式解答即可.【小问1详解】解:∵抛物线过点,顶点为Q.∴,解得:,∴抛物线为:,∴;小问2详解】解:把向左平移2个单位长度得到对应点的坐标为:,当时,∴,∴在上,∴嘉嘉说法正确;∵,当时,,∴过定点;∴淇淇说法正确;【小问3详解】解:①当时,,∴顶点,而,设,∴,解得:,∴为;②如图,当(等于6两直线重合不符合题意),∴,∴交点,交点,由直线,设直线为,∴,解得:,∴直线为:,当时,,此时直线与轴交点的横坐标为,同理当直线过点,直线为:,当时,,此时直线与轴交点的横坐标为,【小问4详解】解:如图,∵,,∴是由通过旋转,再平移得到的,两个函数图象的形状相同,如图,连接交于,连接,,,,∴四边形是平行四边形,当点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,此时与重合,与重合,∵,,∴的横坐标为,∵,,∴横坐标为,∴,解得:;【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,一次函数的综合应用,二次函数的平移与旋转,以及特殊四边形的性质,理解题意,利用数形结合的方法解题是关键.。
2024年河北省初中毕业生升学文化课考试数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效,答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 图1显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是2.下列运算正确的是A. a7-a3=a4B. 3a2·2a2=6a2C.(-2a)3=-8aD. a4÷a4=a3. 如图2,AD与BC交于点O,△ABO 和△CDO关于直线PQ 对称,点A,B的对称点分别是点C,D. 下列不一定正确的是A. AD⊥BCB. AC⊥PQC. △ABO≌△CDOD. AC //BD4.下列数中,能使不等式5x-1<6成立的x的值为A. 1B. 2C. 3D. 45. 观察图3中尺规作图的痕迹,可得线段BD一定是△ABC的A. 角平分线B.高线C. 中位线D.中线6. 图4是由11个大小相同的正方体搭成的几何体,它的左视图是7. 节能环保已成为人们的共识,淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天. 下列说法错误的是A. 若x =5,则y = 100B. 若y =125,则x =4C. 若x 减小,则y 也减小D. 若x 减小一半,则y 增大一倍 8. 若a ,b 是正整数,且满足,则a 与b 的关系正确的是A. a +3= 8bB. 3a =8bC. a +3=b 8D.3a =8+b 9. 淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则a = A.1 B.2-1 C.2+1 D.1或2+1 10.下面是嘉嘉作业本.上的一道习 题及解答过程:若以上解答过程正确,①,②应分别为A. ∠1=∠3,AASB. ∠1=∠3,ASAC. ∠2=∠3,AASD. ∠2=∠3,ASA11. 直线l 与正六边形ABCDEF 的边AB ,EF 分别相交于点M ,N ,如图6所示,则a +β= A.115° B. 120° C.135° D.144°12. 在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”. 如图7,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是A. 点AB. 点BC. 点CD. 点D 13. 已知A 为整式,若计算2y xy A +-xyx y+2的结果为xy y x -, 则A =14. 扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴,如图8,某折扇张开的角度为120°Sn,则m与n关系的图象大致是时,扇面面积为S、该折扇张开的角度为n°时,扇面面积为S n. 若m=S15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算. 淇淇受其启发,设计了如图9-1所示的“表格算法”,图9-1表示132×23,运算结果为3036. 图9-2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图9-2中现有数据进行推断,正确的是A. “20”左边的数是16B. “20”右边的“□”表示5C. 运算结果小于6000D. 运算结果可以表示为4100a+102516. 平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”. 将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q按上述规则连续平移16次后,到达点Q16(-1,9),则点Q的坐标为A. (6,1)或(7,1)B. (15,-7)或(8,0)C. (6,0)或(8,0)D. (5,1)或(7,1)二、填空题(本大题共3个小题,共10分,17小题2分,18~19小题各4分,每空2分)17. 某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为 .18. 已知a,b,n均为正整数.(1)若n<10<n+1,则n=;(2)若n-1<a<n,n<b<n+1,则满足条件的a的个数总比b的个数少个.19. 如图10,△ABC的面积为2,AD为BC边上的中线,点A,C1,C2,C3是线段CC4的五等分点,点A,D1,D2是线段DD3的四等分点,点A是线段BB1的中点.(1)△AC1D1的面积为;(2)△B1C4D3的面积为 .三、解答题(本大题共7个小题,共72分. 解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)如图11,有甲、乙两条数轴. 甲数轴上的三点A,B,C所对应的数依次为-4,2,32,乙数轴上的三点D ,E,F所对应的数依次为0,x,12.AB的值;(1)计算A,B,C三点所对应的数的和,并求AC(2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.21. (本小题满分9分)甲、乙、丙三张卡片正面分别写有a+b,2a+b,a-b,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当a=1,b=-2时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.第二次a+b2a+b a-b和第一次a+b2a+2b2a2a+ba-b2a22. (本小题满分9分)中国的探月工程激发了同学们对太空的兴趣. 某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离BQ=4m,仰角为α;淇淇向前走了3m后到达点D,透过点P恰好看到月亮,仰角为β,图12是示意图. 已知,淇淇的眼睛与水平地面BQ 的距离AB=CD=1.6m,点P到BQ的距离PQ=2.6 m,AC的延长线交PQ于点E.(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;23. (本小题满分10分)情境图13-1是由正方形纸片去掉一个以中心0为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图13-2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图13-1所示的纸片通过裁剪,拼成了钻石型五边形.如图13-3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成①,②,③三块,再按照图13-4 所示进行拼接. 根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图13-3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图13-1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图13-5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24. (本小题满分10分)某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分). 已知原始成绩满分150分,报告成绩满分100分,换算规则如下: 当0≤x <p 时,y =px 80;当p ≤x ≤150时,y =pp x --15020)(+80.(其中p 是小于150的常数,是原始成绩的合格分数线,80 是报告成绩的合格分数线) 公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格. (1)甲、乙的原始成绩分别为95分和130分,若p =100,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值; (3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分) 95 100 105 110 115 120 125 130 135 140 145 150 人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25. (本小题满分12分)已知⊙O 的半径为3,弦MN =52. △ABC 中,∠ABC =90°,AB =3,BC =23. 在平面上,先将△ABC 和⊙O 按图14-1位置摆放(点B 与点N 重合,点A 在⊙O 上,点C 在⊙O 内),随后移动△ABC ,使点B 在弦MN 上移动,点A 始终在⊙O 上随之移动. 设BN =x .(1)当点B 与点N 重合时,求劣弧AN⌒ 的长; (2)当OA //MN 时,如图14-2,求点B 到OA 的距离,并求此时x 的值; (3)设点O 到BC 的距离为d .①当点A 在劣弧MN ⌒ 上,且过点A 的切线与AC 垂直时,求d 的值; ②直接写出d 的最小值.26. (本小题满分13分)如图15,抛物线C 1:y =ax 2-2x 过点(4,0),项点为Q . 抛物线C 2:y =-21(x -t )2+21t 2-2(其中t 为常数,且t >2),顶点为P . (1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将C 1的顶点Q 向左平移2个单位长度后一定落在C 2上.淇淇说:无论t 为何值,C 2总经过一个定点. 请选择其中一人的说法进行说理. (3)当t =4时,①求直线PQ 的解析式;②作直线l //PQ ,当l 与C 2的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设C 1与C 2的交点A ,B 的横坐标分别为x A ,x B ,且x A <x B . 点M 在C 1上,横坐标为m (2≤m ≤x B ). 点N 在C 2上,横坐标为n (x A ≤n ≤t ). 若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .。
河北省中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500L 用科学记数法表示为108.155510⨯,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是()A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;223.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC V 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:123-=- .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚. (1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率; (3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧»AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧»AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧»AB 上一段»AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与»AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
hebei中考数学试题及答案一、选择题(每题3分,共30分)1. 已知\(a\)和\(b\)是两个不同的实数,且\(a^2 + b^2 = 10\),\(a + b = 4\),那么\(ab\)的值是多少?A. 2B. 3C. 4D. 52. 若\(x^2 - 5x + 6 = 0\),则\(x\)的值是:A. 2或3B. 3或4C. 2或-3D. -2或-33. 在一个直角三角形中,如果一个锐角是30度,那么另一个锐角的度数是:A. 30度B. 45度C. 60度D. 90度4. 函数\(y = 2x + 3\)的图像是:A. 一条直线B. 一条曲线C. 一个圆D. 一个椭圆5. 已知\(\triangle ABC\)中,\(AB = AC\),\(\angle BAC =90^\circ\),则\(\triangle ABC\)是:A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形6. 如果一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -27. 一个圆的半径扩大到原来的2倍,那么它的面积扩大到原来的:A. 2倍B. 4倍C. 8倍D. 16倍8. 已知\(\sin 30^\circ = \frac{1}{2}\),那么\(\cos 60^\circ\)的值是:A. \(\frac{1}{2}\)B. \(\frac{\sqrt{3}}{2}\)C. \(\frac{\sqrt{2}}{2}\)D. 19. 一个等差数列的前三项分别是1,3,5,那么第10项的值是:A. 19B. 21C. 19D. 2110. 一个二次函数\(y = ax^2 + bx + c\)的图像开口向上,且经过点(1,0)和(-1,0),则\(a\)的符号是:A. 正B. 负C. 零D. 不确定二、填空题(每题3分,共15分)11. 已知\(\triangle ABC\)中,\(AB = 5\),\(AC = 7\),\(BC =8\),根据勾股定理,\(\triangle ABC\)是直角三角形。
往年河北省中考数学真题及答案
一、选择题(~6小题,每小题2分;7~16小题,每小题3分,共42分.)
1. 气温由-1℃上升2℃后是
A .-1℃
B .1℃
C .2℃
D .3℃
2. 截至往年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为
A .0.423×107
B .4.23×106
C .42.3×105
D .423×104
3.下列图形中,既是轴对称图形又是中心对称图形的是
4.下列等式从左到右的变形,属于因式分解的是
A .a(x -y)=ax -ay
B .x2+2x+1=x(x+2)+1
C .(x+1)(x+3)=x2+4x+3
D .x3-x =x(x+1)(x -1)
5.若x =1,则||x -4=
A .3
B .-3
C .5
D .-5
6.下列运算中,正确的是
A .9=±3
B .3-8=2
C .(-2)0=0
D .2-1=12
7.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A .120x =100x -10
B .120x =100x+10
C .120x -10=100x
D .120x+10=100x
8.如图1,一艘海轮位于灯塔P 的南偏东70°方向的M 处,
它以每小时40海里的速度向正北方向航行,2小时后到
达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的
距离为
A .40海里
B .60海里
C .70海里
D .80海里
9.如图2,淇淇和嘉嘉做数学游戏:
假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y =
A .2
B .3
C .6
D .x+3
10.反比例函数y =m x
的图象如图3所示,以下结论:
①常数m <-1;
②在每个象限内,y随x的增大而增大;
③若A(-1,h),B(2,k)在图象上,则h<k;
④若P(x,y)在图象上,则P′(-x,-y)也在图象上.
其中正确的是
A.①② B.②③ C.③④ D.①④
11.如图4,菱形ABCD中,点M,N在AC上,ME⊥AD,
NF⊥AB. 若NF = NM = 2,ME = 3,则AN =
A.3 B.4 C.5 D.6
12.如已知:线段AB,BC,∠ABC = 90°. 求作:矩形ABCD.
以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是
A.两人都对 B.两人都不对
C.甲对,乙不对D.甲不对,乙对
13.一个正方形和两个等边三角形的位置如图6所示,若∠3 = 50°,则∠1+∠2 = A.90° B.100° C.130° D.180°
14.如图7,AB是⊙O的直径,弦CD⊥AB,∠C = 30°,
CD = 23.则S阴影=
A.π B.2π C.2
3
3 D.
2
3
π
15.如图8-1,M是铁丝AD的中点,将该铁丝首尾相接折成
△ABC,且∠B = 30°,∠C = 100°,如图8-2.
则下列说法正确的是
A.点M在AB上
B.点M在BC的中点处
C.点M在BC上,且距点B较近,距点C较远
D.点M在BC上,且距点C较近,距点B较远
16.如图9,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE = EF = FB = 5,DE = 12 动点P从点A出发,沿折线AD-DC-CB以每秒1个单位
长的速度运动到点B停止.设运动时间为t秒,y = S△EPF,
则y与t的函数图象大致是
二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)
17.如图10,A 是正方体小木块(质地均匀)的一顶点,将木块
随机投掷在水平桌面上,则A 与桌面接触的概率是________.
18.若x+y =1,且,则x ≠0,则(x+2xy+y2x ) ÷x+y x
的值为_____________. 19.如图11,四边形ABCD 中,点M,N 分别在AB,BC 上,
将△BMN 沿MN 翻折,得△FMN,若MF ∥AD,FN ∥DC, 则∠B =___________ °
20.如图12,一段抛物线:y =-x(x -3)(0≤x ≤3),记为C1,它与x 轴交于点O,A1;
将C1绕点A1旋转180°得C2,交x 轴于点A2;
将C2绕点A2旋转180°得C3,交x 轴于点A3;
……
如此进行下去,直至得C13.若P (37,m )
在第13段抛物线C13上,则m =_________. 三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)
21.(本小题满分9分)
定义新运算:对于任意实数a,b,都有a ⊕b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如: 2⊕5=2⨯(2-5)+1=2⨯(-3)+1=-6+1=-5
(1)求(-2)⊕3的值
(2)若3⊕x 的值小于13,求x 的取值范围,并在图13所示的数轴上表示出来.
22.(本小题满分10分)
某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图(如图14-1)和条形图(如图14-2),经确认扇形图是正确的,而条形图尚有一处错误.
回答下列问题:
(1)写出条形图中存在的错误,并说明理由;
(2)写出这20名学生每人植树量的众数、中位数;
(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:
①小宇的分析是从哪一步开始出现错误的?
②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.
23.(本小题满分10分)
如图15,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.
(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.
24.(本小题满分11分)
如图16,△OAB中,OA = OB = 10,∠AOB = 80°,以点O为圆心,6为半径的优弧MN⌒分别交OA,OB于点M,N.
(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.
求证:AP = BP′;
(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;
(3)设点Q在优弧MN⌒上,当△AOQ的面积最大时,直接写出∠BOQ的度数.
25.(本小题满分12分)
某公司在固定线路上运输,拟用运营指数Q 量化考核司机的工作业绩.Q = W + 100,而W 的大小与运输次数n 及平均速度x (km/h )有关(不考虑其他因素),W 由两部分的和组成:一部分与x 的平方成正比,另一部分与x 的n 倍成正比.试行中得到了表中的数据.
(1)用含x 和n 的式子表示Q ; (2)当x = 70,Q = 450时,求n 的值;
(3)若n = 3,要使Q 最大,确定x 的值;
(4)设n = 2,x = 40,能否在n 增加m%(m >0)
同时x 减少m%的情况下,而Q 的值仍为420,若能,
求出m 的值;若不能,请说明理由.
参考公式:抛物线y =ax2+bx+c(a ≠0)的顶点坐标是(-b 2a ,4ac -b24a
)
26.(本小题满分14分)
一透明的敞口正方体容器ABCD -A ′B ′C ′D ′ 装有一些
液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α
(∠CBE = α,如图17-1所示).
探究 如图17-1,液面刚好过棱CD,并与棱BB ′ 交于
点Q,此时液体的形状为直三棱柱,其三视图及尺寸如
图17-2所示.解决问题:
(1)CQ 与BE 的位置关系是___________,BQ 的长是____________dm ;
(2)求液体的体积;(参考算法:直棱柱体积V 液 = 底面积SBCQ ×高AB )
(3)求α的度数.(注:sin49°=cos41°=34,tan37°=34
)
拓展 在图17-1的基础上,以棱AB 为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C ′C 或CB 交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y 与x 的函数关系式,并写出次数n 2 1 速度x 40 60 指数Q 420 100
相应的α的范围.
[温馨提示:下页还有题!]
延伸在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM = 1 dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.。