概率论5-6习题标准答案
- 格式:doc
- 大小:251.00 KB
- 文档页数:4
i习题一3 设,,B A 为二事件,化简下列事件:B B B A B BA B A B A B A =⋃=⋃⋃=⋃⋃)()())()(1(B B A B B A A A B A B A =⋃⋃⋃=⋃⋃)())()(2(4 电话号码由5个数字组成,每个数字可能是从0到9这10个数字中的任一个,求电话号码由5个不同数字组成的概率。
3024.010302410427210678910445==⋅=⋅⋅⋅⋅=p5 n 张奖券中有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
答案:.1k n k mn C C --6 从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”的概率是多少?解;将这五双靴子分别编号分组},,,,{};,,,,{5432154321b b b b b B a a a a a A ==,则C 表示:“至少有两只配成一双”;从5双不同的鞋子中任取4只,其可能选法有.45C不能配对只能是:一组中选i 只,另一组中选4-i 只,且编号不同,其可能选法为)0,1,2,3,4(;455=--i C C i i i41045341523251235451)(1)(C C C C C C C C C C P C P ++++-=-= 2113218177224161247720104060401011234789105453245224551=-=⋅⋅-=⋅++++-=⋅⋅⋅⋅⋅⋅⋅+⋅+⋅⋅+⋅⋅+-= 7在[—1,1]上任取一点,求该点到原点的距离不超过51的概率。
答案:518在长度为a 的线段内任取两点,将其分成三段,求它们可以构成三角形的概率。
,0,0a y a x <<<<且a y x <+<0,又41222,,=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>+⇒⎪⎩⎪⎨⎧--<---<--->+P ay a x a y x y x a x y y x a y x y x a y x 9在区间)1,0(内任取两个数,求这两个数的积小于41的概率。
概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
概率论第六章课后习题答案概率论第六章课后习题答案概率论是一门研究随机现象的数学分支,它在解决实际问题中具有广泛的应用。
第六章是概率论中的重要章节,主要涉及随机变量及其概率分布、数学期望和方差等内容。
在课后习题中,我们将通过解答一些典型问题,进一步加深对这些概念的理解。
1. 随机变量X的概率分布函数为F(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 3/4, 2 ≤ x < 3{ 1, x ≥ 3(1) 求随机变量X的概率密度函数f(x)。
(2) 求P(0.5 ≤ X ≤ 2.5)。
解:(1) 概率密度函数f(x)是概率分布函数F(x)的导数。
根据导数的定义,我们可以得到:f(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 1/4, 2 ≤ x < 3{ 0, x ≥ 3(2) P(0.5 ≤ X ≤ 2.5) = F(2.5) - F(0.5) = 3/4 - 1/4 = 1/2 2. 设随机变量X的概率密度函数为f(x) ={ c(1 - x^2), -1 ≤ x ≤ 1{ 0, 其他(1) 求常数c的值。
(2) 求P(|X| > 0.5)。
解:(1) 概率密度函数f(x)的积分值等于1。
我们可以计算:∫[-1,1] c(1 - x^2) dx = 1解这个积分方程,可得c = 3/4。
(2) P(|X| > 0.5) = 1 - P(|X| ≤ 0.5)= 1 - ∫[-0.5,0.5] c(1 - x^2) dx= 1 - 3/4 ∫[-0.5,0.5] (1 - x^2) dx= 1 - 3/4 [x - x^3/3] |[-0.5,0.5]= 1 - 3/4 [(0.5 - 0.5^3/3) - (-0.5 + 0.5^3/3)] = 1 - 3/4 [0.5 - 0.5/3 - (-0.5 + 0.5/3)]= 1 - 3/4 [1/3]= 1 - 1/4= 3/43. 设随机变量X的概率密度函数为f(x) ={ kx^2, 0 ≤ x ≤ 2{ 0, 其他(1) 求常数k的值。
概率与数理统计习题五答案1•一颗骰子连续掷4次,点数总和记为X .估计P{10VXV18}.达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】设至少要生产n 件产品才能满足要求,人 1,第i 个产品合格, 令X i0,第i 个产品不合格.'1,2,L ,n ,则X 1,X 2,L ,X n 相互独立且服从相同的(0— 1)分布,P P X i 1 0.8现要求n,使得nX i P 0.76— 0.84 0.9.n【解】设X i (i 123,4)表示第i 次掷的点数,则4X ii 1E(X i ) E(X i 2)112 16 612 1 2261 6 321 642 5 16 1 52 66 1 6 167 2 62 91 6 从而D(X i ) E(X i 2)[E(X i )]91 635 12又X i ,X 2,X 3,X 4独立同分布44从而 E(X) E( X i )E(X i ) i 1 i 114,所以44D(X) D( X i )D(X i )i 1i 1P{10 X 18} P{| X2.假设一条生产线生产的产品合格率是 4 35 12 35 3 141 4}1晳 0.271,4208要使一批产品的合格率742所以供应电能151X 15=2265 (单位).0.95 P{X m} P X140 m 140^42m 140742查表知耳便1.64,V 42,m=151.根据独立同分布的中心极限定理得整理得 普o.95'查表普1.64, n >268.96,故取 n=269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以 95%的概率保证不致因供电不足 而影响生产.【解】设需要供应车间至少m 15个单位的电能,这么多电能最多能同时供给m 部车床工作,我们的问题是求把观察一部机床是否在工作看成一次试验,在 200次试验中,用X 表示正在工作的机床数目,则 X 〜B(200,0.7),E(X) np 200 0.7 140, D(X) np(1 p) 200 0.7 0.3根据题意,结合棣莫弗一拉普拉斯定理可得nX i 0.8ni 1p 0.76 n 0.8 n V n 0.8 0.2V n 0.8 0.20.84n 0.8n V n 0.8 0.20.84n 0.8n 0.76n J0.16 n』0.9,42,1P{ X 30}P{ X 30} 1 PX np 30 np J np(1 p) J np(1 p) 30 100 0.2 J100 0.2 0.81(2.5) 0.00624. 一加法器同时收到20个噪声电压V ( k 12L ,20),设它们是相互20独立的随机变量,且都在区间(0,10)上服从均匀分布.记V V k ,k 1求P{V > 105}的近似值.100/12(k 1,2,L ,20)。
概率论第5、6、7、8章真题练习(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2013年4月2012年10月6.设X 1,X 2,…,X n …为相互独立同分布的随机变量序列,且E (X 1)=0,D (X 1)=1,则1lim 0n i n i P X →∞=⎧⎫≤=⎨⎬⎩⎭∑7.设x 1,x 2,…,x n 为来自总体N (μ,σ2)的样本,μ,σ2是未知参数,则下列样本函数为统计量的是 A.1ni i x μ=-∑B.211nii x σ=∑C. 211()ni i x n μ=-∑ D. 211n i i x n =∑ 8.对总体参数进行区间估计,则下列结论正确的是 A.置信度越大,置信区间越长 B.置信度越大,置信区间越短 C.置信度越小,置信区间越长D.置信度大小与置信区间长度无关9.在假设检验中,H 0为原假设,H 1为备择假设,则第一类错误是 A. H 1成立,拒绝H 0 成立,拒绝H 0 成立,拒绝H 1成立,拒绝H 110.设一元线性回归模型:201(1,2,),~(0,)i i i i y x i n N ββεεσ=++=…,且各i ε相互独立.依据样本(,)(1,2,,)i i x y i n =…得到一元线性回归方程01ˆˆˆy x ββ=+,由此得i x 对应的回归值为ˆi y,i y 的平均值11(0)ni i y y y n ==≠∑,则回归平方和S 回为 A .21(-)ni i y y =∑B .21ˆ(-)ni i i y y=∑C .21ˆ(-)ni i yy =∑ D .21ˆni i y=∑ 21.设m 为n 次独立重复试验中事件A 发生的次数,p 为事件A 的概率,则对任意正数ε,有lim n m P p n ε→∞⎧⎫-<⎨⎬⎩⎭=____________.22.设x 1,x 2,…,x n 是来自总体P (λ)的样本,x 是样本均值,则D (x )=___________.23.设x 1,x 2,…,x n 是来自总体B (20,p )的样本,则p 的矩估计ˆp=__________. 24.设总体服从正态分布N (μ,1),从中抽取容量为16的样本,u α是标准正态分布的上侧α分位数,则μ的置信度为的置信区间长度是_________.25.设总体X ~N (μ,σ2),且σ2未知,x 1,x 2,…,x n 为来自总体的样本,x 和S 2分别是样本均值和样本方差,则检验假设H 0:μ =μ0;H 1:μ≠μ0采用的统计量表达式为_________.四、综合题(本大题共2小题,每小题12分,共24分)28.某次抽样结果表明,考生的数学成绩(百分制)近似地服从正态分布N (75,σ2),已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率.五、应用题(10分)30.某种产品用自动包装机包装,每袋重量X~N(500,22)(单位:g),生产过程中包装机工作是否正常要进行随机检验.某天开工后抽取了9袋产品,测得样本均值x=502g. 问:当方差不变时,这天包装机工作是否正常(α=(附:=2012年4月9.设总体2~(2,3),X N x 1,x 2,…,x n 为来自总体X 的样本,x 为样本均值,则下列统计量中服从标准正态分布的是( ) A.23x - B.29x -10.设样本x 1,x 2,…,x n 来自正态总体2(,)N μσ,且2σ未知.x 为样本均值,s 2为样本方差.假设检验问题为01:1,:1H H μμ=≠,则采用的检验统计量为( )xx21.设随机变量X ~N (1,1),应用切比雪夫不等式估计概率{}P ()2X E X -≥≤______.22.设总体X 服从二项分布B (2,,x 为样本均值,则()E x =______. 23.设总体X ~N (0,1),123x x x ,,为来自总体X 的一个样本,且2222123~()x x x n χ++,则n =______.24.设总体~(1)X N μ,,12x x ,为来自总体X 的一个样本,估计量1121122x x μ=+,2121233x x μ=+,则方差较小的估计量是______. 25.在假设检验中,犯第一类错误的概率为,则在原假设H 0成立的条件下,接受H 0的概率为______.四、综合题(本大题共2小题,每小题12分,共24分)29.设总体X 的概率密度(1),01,(;)0,x x f x θθθ⎧+<<=⎨⎩ 其他,其中未知参数>1,θ-12,,,n x x x ⋯是来自该总体的一个样本,求参数θ的矩估计和极大似然估计.2012年1月10. 从一个正态总体中随机抽取n= 20 的一个随机样本,样本均值为17. 25,样本标准差为,则总体均值μ的95%的置信区间为( )。
数理统计习题答案习题5.1解答1. 设总体服从()λP 分布,试写出样本n X X X ,,,21 的联合分布律.解:()的分布律为:即X P X ,~λ ()!k e k X P k λλ-==, ,,,2,1,0n k =n X X X ,,,21 的联合分布律为:()n n x X x X x X P ===,,,2211 = ()()()n n x X P x X P x X P === 2211=nx x x x e x e x e nλλλλλλ---⋅2121=λλn n xx x e x x x n-+++!!!2121, n i n x i ,,2,1,,,2,1,0 ==2. 设总体X 服从()1,0N 分布,试写出样本n X X X ,,,21 的联合分布密度. 解:()1,0~N X ,即X 分布密度为:()2221x e x p -=π,+∞<<-∞xn X X X ,,,21 的联合分布密度为:()∏==ni inx p x x x p 121*)(,...,=22222221212121n x x x eee--⋅-πππ=()}21exp{2122∑=--n i i x n π n i x i ,,2,1, =+∞<<∞-. 3. 设总体X 服从()2,σμN 分布,试写出样本n X X X ,,,21 的联合分布密度. 解:()2,~σμN X ,即X 分布密度为:()x p =()}2exp{2122σμσπ--x ,∞<<∞-xn X X X ,,,21 的联合分布密度为:()()∏==ni i n x p x xx p 121*,...,=()})(21exp{211222∑--⋅⋅=-ni i n n x μσσπ, n i x i ,,2,1, =+∞<<∞-.4. 根据样本观测值的频率分布直方图可以对总体作什么估计与推断? 解:频率分布直方图反映了样本观测值落在各个区间长度相同的区间的频率大小,可以估计X 取值的位置与集中程度,由于每个小区间的面积就是频率,所以可以估计或推断X 的分布密度. 5. 略. 6. 略.习题5.2解答1. 观测5头基础母羊的体重(单位:kg)分别为53.2,51.3,54.5,47.8,50.9,试计算这个样本观测值的数字特征:(1)样本总和,(2)样本均值,(3)离均差平方和,(4)样本方差,(5)样本标准差,(6)样本修正方差,(7)样本修正标准差,(8)样本变异系数,(9)众数,(10)中位数,(11)极差,(12)75%分位数.解:设9.50,8.47,5.54,3.51,2.5354321=====x x x x x()7.257151=∑=i ix,()54.51251==∑=i ixx(3) ss =()2512512x n xx xi ii i-=-∑∑===13307.84-5×51.542=25.982(4)2s =()∑=-51251i i x x =51ss =5.1964, (5)s =2.28; (6)s s * =ss n 11-=6.4955 (7)*s =2.5486; (8)cv =100⨯*xs =4.945;(9)每个数都是一个,故没有众数. (10)中位数为3x =51.3; (11)极差为54.5-47.8=6.7;(12)0.75分位数为53.2.2. 观测100支金冠苹果枝条的生长量(单位:cm)得到频数表如下:组下限 19.5 24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 组上限 24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 64.5 组中值 22 27 32 37 42 47 52 57 62频数 8 11 13 18 18 15 10 4 3试计算这个样本观测值的数字特征:(1)样本总和,(2)样本均值,(3)离均差平方和,(4)样本方差,(5)样本标准差,(6)样本修正方差,(7)样本修正标准差,(8)样本变异系数,(9)众数,(10)中位数,(11)极差,(12)75%分位数.解:设组中值依次为921,,,x x x ,频数依次为921,,,n n n ,=+++=921n n n n 100,()=∑=911i ii x n 3950;()=+=∑=919112i ii xn n n x 39.5;()()=-=-=∑∑==29129123x n xn x x n ss i ii i i i 25.39100166300⨯-=10275;()==ss s 100142102.75; ()=s 510.137;()=-=*ss n s 1162103.788 ()=*s 710.188;()=⨯=*1008xs cv 25.79;()42379或众数是(),50210=n ;中位数为5.3924237=+;()11极差为:62-22=40;()4775.0,83,6812621521分位数为∴=+++=+++n n n n n n .3.略.4. 设n x x x ,,,21 是一组实数,a 和b 是任意非零实数,bax y i i -=(n i ,,1 =),x 、y 分别为i x 、i y 的均值,2xs =∑-iix xn2)(1,2ys =1n()y y i i-∑2,试证明:① b a x y -=;② 222b s s x y =. 解①:∑∑==-==ni i ni i b a x ny ny 1111= ()∑=-ni i a x bn11= ⎪⎪⎭⎫ ⎝⎛-∑=n i i na x nb 11=b a x -; ②2y s =1n∑-ii y y 2)(=∑=⎪⎪⎭⎫⎝⎛---ni i b a x b a x n121=∑=⎪⎪⎭⎫⎝⎛-ni i b x x n121=221x s b .1.求分位数(1)()8205.0x ,(2)()12295.0x 。
第五章数理统计的基础知识5.1 数理统计的基本概念习题一已知总体X服从[0,λ]上的均匀分布(λ未知),X1,X2,⋯,Xn为X的样本,则().(A)1n∑i=1nXi-λ2是一个统计量;(B)1n∑i=1nXi-E(X)是一个统计量;(C)X1+X2是一个统计量;(D)1n∑i=1nXi2-D(X)是一个统计量.解答:应选(C).由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.(A)(B)(D)中均含未知参数.习题2观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位(单位:cm),得到如下表中所列的数据. 按区间[70,80),[80,90),⋯,[150,160),将100个数据分成9个组,列出分组数据计表(包括频率和累积频率),并画出频率累积的直方图.解答:分组数据统计表X¯=1n∑i=1nXi与Sn2=1n∑i=1n(Xi-X¯)2分别表示样本均值和样本二阶中心矩,试求E(X¯),E(S2).解答:由X∼B(10,3100),得E(X)=10×3100=310,D(X)=10×3100×97100=2911000,所以E(X¯)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.习题6设某商店100天销售电视机的情况有如下统计资料f(x)={λe-λx,x>00,其它,F(x)={1-e-λx,x>00,x≥0,X(2)的概率密度为f(2)(x)=2F(x)f(x)={2λe-λx(1-e-λx),x>00,其它,又X(1)的概率密度为f(1)(x)=2[1-F(x)]f(x)={2λe-2λx,x>00,其它.习题9设电子元件的寿命时间X(单位:h)服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:(1)没有元件在800h之前失效的概率;(2)没有元件最后超过3000h的概率.解答:(1)总体X的概率密度f(x)={(0.0015)e-0.0015x,x>00,其它,分布函数F(x)={1-e-0.0015x,x>00,其它,{没有元件在800h前失效}={最小顺序统计量X(1)>800},有P{X(1)>800}=[P{X>800}]6=[1-F(800)]6=exp(-0.0015×800×6)=exp(-7.2)≈0.000747.(2){没有元件最后超过3000h}={最大顺序统计量X(6)<3000}P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6=[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6≈0.93517.习题10设总体X任意,期望为μ,方差为σ2,若至少要以95%的概率保证∣X¯-μ∣<0.1σ,问样本容量n应取多大?解答:因当n很大时,X¯-N(μ,σ2n),于是P{∣X¯-μ∣<0.1σ}=P{μ-0.1σ<X¯<μ+0.1σ}≈Φ(0.1σσ/n)-Φ(-0.1σσ/n)=2Φ(0.1n)-1≥0.95,则Φ(0.1n)≥0.975,查表得Φ(1.96)=0.975,因Φ(x)非减,故0.1n≥1.96,n≥384.16,故样本容量至少取385才能满足要求.5.2 常用统计分布习题1对于给定的正数a(0<a<1),设za,χa2(n),ta(n),Fa(n1,n2)分别是标准正态分布,χ2(n),t(n),F(n1,n2)分布的上a分位点,则下面的结论中不正确的是().(A)z1-a(n)=-za(n);(B)χ1-a2(n)=-χa2(n);(C)t1-a(n)=-ta(n);(D)F1-a(n1,n2)=1Fa(n2,n1).解答:应选(B).因为标准正态分布和t分布的密度函数图形都有是关于y轴对称的,而χ2分布的密度大于等于零,所以(A)和(C)是对的.(B)是错的. 对于F分布,若F∼F(n1,n2),则1-a=P{F>F1-a(n1,n2)}=P{1F<1F1-a(n1,n2)=1-P{1F>1F1-a(n1,n2)由于1F∼F(n2,n1),所以P{1F>1F1-a(n1,n2)=P{1F>Fa(n2,n1)=a,即F1-a(n1,n2)=1Fa(n2,n1). 故(D)也是对的.习题2(1)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (1)X1-X2X32+X42;解答:因为Xi∼N(0,1),i=1,2,⋯,n,所以:X1-X2∼N(0,2),X1-X22∼N(0,1),X32+X42∼χ2(2),故X1-X2X32+X42=(X1-X2)/2X32+X422∼t(2).习题2(2)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (2)n-1X1X22+X32+⋯+Xn2;解答:因为Xi∼N(0,1),∑i=2nXi2∼χ2(n-1),所以n-1X1X22+X32+⋯+Xn2=X1∑i=2nXi2/(n-1)∼t(n-1).习题2(3)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布?(3)(n3-1)∑i=13Xi2/∑i=4nXi2.解答:因为∑i=13Xi2∼χ2(3),∑i=4nXi2∼χ2(n-3),所以:(n3-1)∑i=13Xi2/∑i=4nXi2=∑i=13Xi2/3∑i=4nXi2/(n-3)∼F(3,n-3).习题3设X1,X2,X3,X4是取自正态总体X∼N(0,22)的简单随机样本,且Y=a(X1-2X2)2+b(3X3-4X4)2,则a=?,b=?时,统计量Y服从χ2分布,其自由度是多少?解答:解法一Y=[a(X1-2X2)]2+[b(3X3-4X4)]2,令Y1=a(X1-2X2),Y2=b(3X3-4X4),则Y=Y12+Y22,为使Y∼χ2(2),必有Y1∼N(0,1),Y2∼N(0,1),因而E(Y1)=0,D(Y1)=1,E(Y2)=0,D(Y2)=1,注意到D(X1)=D(X2)=D(X3)=D(X4)=4,由D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2))=a(4+4×4)=20a=1,D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4)=b(9D(X3)+16D(X4))=b(4×9+16×4)=100b=1,分别得a=120,b=1100.这时Y∼χ2(2),自由度为n=2.解法二因Xi∼N(0,22)且相互独立,知X1-2X2=X1+(-2)X2∼N(0,20),3X3-4X4=3X3+(-4)X4∼N(0,100),故X1-2X220∼N(0,1),3X3-4X4100∼N(0,1),为使Y=(X1-2X21/a)2+(3X3-4X41/b)2∼χ2(2),必有X1-2X21/a∼N(0,1),3X3-4X41/b∼N(0,1),与上面两个服从标准正态分布的随机变量比较即是1a=20,1b=100,即a=120,b=1100.习题4设随机变量X和Y相互独立且都服从正态分布N(0,32).X1,X2,⋯,X9和Y1,Y2,⋯,Y9是分别取自总体X和Y的简单随机样本,试证统计量T=X1+X2+⋯+X9Y12+Y22+⋯+Y92服从自由度为9的t分布.解答:首先将Xi,Yi分别除以3,使之化为标准正态.令X′i=Xi3,Y′i=Yi3,i=1,2,⋯,9,则X′i∼N(0,1),Y′i∼N(0,1);再令X′=X′1+X′2+⋯+X′9,则X′∼N(0,9),X′3∼N(0,1),Y′2=Y′12+Y′22+⋯+Y′92,Y′2∼χ2(9).因此T=X1+X2+⋯+X9Y12+Y22+⋯+Y92=X1′+X2′+⋯+X9′Y′12+Y′22+⋯+Y′92=X′Y′2=X′/3Y′2/9∼t(9),注意到X′,Y′2相互独立.习题5设总体X∼N(0,4),而X1,X2,⋯,X15为取自该总体的样本,问随机变量Y=X12+X22+⋯+X1022(X112+X122+⋯+X152)服从什么分布?参数为多少?解答:因为Xi2∼N(0,1),故Xi24∼χ2(1),i=1,2,⋯,15,而X1,X2,⋯,X15独立,故X12+X22+⋯+X1024∼χ2(10),X112+X122+⋯+X1524∼χ2(5),所以X12+X22+⋯+X1024/10X112+X122+⋯+X1524/5=X12+X22+⋯+X1022(X112+X122+⋯+X152)=Y习题6证明:若随机变量X服从F(n1,n2)的分布,则(1)Y=1X服从F(n2,n1)分布;(2)并由此证明F1-α(n1,n2)=1Fα(n2,n1).解答:(1)因随机变量X服从F(n1,n2),故可设X=U/n1V/n2,其中U服从χ2(n1),V服从χ2(n2),且U与V相互独立,设1X=V/n2U/n1,由F分布之定义知Y=1x=V/n2U/n1,服从F(n2,n1).(2)由上侧α分位数和定义知P{X≥F1-α(n1,n2)}=1-α,P{1X≤1F1-α(n1,n2)=1-α,即P{Y≤1F1-α(n1,n2)=1-α,1-P{Y>1F1-α(n1,n2)=1-α,故P{Y>1F1-α(n1,n2)=α,而P{Y≥Fα(n2,n1)}=α.又Y为连续型随机变量,故P{Y≥1F1-α(n1,n2)=α,从而Fα(n2,n1)=1F1-α(n1,n2),即F1-α(n1,n2)=1Fα(n2,n1).习题7查表求标准正态分布的上侧分位数:u0.4,u0.2,u0.1与u0.05.解答:u0.4=0.253,u0.2=0.8416,u0.1=1.28,u0.05=1.65.习题8查表求χ2分布的上侧分位数:χ0.952(5),χ0.052(5),χ0.992(10)与χ0.012(10).解答:1.145,11.071,2.558,23.209.习题9查表求F分布的上侧分位数:F0.95(4,6),F0.975(3,7)与F0.99(5,5).解答:0.1623,0.0684,0.0912.习题10查表求t分布的下侧分位数:t0.05(3),t0.01(5),t0.10(7)与t0.005(10).解答:2.353,3.365,1.415,3.169.(2)P{X¯>4.5}=P{Z>4.5-42/9=1-P{Z≤2.25}≈1-Φ(2.25)=1-0.9878=0.0122.习题2设总体X服从正态分布N(10,32),X1,X2,⋯,X6是它的一组样本,设X¯=16∑i=16Xi.(1)写出X¯所服从的分布;(2)求X¯>11的概率.解答:(1)X¯∼N(10,326),即X¯∼N(10,32).(2)P{X¯>11}=1-P{X¯≤11}=1-Φ(11-1032)≈1-Φ(0,8165)≈1-Φ(0.82)=0.2061.习题3设X1,X2,⋯,Xn是总体X的样本,X¯=1n∑i=1nXi,分别按总体服从下列指定分布求E(X¯),D(X¯).(1)X服从0-1分布b(1,p);(2)*X服从二项分布b(m,p);(3)X服从泊松分布P(λ);(4)X服从均匀分布U[a,b];(5)X服从指数分布e(λ).解答:(1)由题意,X的分布律为:P{X=k}=Pk(1-P)1-k(k=0,1).E(X)=p,D(X)=p(1-p).所以E(X¯)=E(1n∑i=1nXi)=1n∑i=1nE(Xi)=1n⋅np=p,D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(X1)=1n2⋅np(1-p)=1np(1-p). (2)由题意,X的分布律为:P{X=k}=CmkPk(1-p)m-k(k=0,1,2,⋯,m).同(1)可得E(X¯)=mp,D(X¯)=1nmp(1-p).(3)由题意,X的分布律为:P{X=k}=λkk!e-λ(λ>0,k=0,1,2,⋯).E(X)=λ,D(X)=λ.同(1)可得E(X¯)=λ,D(X¯)=1nλ.(4)由E(X)=a+b2,D(X)=(b-a)212,同(1)可得E(X¯)=a+b2,D(X¯)=(b-a)212n.(5)由E(X)=1λ,D(X)=1λ2,同(1)可得D(X¯)=1λ,D(X¯)=1nλ2.习题4某厂生产的搅拌机平均寿命为5年,标准差为1年,假设这些搅拌机的寿命近似服从正态分布,求:(1)容量为9的随机样本平均寿命落在4.4年和5.2年之间的概率;(2)容量为9的随机样本平均寿命小于6年的概率。
说明:本习题答案是针对魏宗舒编写的《概率论与数理统计教程》(第二版).5.1设(x l ,x 2,···,x n )及(u 1,u 2,···,u n )为两组子样的观测值,它们有如下关系:u i =x i −ab,(b =0,a 为常数)求子样均值¯u 与¯x ,子样方差S 2u 与S 2x 的关系.解:¯u =1n n ∑︁i =1u i =1n n ∑︁i =1x i −a b =1b (︃1n n ∑︁i =1x i −a )︃=1b(¯x −a )S 2u=1n n ∑︁i =1(u i −¯u )2=1n n ∑︁i =1(︂x i −a b −¯x −a b )︂2=1b 2[︃1n n ∑︁i =1(x i −¯x )2]︃=1b2S 2x.5.2若子样观测值x 1,x 2,···,x m 的频数分别为n 1,n 2,···,n m ,试写出计算子样平均数¯x 和子样方差S 2n 的公式(这里n =n 1+n 2+···+n m )解:¯x =1n m∑︁i =1m i x iS 2n=1n m∑︁i =1m i (x i −¯x )2.5.3利用切比雪夫不等式求钱币需抛掷多少次才能使子样均值¯ξ落在0.4到0.6之间的概率至少为0.9?如何才能更精确地计算是概率接近0.9所需要的次数是多少?解:设需要掷n 次,E ¯ξ=0.5,D (¯ξ)=14n.由切比雪夫不等式可得:P (0.4≤¯ξ≤0.6)=P (|¯ξ−0.5|≤0.1)≥1−14n ×(0.1)2=1−25n≥0.9⇒n ≥250.所以由切比雪夫不等式估计,至少需要掷250次才能使样本均值落在0.4到0.6之间的概率至少为0.9.¯ξ−0.5√︀1/(4n )=2√n (¯ξ−0.5)近似服从标准正态分布,所以P (0.4≤¯ξ≤0.6)=P (︀2√n (0.4−0.5)≤2√n (¯ξ−0.5)≤2√n (0.6−0.5))︀=2Φ(2√n ×0.1)−1≥0.9⇒Φ(0.2√n )≥0.95.其中Φ(x )是标准正态分布N (0,1)的分布函数,查表可得Φ(1.645)=0.95.因此0.2√n =1.647⇒n =67.65,因此至少要掷68次硬币.5.4若一母体ξ的方差σ2=4,而¯ξ是容量为100的子样的均值.分别利用切比雪夫不等式和极限定理求出一个下界,使得¯ξ−μ(μ为母体ξ的数学期望Eξ)夹在这界限之间的概率为0.9.解:设P (|¯ξ−μ|≤a )≥0.9.注意到母体的数学期望为μ,方差为σ2.所以E ¯ξ=μ,D ¯ξ=σ2/n =125.由切比雪夫不等式可知:P (|¯ξ−μ|≤a )≥1−D ¯ξa 2=1−125a2≥0.90⇒1/(25a 2)≤0.1⇒a ≥0.4.故由切比雪夫不等式得到的界限是0.4.根据大数定律可知¯ξ−μ√︀1/25=5(¯ξ−μ)近似服从标准正态分布,所以P (|¯ξ−μ|≤a )=P (5(¯ξ−μ)≤5a )=2Φ(5a )−1≥0.9⇒Φ(5a )≥0.95⇒5a ≥1.645⇒a ≥0.329.由大数定律得到的界限是0.329.5.5假定¯ξ1和¯ξ2分别是取自正态总体N(μ,σ2)的容量为n的两个独立子样(ξ11,ξ12,···,ξ1n)和(ξ21,ξ22,···,ξ2n)的均值,确定n使得两个子样均值之差超过σ的概率大约为0.01.解:由题意可知¯ξi∼N(μ,σ2/n),i=1,2,并且¯ξ1,¯ξ2相互独立.因此¯ξ1−¯ξ1∼N(0,2σ2/n),即√n¯ξ1−¯ξ2√2σ∼N(0,1).由P(|¯ξ1−¯ξ2|>σ)=0.01可得:P(√n⃒⃒⃒⃒¯ξ1−¯ξ2√2σ⃒⃒⃒⃒>√nσ√2σ)=0.01⇒P(√n⃒⃒⃒⃒¯ξ1−¯ξ2√2σ⃒⃒⃒⃒>√︂n2)=0.01⇒2(1−Φ(√︀n/2))=0.01⇒√︀n/2=2.576⇒n=13.27.所以当n=13时,可使得两个子样均值之差超过σ个概率大约为0.01.5.6设母体ξ∼N(μ,4),(ξ1,ξ2,···,ξn)是取自此母体的一个子样,¯ξ为子样均值.试问:子样容量n应取多大,才能使(1)E(|¯ξ−μ|2)≤0.1;(2)E(|¯ξ−μ|)≤0.1;(3)P(|¯ξ−μ|≤0.1)≥0.95.解:由题意可知√n2(¯ξ−μ)∼N(0,1).设η∼N(0,1),那么E(|η|2)=∫︁∞−∞1√2π|x|2e−12x2dx=2∫︁∞−∞1√2πx2e−12x2dx=Eη2=Dη+(Eη)2=1;E(|η|)=∫︁∞−∞1√2π|x|e−12x2dx=2∫︁∞1√2πxe−12x2dx=−2√2πe−12x2⃒⃒⃒∞=√︂2π.(1).E(|¯ξ−μ|2)=4nE⃒⃒⃒⃒√n2(¯ξ−μ)⃒⃒⃒⃒2=4n≤0.1⇒n≥40.所以当n取40时,可以使得E(|¯ξ−μ|2)≤0.1.(2).E(|¯ξ−μ|)=2√nE⃒⃒⃒⃒√n2(¯ξ−μ)⃒⃒⃒⃒=2√n√︂2π≤0.1⇒n≥800π.(3).P(|¯ξ−μ|≤0.1)=P(|√n2(¯ξ−μ)|≤0.1√n2)≥0.95⇒2Φ(0.1√n2)−1≥0.95⇒Φ(0.1√n2)≥0.975⇒0.1√n2≥1.96⇒n≥39.22=1536.6.即当n≥1537时,才能使P(|¯ξ−μ|≤0.1)≥0.95.5.7设母体ξ∼b(1,p)(二点分布),(ξ1,ξ2,···,ξn)为取自此母体的一个子样,¯ξ为子样均值.(1).若p=0.2,子样容量n应取多大,才能使①P(|¯ξ−p|≤0.1)≥0.75;②E(|¯ξ−p|2)≤0.01.(2).若p ∈(0,1)为未知数,则对每个p ,子样容量n 为多大时才能使E (|¯ξ−p |2)≤0.01.解:记q =1−p ,则√n (¯ξ−p )近似服从正态分布N (0,pq ).(1).P (|¯ξ−p |≤0.1)=P (⃒⃒√n (¯ξ−p )/√pq ⃒⃒≤0.1√n √pq )≈2Φ(︂0.1√n √pq)︂−1所以由P (|¯ξ−p |≤0.1)≥0.75可得Φ(︂0.1√n √pq)︂≥0.875.查表得Φ(1.15)=0.875,因此0.1√n/√pq ≥1.15⇒n ≥11.52×pq =21.16,即当n ≥22时,才能保证P (|¯ξ−p |≤0.1)≥0.75.②.E (|¯ξ−p |2)=E (¯ξ−p )2=E (¯ξ−E ¯ξ)2=D ¯ξ=Dξ/n =pq/n =0.16/p .所以要使E (|¯ξ−p |2)≤0.01,只需0.16n≤0.01⇒n ≥0.160.01=16,故只有当n ≥16,才能使E (|¯ξ−p |2)≤0.01.(2).类似于(1)中的②,E (|¯ξ−p |2)=D ¯ξ=p (1−p )n.因此要使E (|¯ξ−p |2)≤0.01,子样容量n 必须≥p (1−p )0.01=100p (1−p ).5.8设母体ξ的k 阶原点矩和中心矩分别为v k =Eξk ,μk =E (ξ−v 1)k ,k =1,2,3,4.ξk ,m k 分别为容量为n 的子样k 阶原点矩和中心矩,求证:∙E (¯ξ−v 1)3=μ3n 2;∙E (¯ξ−v 1)4=3μ2n 2+μ4−3μ22n3.解:令η=ξ−v 1=ξ−Eξ,ηi =ξi −v 1,那么η1,η2,···,ηn 就是来自总体η的子样,并且Eηki =Eηk =E (ξ−v 1)k =μk .令¯η=1n ∑︀n i =1ηi ,那么¯η=¯ξ−v 1.所以(1)E (¯ξ−v 1)3=E ¯η3=1n3∑︁i,j,kEηi ηj ηk =1n 3⎛⎜⎝n ∑︁i =1Eη3i +∑︁i,j,k 不全相等Eηi ηj ηk ⎞⎟⎠=1n 3⎛⎝nμ3+3∑︁i =j,i =kEηi (ηj ηk )⎞⎠=1n 2μ3+3n 3∑︁i =j,i =kEηi E (ηj ηk )=μ3n 2(2)E (¯ξ−v 1)4=E ¯η4=1n4∑︁i,j,k,lEηi ηj ηk ηl=1n 4⎛⎝n ∑︁i =1Eη4i +∑︁i =j =k =lEη2i η2k +∑︁i =k =j =lEη2i η2j +∑︁i =l =k =jEη2i η2j +E∑︁elseηi ηj ηk ηl ⎞⎠=1n 4(︀nμ4+3n (n −1)μ22)︀=3(n −1)μ22n 3+μ4n 3=μ4−3μ22n 3+3μ22n2其中对i,j,k,l 求和时,把这四个下标分成三类,一类是i =j =k =l ,第二类是这四个下标分成两组,在同组中的下标都相等,其余的分在第三类.注意在第三类中,我们肯定可以找到一个下边,它和其余三个下标都不同,此时Eηi ηj ηk ηl =0,这因为,比如i 不等于其余三个下标,那么Eηi ηj ηk ηl =Eηi Eηj ηk ηl ,而Eξi =0.5.9.设母体ξ∼N (μ,σ2),子样方差S 2n =1n ∑︀n i =1(ξi −¯ξ)2.求ES 2n ,DS 2n ,并证明当n 增大时,他们分别为σ2+o (1n )和2σ4n +o (︀1n )︀.解:ES 2n =(n −1)σ2n=σ2−1nσ2=σ2+o (1).(注:习题中有错误,不是o (1n ),1n 的高阶无穷小,而是o (1),即无穷小.)对于后一问,只需利用P 233的定理5.1,我们在这里这需计算μ2,μ4.μ2=Dξ=σ2,μ4=E (ξ−μ)4=∫︁∞−∞(x −μ)4p ξ(x )dx =∫︁∞−∞x 41√2πσexp {︂−12x 2σ2}︂dx =∫︁∞−∞x 31√2πσexp {︂−12x 2σ2}︂dx 22=−x 3σ√2πexp {︂−12x 2σ2}︂⃒⃒⃒∞−∞+3σ2∫︁∞−∞x 21√2πσexp {︂−12x 2σ2}︂dx=3σ4.把μ2,μ4的结果带入定理5.1,可知:DS 2n=σ4[︀2n−2n 2]︀=2σ4n+o (︀1n )︀.实际上,我们也可以这样计算:令随机变量η∼χ2(n ),那么Eη=∫︁∞0x 12n 2Γ(n 2)x n 2−1e −12x dx =2n +22Γ(n +22)2n 2Γ(n 2)=n Eη2=∫︁∞x 212n 2Γ(n 2)x n 2−1e −12x dx =n (n +2).因此Eη=n,Dη=2n .从以上可知:D (S 2n )=σ4n2D (︂nS 2n σ2)︂=2(n −1)σ4n 2=2σ2n+o(︂1n)︂.5.10设(ξ1,ξ2)为取自正态母体ξ∼N (0,σ2)的一个子样,试证:(1).ξ1+ξ2与ξ1−ξ2是相互独立的;(2).(ξ1+ξ2)2(ξ1−ξ2)2服从F (1,1)分布.解:(ξ1,ξ2)是ξ∼N (μ,σ2)的子样,从而ξ*=[︃ξ1ξ2]︃∼N(︃[︃μμ]︃,σ2I 2)︃,其中I 2表示二阶单位矩阵.那么η=[︃η1η2]︃=[︃111−1]︃ξ* Bξ*∼N (︃B [︃μμ]︃,σ2BI 2B ′)︃,即η∼N (︃[2μ,0]′,[︃2002]︃)︃.因此可知η1,η2即ξ1+ξ2,ξ1−ξ2相互独立,且分别有分布N (2μ,2),N (0,2).5.11设母体的分布函数为F (x ),(ξ1,ξ2,···,ξn )是取自该母体的一个字样.若F (x )的二阶矩存在,¯ξ为字样均值,试证(ξi −¯ξ)与(ξj −¯ξ)的相关系数为ρ=−1n −1,i =j =1,2,···,n .解:方法一:由相关系数的定义,我们先计算Cov(ξi −¯ξ,ξj −¯ξ)和D (ξi −¯ξ)=D (ξj −¯ξ).记总体ξ的期望为μ,方差为σ2.令ηi =ξi −μ,i =1,2,···,n ,那么Eηi =0,Eηi ηj =0,i =j,Eη2i=σ2.从而可知:Cov(ξi −¯ξ,ξj −¯ξ)=Cov(ηi −¯η,ηj −¯η)=Cov(ηi ,ηj )−2Cov(ηi ,¯η)+Cov(¯η,¯η)=0−2Cov(ηi ,1n ηi )+σ2/n =−1n σ2.D (ξi −¯ξ)=D (ηi −¯η)=Cov(ηi −¯η,ηi −¯η)=D (ηi )−2Cov(ηi ,¯η)+D ¯η=σ2−2Cov(ηi ,1n ηi )+σ2/n =n −1nσ2.所以ξi −¯ξ,ξj −¯ξ的相关系数为−σ2/n√︂n −1n σ2n −1nσ2=−1n −1,i =j.方法二:首先由ξ1,ξ2,···,ξn 的独立性可知:D (ξ−¯ξ)=D (n −1n ξi −1n∑︁j =iξj )=(︂n −1n )︂2Dξi +1n2∑︁j =iDξj=σ2(︃(︂n −1n )︂2+n −1n 2)︃=n −1nσ2.由对称性可知对任意的i =j ,Cov(ξi ,ξj )=Cov(ξ1,ξ2) c .同时注意到∑︀n i =1(ξi −¯ξ)=0,所以=D (n ∑︁i =1(ξi −¯ξ))=n ∑︁i =1D (ξi −¯ξ)+∑︁i =jCov(ξi −¯ξ,ξj −¯ξ)=(n −1)σ2+n (n −1)c⇒c =−n −1n (n −1)σ2=−1nσ2.因此Cov(ξi −¯ξ,ξj −¯ξ)=−1n σ2n −1nσ2=−1n −1.5.12设¯ξn ,S 2n 分别是子样(ξ1,ξ2,···,ξn )的子样均值和子样方差,现又获得第n +1个观测值,试证:(1).¯ξ=¯ξn +1n +1(ξn +1−¯ξn );(2).S 2n +1=n n +1[︁S 2n +1n +1(ξn +1−¯ξn )2]︁.解:(1).¯ξn +1=1n +1n +1∑︁i =1ξi =1n +1ξn +1+n n +11n n∑︁i =1ξi=1n +1ξn +1+n n +1¯ξn =1n +1(ξn +1−¯ξn )+¯ξn .S2n+1=1n+1n+1∑︁i=1ξ2i−¯ξ2n+1=nn+1(1nn∑︁i=1ξ2−¯ξ2n)+nn+1¯ξ2n+1n+1ξ2n+1−(︃¯ξ2n+2n+1¯ξn(ξn+1−¯ξn)+(︂1n+1)︂2(ξn+1−¯ξn)2)︃=nn+1S2n+1n+1[︀ξ2n+1−2ξn+1¯ξn+¯ξn]︀−1(n+1)2(ξn+1−¯ξn)2=nn+1[︂S2n+1n+1(ξn+1−¯ξn)2]︂.5.13从装有一个白球、两个黑球的罐子里有放回地取球.令ξ=0表示取到白球,ξ=1表示取到黑球.求容量为5的子样均值和子样方差的期望值.解:实际上,我们知道E¯ξ=Eξ,ES2n =n−1nDξ,所以我们只需计算出总体的期望和方差.由题意可知总体ξ有分布列ξ01P132 3那么Eξ=23,Dξ=1323=29,因此E¯ξ=23,ES2n=2(n−1)9n.习题5.14设母体ξ服从参数为λ的泊松分布,(ξ1,ξ2,···,ξn)是取自此母体的一个子样.求(1).子样的联合概率分布列;(2).子样均值¯ξ的分布列、E¯ξ、D(¯ξ)和ES2n.解:因为ξ1,ξ2,···,ξn是总体ξ∼P(λ)的子样,所以ξ1,ξ2,···,ξn独立同分布,且均服从参数为λ的泊松分布.故(1)子样的联合分布列为P(ξ1=x1,ξ2=x2,···,ξn=x n)=n∏︁i=1P(ξi=x i)=n∏︁i=1λx ix i!e−λ=λ∑︀ni=1x i e−nλ(︃n∏︁i=1x i!)︃−1.x i=0,1,2,···,i=1,2,···,n.(2).回顾78页例2.12,该例题说明两个相互独立的泊松分布P(λ1),P(λ2)的和服从泊松分布P(λ1+λ2),因此在本题中n∑︁i=1ξi∼P(nλ)所以¯ξ的分布列为:P(¯ξ=kn)=P(n∑︁i=1ξi=k)(nλ)kk!e−nλ.因为总体的期望和方差都是λ,因此E¯ξ=Eξ=λ,D¯ξ=Dξn=λn,ES2n=n−1nDξ=(n−1)λn.5.15设ξ1,ξ2,···,ξn是取自正态母体N(μ,σ2)的子样,求u=k∑︀i=1ξi和v=∑︀ni=rξi,0<k<r<n的联合分布列.解:由于k<r,所以u,v相互独立.又因为ξ1,ξ2,···,ξn独立同分布,均服从N(μ,σ2)分布,而u,v都是ξ1,ξ2,···,ξn的线性组合,故u,v也都服从正态分布.又Eu=k∑︁i=1Eξi=kμ,Du=k∑︁i=1Dξi=kσ2,Ev=n∑︁i=rEξi=(n−r+1)μ,Dv=n∑︁i=rDξi=(n−r+1)σ2,所以u,v 的联合分布为二维正态分布N (kμ,(n −r +1)μ,kσ2,(n −r +1)σ2,0).5.16设母体η=(ξ1,ξ2)∼N (μ1,μ2,σ21,σ22,ρ),(η1,η2,···,ηn )是取自此母体的一个子样,求子样均值¯η=(¯ξ1,¯ξ2)=(︂1nn ∑︀i =1ξ1i ,1n n∑︀i =1ξ2i )︂的分布密度函数.解:首先可知¯η服从二维正态分布.又ηi ∼N (μ1,μ2,σ21,σ22,ρ),所以Eξ1i =μ1,Eξ2=μ2,Dξ1i =σ21,Dξ2i =σ22,Cov(ξ1i ,ξ2i )=ρσ1σ2.又因为当i =j 时,ηi ,ηj 相互独立,故Cov(ξ1i ,ξ2j )=0.这样我们就有如下结果:E ¯ξ1=1n n∑︁i =1Eξ1i =μ1;E ¯ξ2=1n n∑︁i =1Eξ2i =μ2;D ¯ξ1=1n 2n ∑︁i =1Dξ1i=1n σ21;D ¯ξ2=1n 2n ∑︁i =1Dξ2i=1n σ22;Cov(¯ξ1,¯ξ2)=1n 2Cov(n ∑︁i =1ξ1i ,n ∑︁i =1ξ2i )=1n 2∑︁i,jCov(ξ1i ,ξ2j )=1n 2∑︁i Cov(ξ1i ,ξ2i)=ρσ1σ2n.并且¯ξ1,¯ξ2的相关系数为Cov(¯ξ1,¯ξ2√︀[D ¯ξ1][D ¯ξ2]=ρσ1σ2/n √︀(σ21/n )(σ22/n )=ρ.由以上结论可知¯η∼N (μ1,μ2,σ21/n,σ22/n,ρ),其密度函数为:n2πσ1σ2√︀1−ρ2exp {︂−n 2(1−ρ2)[︂(x −μ1)2σ21−2ρ(x −μ1)(y −μ2)σ1σ2+(y −mu 2)2σ22]︂}︂.5.17设母体的分布列为P (ξ=k )=1N ,k =1,2,···,N .现进行不放回抽样,¯ξ¯ξ为子样(ξ1,ξ2,···,ξn )的均值,试求E ¯ξ和D (¯ξ).解:由题意可知,母体中共有N 个个体,且取到每个个体的概率是一样的.从母体中不放回的抽样,第i 次抽到第k 个个体的概率为1/N .故ξi 也有分布列P (ξi =k )=1N ,k =1,2,···,N ,即和母体有相同的分布列.所以Eξi =1N ∑︀N k =1k =N +12,Eξ2i =1N ∑︀N k =1k 2=(N +1)(2N +1)6,Dξi =N 2−112.由于抽样是不放回抽样,所以ξi ,ξj 不是相互独立的.它们有联合分布列P (ξi =k,ξj =l )={︃1N (N −1),k =l,0,k =l 由此可知:Eξi ξj=1N (N −1)∑︁k =lkl =(N +1)(3N +2)12;Cov(ξi ,ξj )=Eξi Eξj −Eξi Eξj =−N +112.所以D(ξ1+ξ2+···+ξn)=n∑︁k=1Dξk+2∑︁1≤k<l≤nCov(ξk,ξl)=n N2−112−n(n−1)N+112=n(N+1)(N−n)12;D(¯ξ)=1n2D(n∑︁i=1ξi)=(N+1)(N−n)12n;E¯ξ=1nn∑︁i=1Eξi=N+12.5.18设母体ξ∼N(0,1),ξ1,ξ2,ξ3为取自该母体的一个子样,在子样空间中求子样到原点的距离小于1个概率.解:由于ξi,i=1,2,3独立同分布,和母体有相同的分布,故ξ1,ξ2,ξ3的联合密度函数为:p(x,y,z)=1(2π)3/2exp{︂−12(x2+y2+z2)}︂.因此子样到原点的距离小于1的概率为p=P(ξ21+ξ22+ξ23<1)=∫︁∫︁∫︁x2+y2+z2<11(2π)3/2exp{︂−12(x2+y2+z2)}︂dxdydz.做变换⎧⎪⎨⎪⎩x=r cosθ1,y=r sinθ1cosθ2, z=r sinθ1sinθ2.变化的雅克比行列式为ð(x,y,z)ð(r,θ1,θ2)=r sinθ1.所以P=(2π)−3/2∫︁π0sinθ1dθ1∫︁2πdθ2∫︁1r2exp{︂−12r2}︂=√︂2π∫︁1r2exp{−r22}dr=√︂2π[︂−r exp{−r22}⃒⃒1+∫︁1exp{−r22}dr]︂=√︂2π[︂∫︁1exp{−r22}dr−e−12]︂=√︂2π[︂√2π∫︁11√2πexp{−r22}dr−e−12]︂=√︂2π[︁√2π(Φ(1)−Φ(0))−e−12]︁=2Φ(1)−1−√︂2πe−12.其中Φ(x)是标准正态分布的分布函数.或者如下计算P.P=(2π)−3/2∫︁1−1[︂e−x22∫︁y2+z2<1−x2e−12(y2+z2)dydz]︂dx=(2π)−3/2∫︁1−1[︃e−x22∫︁2πdθ∫︁√1−x2re−12r2dr]︃dx=(2π)−1/2∫︁1−1[︂e−x22(︂−e−12r2⃒⃒⃒√1−x2)︂]︂dx=(2π)−1/2∫︁1−1e−12x2[1−e−12(1−x2)]dx=∫︁1−11√2πe−12x2dx−1√2π∫︁1−1e−12dx=2Φ(1)−1−√︂2πe−12≈0.1987.又或者利用χ2分布.注意到ξ21+ξ22+ξ23∼χ2(3),所以P =P (ξ21+ξ22+ξ23<1)=∫︁10123/2Γ(32)x 32−1e −x 2dx =1√2π∫︁10x 12e −x 2dx.在上述积分中做变换x =t 2,可以得到和前面相同的结果.5.19设(ξ1,ξ2,···,ξn )为取自正态母体N (μ,σ2)的子样,S 2n 为子样方差,分别求满足下列各式的最小n 值.(1).P (︂S 2nσ2≤1.5)︂≥0.95.(2).P (︂|S 2n −σ2|≤12Σ)︂≥0.8.解:注意到nS2n σ2∼χ2(n −1).(1).P (︂S 2n σ2≤1.5)︂=P (︂nS 2n σ2≤1.5n )︂≥0.95,故1.5n ≥χ20.95(n −1).1.5×20<χ20.95(19),而1.5×21>χ20.95(20),所以最小的n 是21.(2).P (︂|S 2n −σ2|≤12σ2)︂=P (︁⃒⃒⃒nS 2n σ2−n ⃒⃒⃒≤n 2)︁=P (︁n 2≤ns 2nσ2≤3n 2)︁.所以我们要找的n 为使得P (︂n 2≤ns 2n σ2≤3n 2)︂≥0.8的最小的n .用软件计算可知此最小的n 为13.5.20子样(ξ1,ξ2,ξ3)来自正态母体N (0,1),又η1=0.8ξ1+0.6ξ2,η2=√2(0.3ξ1−0.4ξ2−0.5ξ3),η3=√2(0.3ξ1−0.4ξ2+0.5ξ3),求(η1,η2,η3)的联合分布密度及η1,η2,η3的边际密度.解:ξ1,ξ2,ξ3相互独立,且都服从分布N (0,1),所以(ξ1,ξ2,ξ3)的联合分布是三维正态分布.其期望为(0,0,0),协方差矩阵为三阶单位矩阵I 3.记A =⎛⎜⎝0.80.600.3√2−0.4√2−0.5√20.3√2−0.4√20.5√2⎞⎟⎠,那么可知(η1,η2,η3)′=A (ξ1,ξ2,ξ3)′,即(η1,η2,η3)′是(ξ1,ξ2,ξ3)的线性变换,所以(η1,η2,η3)′也服从正态分布,其期望,协方差矩阵分别为:E ⎛⎜⎝η1η2η3⎞⎟⎠=A ⎛⎜⎝000⎞⎟⎠=0,Cov ⎛⎜⎝η1η2η3⎞⎟⎠AI 3A ′=I 3.由于η1,η2,η3的协方差矩阵是单位矩阵,故可知ηi ,ηj 的相关系数为0,所以η1,η2,η3相互独立.又Eηi =0,Dηi =1,所以ηi sin N (0,1).5.21若ξ1,ξ2,···,ξn 相互独立且服从正态分布,它们的数学期望相等,方差各为σ21,σ22,···,σ2n ,证明:u =∑︀n i =1ξiσ2i∑︀ni =11σ2i与v =n ∑︁i =1(︂ξi −u σi)︂2是相互独立的,且u 服从正态分布,v 服从自由度为n 的χ2分布.解:因为ξi ,i =1,2,···,n 有相同的数学期望,不妨用μ表示其共同的数学期望.令ηi =ξiσi,i =1,2,···,n ,那么η1,η2,···,ηn 相互独立,都服从正态分布,且Dηi =1,Eηi =a/σi ,i =1,···,n ,这样可知η=(η1,η2,···,ηn )′的协方差矩阵为n 阶单位矩阵I n .记C=√︃n∑︀i=11σ2i,令矩阵A是正交矩阵,且其第一行为(1σ1,1σ2,···,1σn)/C.设ζ=⎛⎜⎜⎜⎜⎝ζ1ζ2...ζn⎞⎟⎟⎟⎟⎠=Aη=A⎛⎜⎜⎜⎜⎝η1η2...ηn⎞⎟⎟⎟⎟⎠那么(ζ1,ζ2,···,ζn)′服从多元正态分布,且其协方差矩阵为Cov(ζ)=A Cov(η)A′=AI n A′=AA′=I n.ζ的数学期望为Eζ=AEη=A ⎛⎜⎜⎜⎜⎝aσ1aσ2...aσn⎞⎟⎟⎟⎟⎠=a⎛⎜⎜⎜⎜⎜⎜⎝n∑︀i=11σ2i...⎞⎟⎟⎟⎟⎟⎟⎠=⎛⎜⎜⎜⎜⎝aC2...⎞⎟⎟⎟⎟⎠.这意味着ζ1,ζ2,···,ζn相互独立,且ζ1∼N(aC2,1),ζ2∼N(0,1),i=2,3,···,n.由于矩阵A的第一行为(1σ1,1σ2,···,1σn)/C,所以ζ1=1C(η1/σ1+η2/σ2+···+ηn/σn)=1C(ξ1/σ21+ξ2/σ22+···+ξn/σ2n)=Cu.由此可知u=1C ζ1∼N(a,1C2),即N(a,(︀∑︀ni=1σ2i)︀.又v=n∑︁i=1(︂ξi−uσi)︂2=n∑︁i=1(ηi−uσi)2=n∑︁i=1η2i−2un∑︁i=1ηi/σi+u2n∑︁i=11σ2i=η′η−2u(C2u)+C2u2=η′η−C2u2 =η′η−ζ21.其中利用了∑︀ni=1ηi/σi=∑︀ni=1ξiσ2i=C2u,ζ1=Cu.因为A是正交矩阵,且ζ=Aη,所以ζ′ζ=η′A′Aη=η′η.这样可知v=ζ′ζ−ζ21=ζ22+ζ23+···+ζ2n.综合以上所述,我们已经知道ζ1,ζ2,···,ζn,相互独立,且ζi∼N(0,1),i=2,3,···,n,u∼N(a,1/C2).所以u=Cζ1与v=ζ22+ζ23+···+ζ2n相互独立,且v∼χ2(n−1).注:v的自由度是n−1,不是n.5.22设母体ξ服从正态分布N(μ,σ2),¯ξ,S2n分别为容量为n的子样均值和子样方差,又设ξn+1∼N(μ,σ2)且与ξ1,ξ2,···,ξn相互独立.试求统计量ξn+1−¯ξS n √︂n−1n+1的抽样分布.解:由定理5.4知¯ξ与S2n相互独立,¯ξ∼N(μ,σ2/n),nS2nσ2∼χ2(n−1).ξn+1与ξ1,ξ2,···,ξn相互独立,故¯ξ与¯ξ,S2n独立.且ξn+1−¯ξ∼N(0,σ2+σ2n),即ξn+1−¯ξ∼N(0,n+1nσ2).ξn+1,¯ξ都与S2n相互独立,那么ξn+1−¯ξ与S2n独立,因此ξn+1−¯ξ√n+1n σ2√︂nS2nσ2⧸︁(n−1)∼t(n−1),即ξn+1−¯ξS n√︂n−1n+1∼t(n−1).5.23(ξi,ηi),i=1,2,···,n是取自二元正态分布N(μ1,μ2,σ21,σ22,ρ)的子样.设¯ξ=1nn∑︀i=1ξi,¯η=1nn∑︀i=1ηi,S2ξ=1n∑︀ni=1(ξi−¯ξ)2,S2η=1n∑︀ni=1(ηi−¯η)2和r=∑︀ni=1(ξi−¯ξ)(ηi−¯η)√︁∑︀ni=1(ξi−¯ξ)2∑︀ni=1(ηi−¯η)2.试求统计量¯ξ−¯η−(μ1−μ2)√︁S2ξ+S2η−2rSξSη√n−1.的分布.解:一般的我们称1nn∑︁i=1(ξi−¯ξ)(ηi−¯η)为样本协方差.而把r=∑︀ni=1(ξi−¯ξ)(ηi−¯η)√︁∑︀ni=1(ξi−¯ξ)2∑︀ni=1(ηi−¯η)2=样本协方差√︁S2ξS2η为样本相关系数.设[ξ1,η1]′,[ξ2,η2]′,···,[ξn,ηn]′是从总体[ξ,η]′∼N(μ1,μ2,σ21,σ22,ρ)取到的子样.S2ξ+S2η−2rSξSη=1n(︃n∑︁i=1(ξi−¯ξ)2+n∑︁i=1(ηi−¯η)2−2n∑︁i=1(ξi−¯ξ)(ηi−¯η))︃=1nn∑︁i=1[︀(ξi−ηi)−(¯ξ−¯η)]︀2.令ζi=ξi−ηi,i=1,2,···,n.那么ζ1,ζ2,···,ζn就可以看做是从总体ξ−η∼N(μ1−μ2,σ21+σ22−2ρσ1σ2)的子样.并且这个新子样的子样均值和子样方差分别为:¯ζ=1nn∑︁i=1(ξi−ηi)=¯ξ−¯ηS2=1nn∑︁i=1(ζi−¯ζ)2=1nn∑︁i=1[︀(ξi−ηi)−(¯ξ−¯η)]︀2=S2ξ+S2η−2rSξSη.因此√n−1(¯ξ−¯η)−(μ1−μ2)√︁S2ξ+S2η−2rSξSη∼t(n−1).5.23-2解:(1)因为函数y=√x的反函数为x=y2,且dxdy=2y,所以η=√ξ的密度函数为pξ(y)=2pη(y2)|y|=⎧⎨⎩22n/2Γ(n/2)y×(y2)n2−1e−12y2=12n2−1Γ(n2)y n−1e−y22,y>0 0,y≤0(2).因为z=y√n的反函数为y=√nz,且dydz√n,所以ζ=ξ√n的密度为: pζ(z)=√npξ(√nz)=⎧⎨⎩n n22n/2−1Γ(n/2)z n−1e−nz22,z>00,z≤0(3)Eξ=E √η=∫︁∞√x12n/2Γ(n/2)x n2−1e−12x dx=2n+12Γ(n+12)2n2Γ(n2)=√2Γ(n+12)Γ(n2).Eξ2=Eη=nDξ=Eξ2−(Eξ)2=n−2(︂Γ(n+12Γ(n2))︂25.24设母体ξ以等概率取四个值0,1,2,3,现从中获得一个容量为3的子样,试分别求ξ(1)与ξ(3)的分布.解:(i).先求ξ(1)的分布(分布列).P(ξ(1)≥k)=P(min{ξ1,ξ2,ξ3}≥k)=P(ξi≥k,i=1,2,3)=3∏︁i=1P(ξi≥k)=3∏︁i=14−k4=(︂4−k4)︂3,k=0,1,2,3.P(ξ(1)=k)=P(ξ(1)≥k)−P(ξ(1)≥k+1)=(︂4−k4)︂3−(︂3−k4)︂3,k=0,1,2P(ξ(1)=3)=P(ξ(1)≥3)=(︂14)︂3=164.因此ξ(1)有如下分布列:ξ(1)0123P37641964764164(ii).再考虑ξ(3)的分布列.P(ξ(3)≤k)=P(max{ξ1,ξ2,ξ3}≤k)=P(ξi≤k,i=1,2,3)=3∏︁i=1P(ξi≤k)=3∏︁i=1k+14=(︂k+14)︂3,k=0,1,2,3P(ξ(3)=k)=P(ξ(3)≤k)−P(ξ(3)≤k−1)=(︂k+14)︂3−(︂k4)︂3,k=1,2,3P(ξ(3)=0)=P(ξ(3)≤0)=(︂14)︂3=164.因此ξ(3)有如下分布列:ξ(3)0123P164764196437645.25设母体ξ的密度函数为f(x)=3x2,0≤x≤1从中获得一个容量为5的子样ξ1,ξ2,···,ξ5,其次序统计量为ξ(1),ξ(2),···,ξ(5).(1).试分别求ξ(1)与ξ(5)的概率密度函数;(2).试证ξ(2)ξ(4)与ξ(4)相互独立.解:(1).母体有分布函数F(x)=⎧⎪⎨⎪⎩0,x≤0x3,0<x≤1,1,x>1.所以ξ(1)的概率密度函数f(1)(x),ξ(5)的概率密度函数f5(x)分别为:f(1)(x)={︃5[1−x3]4(3x2),0≤x≤1,0,else={︃15x2(1−x3)4,0≤x≤1,0,else.f(5)(x)={︃5(x3)4(3x2),0≤x≤10,else={︃15x14,0≤x≤1,0,else.(2).母体有分布函数F(x)=⎧⎪⎨⎪⎩0,x≤0x3,0<x≤1,1,x>1.因此ξ(2),ξ(4)的联合密度函数为g2,4(y,z)={︃5!9(2−1)!(4−2−1)!(5−4)!(y3)[z3−y3]4−2−1[1−z3]y2z2,0<y<z≤1.0,else={︃1080y5(z3−y3)(1−z3)z2,0<y<z≤1 0,else.令{︃U=ξ(2)/ξ(4)V=ξ(4)其对应的函数为:{︃u=y/z,v=z.其反函数为y=uv,z=v,其雅克比行列式为J=⃒⃒⃒⃒⃒v u01⃒⃒⃒⃒⃒=v.所以U,V的联合密度为pU,V (u,v)={︃1080(uv)5(v3−(uv)3)(1−v3)v2v,0<u<1,0<v<1,0,else.={︃1080v11(1−v3)u5(1−u3),0<u<1,0<v<1,0,else.U,V的联合密度函数是变量可分离的,故U,V相互独立.且U=ξ(2)/ξ(4)的密度函数为PU (u)={︃ku5(1−u3),0<u<10,else计算可知k=18.5.26设母体ξ服从韦布尔分布,其分布函数为F(x)=1−e−(xη)m,x>0,其中m>0为形状参数,η>0为尺度参数.从中获得子样ξ1,ξ2,···,ξn,证明μ=min(ξ1,ξ2,···,ξn)任服从韦布尔分布,并指出其形状参数和尺度参数.解:母体ξ的密度函数p(x)=F′(x)={︃mηmx m−1e−(xη)m,x>0 0,else.所以最小次序统计量μ=ξ(1)=min(ξ1,ξ2,···,ξn)的密度函数为:f(x)=n(1−F(x)]n−1p(x)=nmηmx m−1(︁e−(xη)m)︁n−1e−(xη)m=nmηmx m−1(︁e−n(xη)m)︁=m(cη)mx m−1(︁e−(x cη)m)︁其中c=n−1m.比较f(x)和母体的密度函数p(x)可知μ也服从韦布尔分布,其形状参数仍为m,尺度参数为ηm√n.5.27设某电子元件寿命服从参数为λ=0.0015的指数分布,其分布函数为:F(x)=1−e−λx,x>0.今从中随机抽取6个元件,测得其寿命分别为ξ1,ξ2,···,ξ6,试求下列事件的概率.(1).到800小时没有一个元件失效;(2).到300小时所有元件都失效.解:ξ1,ξ2,···,ξ6是子样,所以ξ1,ξ2,···,ξ6相互独立,且每个ξi都服从参数为λ的指数分布,所以(1).到800小时没有一个元件失效的概率为p1=P(ξ1>800,ξ2>800,···,ξ6>800)=6∏︁i=1P(ξi>800)=6∏︁i=1P(ξ<800)=6∏︁i=1[1−(1−e−800λ)]=[e−800λ]6=e−4800λ=e−7.2≈0.00075.(2).到300小时所有元件都失效的概率p2=P(ξ1<3000,ξ2<3000,···,ξ6<3000)=6∏︁i=1P(ξi<3000)=6∏︁i=1P(ξ<3000)=6∏︁i=1[1−e−3000λ)]=[1−e−3000λ]6=[1−e−4.5]6≈0.93517.5.28设母体ξ的密度函数为f(x)={︃6x(1−x),0<x<10,else由此母体中抽取一个子样(ξ1,ξ2,ξ3,ξ4,ξ5),又ξ(1)<ξ(2)<ξ(3)<ξ(4)<ξ(5)是子样的顺序统计量,求ξ(3)的密度函数.解:ξ的分布函数为F(x)=∫︁x6t(1−t)dt=x2(3−2x),(0<x<1),所以ξ(3)的密度函数为:g3(x)=5!2!2![F(x)]2[1−F(x)]2f(x)=5!2!2![x2(3−2x)]2[1−x2(3−2x)]2[6x(1−x)]=180x5(1−x)(3−2x)2(1−3x2+2x3)2,0<x<1.5.29母体ξ服从[0,1]上的均匀分布,(ξ1,ξ2,···,ξn)为取自该母体的子样,ηi=ξ(i)为次序统计量,求P(ηi> 12),i=1,2,3,4,5.解:ξ服从[,1]上的均匀分布R[0,1],所以ξ的分布函数为:F(x)=⎧⎪⎨⎪⎩x,0<x≤10,x≤01,x>1.因此第i个次序统计量ηi的概率密度函数为:g i(y)=⎧⎨⎩5!(i−1)!(5−i)!x i−1(1−x)5−i,0<y≤1 0,y≤0或者y>1故P(η1>1/2)=∫︁11/25(1−y)4dy=∫︁1/25t4dt=132P(η2>1/2)=∫︁11/220y(1−y)3dy=316P(η3>1/2)=∫︁11/230y2(1−y)2dy=12P(η4>1/2)=∫︁11/220y3(1−y)dy=1316=1−P(η2>1/2)P(η5>1/2)=∫︁11/25y4dy=3132=1−P(η1>1/2).5.30设(ξ1,ξ2)是取自具有指数分布母体的子样,其密度函数为:f(x)={︃e−x,x>00,else(ξ(1)<ξ(2)是次序统计量,求ξ(1)与η=ξ(1)+ξ(2)的联合密度函数.解:母体ξ服从参数为1的指数分布,其分布函数为F(x)=(1−e−x),x>0.因此ξ(1),ξ(2)的联合密度函数为:g1,2(x,y)=2e−x e−y,0<x<y.令U=ξ(1),V=ξ(1)+ξ(2).它对应的函数为u=x,v=x+y,其反函数为x=u,y=v−u,且雅克比行列式J=⃒⃒⃒⃒⃒ðxðuðxðvðyðuðyðv⃒⃒⃒⃒⃒=⃒⃒⃒⃒⃒10−11⃒⃒⃒⃒⃒=1.所以U,V的联合密度函数为pU,V(u,v)=2e−u e−(v−u),0<u<(v−u)=e−v,0<2u<v.5.31设母体ξ的分布函数F(x)是连续的,ξ(1),ξ(2),···,ξ(n)为取自此母体的子样的次序统计量,设ηi= F(ξ(i)),试证(1).η1≤η2≤···≤ηn,且ηi是来自均匀分布U(0,1)母体的次序统计量;(2).Eηi=in+1,D(ηi)=i(n+1−i)(n+1)2(n+2),1≤i≤n.(3).ηi和ηj的协方差矩阵为⎛⎜⎝a1(1−a1)n+2a1(1−a2)n+2a1(1−a2)n+2a2(1−a2)n+2⎞⎟⎠其中a i=in+1,a j=jn+1.证明:因为ξ(1),ξ(2),···,ξ(n)是取自母体ξ的子样的次序统计量,所以ξ(1)≤ξ(2)≤···≤ξ(n).又因为分布函数F(x)是单调不降的,所以F(ξ(1))≤F(ξ(2))≤···≤F(ξ(n))并且可看做是取自母体F(ξ)的子样的次序统计量.令C x=sup{t|F(t)≤t},0<x<1.由于F(x)是连续函数,其闭集的原像仍为闭集.而且F(x)单调不降,故可知F(C x)=x.这样可知:P(F(ξ)≤x)=P(ξ≤C x)=F(C x)=x,0<x<1.所以η=F(ξ)服从(0,1)上的均匀分布,所以η1,···,ηn可看做从(0,1)分布的母体上子样的次序统计量.(2).由(1)可知ηi有密度函数p(i)=⎧⎨⎩n!(i−1)!(n−i)![F(x)]i−1[1−F(x)]n−i,0<x<1, 0,else=⎧⎨⎩n!(i−1)!(n−i)!x i−1(1−x)n−i,0<x<1, 0,else即ηi服从beta分布Beta(i,n−i+1).注意到ηi的密度函数的形式,Eηi=∫︁1n!(i−1)!(n−i)!x i(1−x)n−i dx=n!(i−1)!(n−i)!i!(n−i)!(n+1)!∫︁1(n+1)![(i+1)−1]![(n+1)−(i+1)]!x(i+1)−1(1−x)(n+1)−(i+1)dx=n!(i−1)!(n−i)!i!(n−i)!(n+1)!=in+1.其中我们利用了(n+1)![(i+1)−1]![(n+1)−(i+1)]!x(i+1)−1(1−x)(n+1)−(i+1),0<x<1是子样容量为n+1时ηi+1的密度函数.用同样的方法可得:Eη2i=∫︁1n!(i−1)!(n−i)!x i+1(1−x)n−i dx=n!(i−1)!(n−i)!(i+1)!(n−i)!(n+2)!∫︁1(n+2)![(i+2)−1]![(n+2)−(i+2)]!x(i+2)−1(1−x)(n+2)−(i+2)dx=n!(i−1)!(n−i)!(i+1)!(n−i)!(n+2)!=i(i+1)(n+2)(n+1).其中我们利用了(n+2)![(i+2)−1]![(n+2)−(i+2)]!x(i+1)−1(1−x)(n+1)−(i+1),0<x<1是子样容量为n+2时ηi+2的密度函数.那么Dηi=Eη2i−(Eηi)2=i(n+1−i) (n+1)2(n+2).(3).不妨假定i<j.因为η1,···,ηn可看做(0,1)上均匀分布母体的子样的次序统计量.故ηi,ηj的联合密度函数为:g i,j(x,y)=n!(i−1)!(j−i−1)!(n−j)!x i−1(y−x)j−i−1(1−y)n−j,0<x<y<1.注意到E(ηiηj)=Eηi(ηj−ηi)+Eη2i.Eηi(ηj−ηi)=∫︁10∫︁1xn!(i−1)!(j−i−1)!(n−j)!x i(y−x)j−i(1−y)n−j dxdy=i(j−i)(n+2)(n+1)∫︁1∫︁1x(n+2)![(i+1)−1]![(j+2)−(i+1)−1]![(n+2)−(j+2)]!·x(i+1)−1(y−x)(j+2)−(i+1)−1(1−y)(n+2)−(j+2)dxdy=i(j−i)(n+2)(n+1),其中利用了(n+2)![(i+1)−1]![(j+2)−(i+1)−1]![(n+2)−(j+2)]!x(i+1)−1(y−x)(j+2)−(i+1)−1(1−y)(n+2)−(j+2),0<x<y<1是子样容量为n+2时,ηi+1和ηj+2的联合密度函数.所以进一步的可得Cov(ηi,ηj)=Eηiηj−(Eηi)(Eηj)=Eηi(ηj−ηi)+Eη2i−(Eηi)(Eηj)=i(j−i)(n+2)(n+1)+i(i+1)(n+2)(n+1)−ij(n+1)2=i(n+1−j)(n+2)(n+1)2=a1(1−a2n+2.从而可得ηi,ηj的协方差矩阵为Cov(ηi,ηj)=(︃Dηi Cov(ηi,ηj)Cov(ηj,ηi)Dηj)︃=⎛⎜⎝a1(1−a1)n+2a1(1−a2)n+2a1(1−a2)n+2a2(1−a2)n+2⎞⎟⎠.5.32设母体ξ∼N(0,1),从此母体获得一组子样观测值x1=0,x2=0.2,x3=0.25,x4=−0.3, x5=−0.1,x6=2,x7=0.15,x8=1,x9=−0.7,x10=−1.(1).求子样的经验分布函数F n(x).(2).计算x=0.15(即ξ(6))处E(F(ξ(6))),D(F(ξ(6)))解:(1).子样的经验分布函数为:F n(x)=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩0,x≤−10.1,−1<x≤−0.70.2,−0.7<x≤−0.30.3,−0.3<x≤−0.10.4,−0.1<x≤00.5,0<x≤0.150.6,0.15<x≤0.20.7,0.2<x≤0.250.8,0.25<x≤10.9,1<x≤21,x>2(2).记F(x)为标准正态分布的分布函数,p(x)为标准正态分布的密度函数,那么ξ(6)的密度函数为:g6(x)=10!5!4!F5(x)[1−F(x)]4p(x),。
概率论第五章习题解答〔科学出版社〕1、据以往的经验,某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和1920h 的概率。
解 设这16只元件的寿命为i X ,1,2,,16i =,则161i i X X ==∑,因为()100i E X μθ===,22()10000i D X σθ===于是随机变量161616001600400iiXn XX Z μ-⨯--===∑∑近似的服从(0,1)N16001{0.8}400X P -=-<1(0.8)=-Φ=10.78810.2119=-=.2\〔1〕一保险公司有10000个汽车保险投保人,每个投保人索赔金额的数学期望为280美元,标准差为800美元,求索赔总金额不超过2700000美元的概率; 〔2〕一公司有50张签约保险单,每张保险单的索赔金额为i X ,1,2,,50i =〔以千美元计〕服从韦布尔分布,均值()5i E X =,方差()6i D X =求50张保险单索赔的合计总金额大于300的概率。
解 〔1〕设每个投保人索赔金额为i X ,1,2,,10000i =,则索赔总金额为100001ii X X==∑又 ()280i E X =,2()800i D X =,所以, 索赔总金额不超过2700000美元的概率10000128000001{1.25}80000ii XP =-=-≤-∑近似的服从(0,1)N即 {2700000}1( 1.25)P X >=-Φ-(1.25)0.8944=Φ= 〔2〕{300}1{300}P X P X >=-≤3、计算器在进行加法时,将每个加数舍入最靠近它的整数,设全部舍入误差相互独立,且在〔-0.5,0.5〕上服从均匀分布,〔1〕将1500个数相加,问误差总和的绝对值超过15的概率是多少?〔2〕最多可有几个数相加,使得误差总和的绝对值小于10的概率不小于0.90? 解 设每个加数的舍入误差为i X ,1,2,,1500i =,由题设知i X 相互独立同分布,且在〔-0.5,0.5〕上服从均匀分布,从而0.50.5()02i E X -+==,2(0.50.5)1()1212i D X +== (1)、记15001i i X X ==∑,=(0,1)N ,从而 {||15}1{||15}P X P X >=-≤1{1515}P X =--≤≤2(1=-Φ2(1(1.34))=-Φ2(10.9099)0.1802=-=。
第六章 数理统计的基本概念1.设样本均值为X ,则由题意,有6,4.1(~2n N X ,或)1,0(~/64.1N nX −,于是由1)3(2/64.34.5/64.3/64.34.1}4.54.1{95.0−Φ=⎭⎬⎫⎩⎨⎧−<−<−=<<≤nn n X nP X P⇒ 975.03(≥Φn ⇒ 96.13≥n⇒5744.34≥n 故样本容量至少应取35. 2.由题意可知)1,0(~/2.0N na X n −,又122/2.01.0/2.0}1.0|{|95.0−⎟⎟⎠⎞⎜⎜⎝⎛Φ=⎭⎫⎩⎨⎧<−=<−≤n n n a X P a X P n n 故有 975.0)2(≥Φn ⇒ 96.12≥n⇒ 3664.15≥n 因此至少应等于16.n 3. 由正态分布的性质及样本的独立性知,212X X −和4343X X −均服从正态分布,由于,0)2(21=−X X E 20)(4)()2(2121=+=−X D X D X X D以及,0)43(43=−X X E 100)(16)(9)43(4343=+=−X D X D X X D所以,有)20,0(~221N X X −⇒)1,0(~20221N X X −)100,0(~4343N X X − ⇒)1,0(~104343N X X −于是由分布的定义知,当2χ,201=a 1001=b 时,有 ()())2(~10432024322243221243221χ⎟⎠⎞⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=−+−=X X X X X X b X X a X 4. 由正态分布的性质及样本的独立性知, ⇒ )9,0(~2921N X X X +++")1,0(~)(91921N X X X +++" 又)1,0(~3N Y i, 9,,2,1"=i 所以 )9(~)(913332292221292221χY Y Y Y Y Y +++=⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛""由于两个总体是X 和Y 相互独立的,所以其相应的样本也是相互独立的,故)9(9121X X X +++"与)(21Y 912922Y Y +++"也相互独立,于是由t 分布的定义知,)9(~9/)(91)(91292191292191t Y Y X X YY X X U +++=++++=""""5.由题意知,)1,0(~2N X i,,故有 15,,2,1"=i )10(~22)(4122102121021χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X U "" )5(~22)(412215211215211χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X V ""利用样本的独立性以及F 分布的定义,有)5,10(~5/10/)(221521121021F V U X X X X Y =++++="" 6.解法1 考虑n n n n X X X X X X 22211,,,+++++",将其视为取自正态总体的简单随机样本,则其样本均值为 )2,2(2σμN X X n X X n ni i n i i n i 21)(1211==+∑∑==+样本方差为 Y n 11−由于2211σ=⎟⎠⎞⎜⎝⎛−Y n E ,所以 22)1(2)2)(1()(σσ−=−=n n Y E 解法2 记,11∑==′n i i X n X ,11∑=+=′ni i n X n X 显然有X X X ′′+′=2,因此[]⎭⎬⎫⎩⎨⎧′′−+′−=⎥⎦⎤⎢⎣⎡−+=∑∑=+=+n i i n i n i i n i X X X X E X X X E Y E 1212)()()2()( []⎭⎬⎫⎩⎨⎧′′−+′′−′−+′−=∑=++n i i n i n i i X X X X X X X X E 122)())((2)(222)1(2)1(0)1(σσσ−=−++−=n n n 7.记(未知),易见2)(σ=X D )()(21Y E Y E =, ,6/)(21σ=Y D 3/)(22σ=Y D 由于相互独立,故有21,Y Y ,0)(21=−Y Y E 236)(22221σσσ=+=−Y Y D从而 )1,0(~2/21N Y Y U σ−=,又 )2(~22222χσχS =由于与相互独立,与独立,由定理 6.3.2,与独立,所以1Y 2Y 1Y 2S 2Y 2S 21Y Y −与独立,于是由t 分布的定义,知 2S )2(~2/)(2221t USY Y Z χ=−=8.由)1(~)1(222−−n S n χσ,其中由题意知,25=n , ,于是1002=σ}12)125({)1(50)1(}50{22222>−=⎭⎬⎫⎩⎨⎧−>−=>χσσP n S n P S P975.0}12)24({2≥>=χP 上式中的不等式是查表得到的,所以所求的概率至少为0.9759. 本题要用到这样一个结论,即Γ分布),(βαΓ关于第一个参数具有可加性,即若),(~1βαΓU ,),(~2βαΓV ,且U 与V 相互独立,则),(~21βαα+Γ+V U ,其中),(βαΓ的概率密度为: ⎪⎩⎪⎨⎧=)(x f αβ>其它0,x βΓ−)(1/1e x α−0x α可利用卷积公式证明.回到本题,当λβα11=,=,分布就是参数为Γλ的指数分布,所以样本的独立性及Γ分布的可加性,有 )1,(~21λn X +X X n Γ++"即的概率密度为 ∑=ni i X 1⎪⎩⎪⎨⎧>−=−−其它00,)!1()(1x e x n x g x n nλλ 因此∑==ni i X n X 11的概率密度为 ⎪⎩⎪⎨⎧≤>−==−−0,00,)!1()()()(1y y e y n n ny ng y h ny n n λλ 10. (1) 根据正态分布的性质,与21X X +21X X −服从二维正态分布,所以要证明它们相互独立,只需它们不相关,由于0)()()])([(22212121=−=−+X E X E X X X X E 0)()(2121=−+X X E X X E 所以 0),(2121=−+X X X X Cov 即与相互独立21X X +21X X −(2) 由于0=μ,所以)2,0(~221σN X X +⇒)1,0(~221N X X σ+ ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛+X X⇒)2,0(~221σN X X −)1,0(~221N X X σ− ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛−X X由上面证明的独立性,再由F 分布的定义知)1,1(~2/2/)()(21221221221F X X X X X X X X F ⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+=−+=σσ 所以 25.0}83.5{}4{4)()(221221=<<<=⎭⎬⎫⎩⎨⎧<−+F P F P X X X X P。
5.1解:X 的全部可能取值为1,2,3,4
13
10}1{=
=X P ,12
10
133
}2{⋅
=
=X P ,11
1012
2
133
}3{⋅
⋅
=
=X P ,
}3{}2{}1{1}4{=-=-=-==X P X P X P X P
26
25}2{}1{}3{==+==<X P X P X P
5.2解:X 的全部可能取值为0,1,2,3,4 59
1
}0{C X P =
=,59
4
5
14}1{C C C X P =
=,…, 4,3,2,1,0,}{59
55
4==
=-k C C C k X P k
k
6
511}1{}0{1}2{59
4
51
459
=
-
-
==-=-=≥C
C C C
X P X P X P
5.3解:设X —射击5发的命中发数,则)
6.0,5(~B X ,所求概率为:
(1)2304.04.06.025}2{3
2=⎪⎪⎭
⎫
⎝⎛==X P
(2)663.06.04.06.0451)3()4(1)3(5
4=-⎪
⎪⎭
⎫ ⎝⎛-==-=-=≤X P X P X P (3)98976.0)6.01(1)1(5
=--=≥X P 5.4.解:(1))3
1
,6(~B X
6,...,2,1,0,3231}{66=⎪
⎭
⎫
⎝⎛⎪⎭⎫ ⎝⎛==-k C k X P k
k
k
(2)31
}0{=
=Y P ,3
1
32}1{⋅=
=Y P ,…, 6
)3
2(}6{;5,...,2,1,0,31)32(}{===⋅==Y p k k Y P k
(3)9122.0)0{1}1{≈=-=≥X P X P
5.5.解(1)
938
.01861)2)2(()1)2(()0)2((1)3)2((6
6
6
≈---==-=-=-=≥---e
e
e
N P N P N P N P
(2) 0)0)5((15
≈==-e
N P
5.6 设X---100人中发病的人数,则101.0100),
01.0,100(~=⨯=λB X
(1)19999.001.01
100
}1{-≈⨯⎪⎪⎭
⎫ ⎝
⎛==e X P (2)1100199.01)0(1)1(--≈-==-=≥e X P X P 6.1解:由条件ak k X P ==)(,(α为常数)
由归一性,1)(4
1
==∑=k X P k
则 10
1,110;1432=
==+=+a a a a a a
故X 的分布律为:
X 的分布函数 )(),()(+∞<<-∞≤=x x X p x F
∑≤⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨
⎧≥<≤<≤<≤<==k x x k x x x x x P x F 4
;1
43;10632;10
3
21;1011;0
)( 又3.010
110
2)1()2()3(=+
=
=+==<x P x P x P
6.03.03.0)3()3()3(;10
3)3(=+==+<=≤=
=x P x P x P x P
6.2解:由B F A F ==+∞==-∞1)(,
0)(,得1,0==B A ,8
1)02()2()2(=
--==F F X P
4
1)04()4()4(=
--==F F X P , 8
5)06()6()6(=
--==F F
X P
于是X 的分布律为:
6.3解:①1)(=+∞F ,得A =1。
由X 为连续型的随机变量,则(x F 在0=x 连续。
由于F (0)=0。
则0=+B A ,则1-=B , ②λ21)2()2(--==≤e F X P λ3)3(1)3(-=-=>e F X P ③X 的概率密度
⎩⎨
⎧≤>='=-0
;0
0;)()(x x e x F x f x
λλ
6.4解:(1)由密度函数的归一性,1)(=⎰
∞∞
-dx x f 则
13
2
2
1
2=+⎰⎰cxdx dx cx
1)23(2
)12(3
223=-+
-c c 29
6=c
故
⎪⎪⎪⎩
⎪⎪⎪⎨⎧≤≤≤≤=其它
;
032;296
21;296)(2
x x
x x x f X 分布函数⎰
∞
-=x
dt t f x F )()( 当1<x 时,00)(==
⎰∞-x
dt
x F
当21≤≤x 时,)1(29
229
6
)(31
2-==⎰x dt t x F x 当32≤≤x 时,⎰⎰+
=
+
=x x tdt dt t x F 2221
229
229
329
6
29
6
)(
当3≥x 时,1)(=x F
故
⎪⎪⎪⎩
⎪⎪⎪⎨
⎧
<≤+
<≤-<=其它
;
132;29229
32
1;)1(29
21;0)(23
x x x x x x F
(2)由05.0)(0=>x X P ,得05.0)(10=-x F
05.0)(0
=⎰
+∞
x dx x f ,则05.0)(3
=⎰
x dx x f
显然0x 不能小于1或者大于3。
若)2,1(0∈x ,则05.029
62963
2
2
2
2
=+
⎰
⎰dt t dt t x
即05.029
1529
6
22
=+
⎰x dt t
又
05.029
15>,在上式不可能成立。
故0x 应大于2小于3。
由05.029
632
=⎰
x dt t ,得918.20=x
6.5解: 方程有实根 ⇔方程的判别式0≥ 0)2(44)4(2≥+⨯-⇔x x
2022≥⇔≥--⇔x x x 或1-≤x 。
7
471
71
)()()1()2(1
2521
2
=+=
+
=
-≤+≥⎰⎰⎰⎰---∞
-+∞
dx
dx dx x f dx x f x P x P
6.6 解: (1)由⎰
∞∞
-=1)(dx x f ,即⎰=+1
1)21(dx x A 。
2
1=
A
(2)⎰
⎰
=
+=
=>∞
+1
5
.05
.08
5)21(2
1)()5.0(dx x dx x f X P
(3)⎰
∞
-=
x
dt t f x F )()(
当0<x 时,00)(==
⎰∞-x
dt
x F
当10<≤x 时,3
2
)21(2
1)(2
x
x dt t x F x
+
=
+=⎰
∞
-
当1≥x 时,1)21(2
1)()(10=+==
⎰
⎰∞
-dt t dt t f x F x
故 ⎪⎪⎩
⎪⎪⎨⎧
≥<≤+
<=1
;
110;220;0)(2
x x x x
x x F。