哈工大概率论课程设计
- 格式:doc
- 大小:276.00 KB
- 文档页数:13
2023年哈工大概率论与数理统计学习心得学习概率论与数理统计是我作为哈尔滨工业大学学生的一部分学习内容,它是一门非常重要的数学课程。
在2023年的学习过程中,我对这门课程有了深入的了解和打造。
首先,在学习概率论的过程中,我学习了概率的基本概念、概率的计算方法以及概率的性质与定理。
通过学习这些知识,我对概率的概念有了更清晰的认识,概率的计算方法也变得更加熟练。
我还学习了条件概率、独立事件、随机变量以及概率密度函数等内容。
通过这些学习,我能够更好地理解随机现象的规律,并能够运用概率论的知识解决实际问题。
其次,在学习数理统计学的过程中,我学习了统计学的基本原理和方法。
我学习了统计的基本概念、统计量、抽样分布以及参数估计等内容。
通过学习这些知识,我能够更好地理解统计学的思想和原理,并能够运用统计学的方法进行数据的分析和推断。
我还学习了假设检验、方差分析、回归分析等内容,通过这些学习,我能够更好地分析和解释数据的变化规律,并能够从中得出一些结论。
在学习过程中,我还通过大量的练习和实践来提高自己的能力。
我通过做习题和刷题来加深对知识的理解,并通过实践来提高自己的解题能力。
我还参加了一些相关的实验和课程设计,通过实际操作和分析数据来加深对知识的理解和应用。
通过这门课程的学习,我不仅学到了概率论和数理统计的知识,还提高了自己的分析和解决问题的能力。
在学习过程中,我学会了如何运用概率论和数理统计的方法解决实际问题。
我学会了如何通过分析数据来得出一些结论,并能够对数据进行合理的解释和推断。
同时,我还学会了如何使用统计软件来进行数据的分析和处理。
在学习过程中,我还结合实际生活中的问题进行学习,通过解决一些实际问题来加深对知识的理解。
我还通过和同学的讨论和交流来拓宽自己的思路,通过和同学合作来解决问题。
通过这样的学习方式,我更好地理解了概率论和数理统计的应用,也提高了自己的解决问题的能力。
总之,通过2023年概率论与数理统计的学习,我对概率论和数理统计有了更深入的了解和掌握,我学会了如何使用概率论和数理统计的方法解决实际问题,我也提高了自己的分析和解决问题的能力。
哈工大概率论与数理统计第三版《哈工大概率论与数理统计第三版》是一本深入浅出的数学基础教材,它囊括了概率论和数理统计的相关概念、原理和应用。
本书内容丰富,涵盖了多个重要的概念和定理,对于深入理解和掌握概率论和数理统计的知识具有重要意义。
在接下来的文章中,我将以从简到繁的方式,逐步深入探讨《哈工大概率论与数理统计第三版》中的一些重要内容和理论,帮助读者更好地理解这本教材,并对概率论和数理统计有一个全面、深刻的认识。
一、概率论的基本概念和原理在《哈工大概率论与数理统计第三版》中,概率论的基本概念和原理是学习的重点之一。
概率论作为一门独立的数学学科,是研究随机现象的规律性和统计规律的一门学科,其理论和方法对于解决实际问题具有重要的应用价值。
教材中介绍了概率的定义、性质和常见的概率分布,如离散型随机变量和连续型随机变量的概率分布,以及它们的性质和应用。
通过对这些基本概念和原理的学习,读者可以建立起对概率论的基本认识和理解。
二、数理统计的基本概念和方法除了概率论,数理统计是另一个重要的学习内容。
数理统计是利用数学的方法对统计数据进行分析和推断的一门学科,是概率论的一种应用。
在《哈工大概率论与数理统计第三版》中,数理统计的基本概念和方法也得到了详细的介绍和阐述。
教材中介绍了样本和总体的概念,以及常见的统计推断方法,如点估计、区间估计和假设检验等。
通过对这些内容的深入学习,读者可以了解数理统计的基本原理和方法,有助于他们更好地应用数理统计的知识进行实际问题的分析和解决。
三、概率论与数理统计的应用除了学习概率论和数理统计的基本概念和原理,教材中还介绍了概率论和数理统计在实际问题中的应用。
在金融、医学、工程等领域,概率论和数理统计的方法被广泛应用于数据分析、风险评估、质量控制等方面。
通过学习这些应用实例,读者可以更好地理解概率论和数理统计的实际应用,并将理论知识转化为实际工作中的技能。
总结回顾通过本文的阐述,我希望读者对《哈工大概率论与数理统计第三版》有了更深入的了解和认识。
2024年哈工大概率论与数理统计学习心得学完《概率论与数理统计》这门课程,了解掌握了一些相关的基础知识与方法,并对该学科有了更加深刻的认识,实在是获益匪浅。
本文围绕概率论发展、对本课程学习的一些想法、个人感悟与收获等方面对本课程学习过程中的一些心得体会进行了简单的总结。
一、概率论与数理统计发展简史概率是与人们的日常生产生活联系十分紧密的一门学科。
因此自人类文明发端以来,概率这个概念就已被人们有意无意地渗透到了日常生活中。
人们常说估计如何如何,这里的“估计”包含着概率的含义,只不过在大多数人那里“概率”没有形成独立的知识体系,人们只是根据生活经验对他进行简单地应用而已。
随着技术革____带来的科技的飞速发展,概率论才逐渐形成一套完备的知识体系。
数理统计是在概率论的基础上发展起来的,因此发展时间也稍微晚些。
顾名思义,概率论是一门研究事情发生的可能性大小的学问。
对概率论的研究始于意大利的文艺复兴的____中人们要求找到掷骰子决定胜负的规则。
随着18、____世纪科学的进步,游戏起源的概率论被应用到这些领域中,这也极大推动了概率论本身的发展。
后来,瑞士数学家伯努利建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。
这标志着概率论成为了数学的一个分支。
随后法国数学家棣莫弗和拉普拉斯又导出了中心极限定理的原始形式。
之后,拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。
____世纪末,俄国数学家切比雪夫、马尔可夫、李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了____实际中遇到的许多随机变量近似服从正态分布。
____世纪初在物理学的刺激下,人们开始研究随机过程。
这方面柯尔莫哥洛夫、马尔可夫、辛钦、莱维及费勒等人作了杰出的贡献。
数理统计是伴随着概率论的发展而发展起来的一个数学分支,其发展大致可分为古典时期、近代时期和现代时期三个阶段。
概率论及数理统计课程设计一、设计目的本次课程设计旨在让学生通过独立完成一个概率论及数理统计的实际问题,深入了解概率和统计学的基本理论、方法和应用。
二、设计要求2.1 课程要求1.独立完成一个概率论或数理统计的实际问题。
2.对问题进行系统分析、建模和求解,并对结果进行解释和评价。
3.撰写题目研究的报告,包括题目来源、问题描述、分析方法、结果分析和总结等部分。
2.2 设计内容1.选择一个实际问题,可涉及生活、工作、科学或社会等领域。
2.对问题进行分析和建模,包括问题的假设、目标、变量、参数等。
3.对数据进行采集和处理,包括数据的类型、总体分布特征、样本分布特征等。
4.进行相关的数理统计分析和概率计算,包括描述统计分析、参数估计、假设检验、回归分析等。
5.对结果进行总结和评价,包括结果的可靠性、应用价值等。
三、设计实施3.1 设计流程1.确定问题:学生自主选择一个实际问题进行研究。
2.分析问题:明确问题的假设、目标等,进行问题分析和建模。
3.数据采集:收集数据,并进行数据处理和初步分析。
4.数理统计分析:进行描述统计分析、参数估计、假设检验、回归分析等多种分析方法。
5.结果总结:对分析结果进行总结和评价。
3.2 设计要点1.题目的选择要具有实际意义,并能够体现概率论和数理统计的理论和应用。
2.数据的收集和处理要合理、完整、准确,符合统计分析的要求。
3.分析方法要适当,充分体现概率论和数理统计的基本理论、方法和应用。
4.结果的总结和评价要清晰、准确、客观,体现分析结果的有效性和应用价值。
四、设计评价4.1 评分要点1.问题选择的质量和实际意义。
2.数据处理和分析方法的有效性和准确性。
3.求解结果的可靠性和应用价值。
4.报告的客观性和准确性,以及语言表达和文献引用等方面的要求。
4.2 评分标准本课程设计的评分将按照如下标准进行:分数评价90-100优秀,分析全面深入,结果可靠,报告准确详尽,符合要求。
80-89 良好,分析全面,结果较为可靠,报告语言表达清晰,各项要求均符合。
哈工大课程设计一、课程目标知识目标:1. 学生能够掌握本章节所介绍的基础理论知识,如公式、定律、概念等,并能够准确运用到实际问题中。
2. 学生能够理解学科知识体系中的相互联系,形成知识网络,为后续学习打下坚实基础。
技能目标:1. 学生通过本章节的学习,能够培养和提高观察、分析、解决问题的能力,尤其是运用学科知识解决实际问题的能力。
2. 学生能够熟练运用本章节的相关技能,如实验操作、数据处理、计算方法等,提高实践操作能力。
情感态度价值观目标:1. 学生在学习过程中,培养对学科的兴趣和热情,形成积极向上的学习态度。
2. 学生能够认识到所学知识在实际生活中的应用,培养创新意识和社会责任感。
3. 学生通过团队合作学习,培养良好的沟通协作能力和团队精神。
课程性质分析:本课程为学科基础课程,旨在帮助学生掌握学科基本知识和技能,为后续深入学习奠定基础。
学生特点分析:学生处于掌握基础知识和技能的关键阶段,具有一定的认知能力和自主学习能力,但需要教师引导和激发学习兴趣。
教学要求:1. 教师应注重理论与实践相结合,提高学生的实际操作能力。
2. 教师要关注学生的个体差异,因材施教,激发学生的学习兴趣和潜能。
3. 教师应注重培养学生的团队合作精神和创新能力。
二、教学内容本章节依据课程目标,选择以下教学内容:1. 章节一:基础理论- 知识点:相关概念、原理、定律等。
- 教材章节:第一章第一节。
2. 章节二:实践应用- 技能培养:实验操作、数据处理、计算方法等。
- 教材章节:第一章第二节。
3. 章节三:案例分析- 知识运用:运用所学知识解决实际问题。
- 教材章节:第一章第三节。
4. 章节四:拓展提高- 情感态度价值观培养:创新意识、团队合作、社会责任感等。
- 教材章节:第一章第四节。
教学大纲安排如下:第一周:章节一,基础理论学习。
第二周:章节二,实践应用技能培养。
第三周:章节三,案例分析及知识运用。
第四周:章节四,拓展提高及情感态度价值观培养。
2024年哈工大概率论与数理统计学习心得范文【引言】《概率论与数理统计》是哈尔滨工业大学(简称哈工大)统计学专业的一门重要基础课程,通过该课程的学习,我对概率论和数理统计有了更加深入的理解。
本文将回顾我在学习《概率论与数理统计》这门课程期间的学习心得,总结了我在课堂上的收获和对概率论与数理统计的理解。
【主体部分】一、概率论学习心得概率论是研究随机现象的理论。
在学习概率论的过程中,我从概率的定义开始,逐步了解了概率的性质和基本规则。
我学会了计算概率的方法,包括古典概率、几何概率和条件概率等。
通过大量的例题和练习,我掌握了如何应用这些方法来解决实际问题。
除了基本概率原理的学习,课程还涉及了随机变量和概率分布的概念。
通过学习各种常见的概率分布,如离散分布和连续分布,我了解了不同概率分布的特点和应用。
例如,二项分布和泊松分布可以用于研究离散型随机事件的概率分布,而正态分布则适用于描述连续型事件的分布规律。
概率论的学习过程中,最重要的是掌握概率论的基本思想和计算方法。
掌握了这些基本的计算方法,我不仅可以解答简单的概率问题,还可以应用到更复杂的数理统计问题中。
二、数理统计学习心得数理统计是概率论的一个分支,用于研究如何利用样本信息来推断总体参数。
在学习数理统计的过程中,我首先了解了统计推断的基本概念和思想,包括点估计和区间估计。
点估计是指通过观测样本数据来估计总体参数。
在学习点估计的过程中,我掌握了最大似然估计和矩估计等常用的估计方法,了解了它们的性质和应用条件。
通过练习,我体会到了不同估计方法的优缺点,以及如何选择合适的估计方法。
区间估计是指通过样本数据建立一个包含总体参数的区间。
在学习区间估计的过程中,我学会了计算置信区间的方法,以及如何根据样本数据构建置信区间。
通过大量的练习,我已经能够熟练地计算不同置信水平下的区间估计。
此外,数理统计还涉及了假设检验的概念和方法。
通过学习假设检验的基本原理和步骤,我了解了如何进行假设检验以及如何得出结论。
概率论的课程设计一、课程目标知识目标:1. 理解概率的基本概念,掌握概率的定义、性质和计算方法;2. 学会运用排列组合、古典概型、几何概型等概率计算方法解决实际问题;3. 掌握随机事件的独立性及其判定方法,并能运用独立性进行概率计算。
技能目标:1. 能够运用概率知识对实际问题进行分析,提出合理的假设和简化模型;2. 培养逻辑思维和数学建模能力,能够运用概率知识解决复杂问题;3. 掌握运用概率知识进行数据分析和决策的方法。
情感态度价值观目标:1. 培养学生对概率论的兴趣,激发学习热情,增强自信心;2. 培养学生严谨、细致的科学态度,养成独立思考和团队合作的良好习惯;3. 培养学生运用概率知识解决实际问题的意识,提高学生的应用能力和创新精神。
课程性质:本课程为高中数学选修课程,以概率论为基础,结合实际问题,培养学生运用概率知识分析问题和解决问题的能力。
学生特点:高中生具备一定的数学基础和逻辑思维能力,对新鲜事物充满好奇心,但需引导和激发学习兴趣。
教学要求:结合学生特点,注重理论与实践相结合,以实际问题为载体,引导学生主动探究,培养其分析问题和解决问题的能力。
在教学过程中,注重目标分解和教学评估,确保学生达到预期学习成果。
二、教学内容本章节教学内容主要包括以下三个方面:1. 概率基本概念:- 概率的定义与性质;- 随机事件的分类及运算;- 概率的计算方法。
2. 概率计算方法:- 排列组合在概率中的应用;- 古典概型及其概率计算;- 几何概型及其概率计算;- 独立性及其判定方法。
3. 概率在实际问题中的应用:- 数据分析与决策;- 概率模型在实际问题中的应用;- 逻辑思维与数学建模能力的培养。
教学大纲安排如下:第1课时:概率的基本概念,随机事件的分类及运算;第2课时:概率的计算方法,排列组合在概率中的应用;第3课时:古典概型及其概率计算;第4课时:几何概型及其概率计算;第5课时:独立性的判定及其在概率计算中的应用;第6课时:概率在实际问题中的应用,案例分析。
2024年哈工大概率论与数理统计学习心得学习概率论与数理统计是作为一个工科学生, 在大学时期必修的一门课程。
在2024年, 我有幸能够在哈尔滨工业大学学习这门课程, 并且取得了一定的收获。
下面, 我将分享我在学习概率论与数理统计方面的一些心得体会。
首先, 在学习概率论方面, 我深刻体会到了概率的重要性和应用广泛性。
概率论主要研究随机事件的概率、随机变量及其概率分布等内容, 是计算机、统计学、金融等领域的基础。
通过学习概率论, 我了解到概率不仅仅是一个理论概念, 更是一种描述不确定性的工具。
在现实生活中, 我们所面临的很多问题都存在不确定性, 如天气预报、股市走势等。
通过概率论的学习, 我可以更准确地评估可能发生的事件, 并且能够采取合适的措施来降低风险。
其次, 在学习数理统计方面, 我学到了如何通过样本推断总体的特征。
数理统计主要研究如何收集数据、如何通过数据推断总体的特征并进行决策等。
在学习过程中, 我提高了数据分析能力, 掌握了抽样调查的原理和方法, 并学会了对数据进行描述、总结和分析。
通过统计数据, 我可以用合理的方法推断总体的特征, 并对未来的情况作出预测。
这对于很多实际问题的解决具有非常重要的意义, 如市场调查、产品质量控制等。
此外, 概率论与数理统计的学习还培养了我批判性思维和解决问题的能力。
在学习过程中, 我需要理解和运用各种概率模型和统计方法来解决现实生活中的问题。
这要求我们具备批判性思维, 能够对所学知识进行深入分析和理解, 并灵活运用于实际情况中。
同时, 我还需要通过编程和数学求解等方式, 对问题进行建模和求解。
通过这样的学习过程, 我逐渐培养了解决实际问题的能力, 提高了自己的综合素质。
在学习过程中, 我还发现了一些困难和挑战。
首先, 概率论和数理统计是一门比较抽象的学科, 其中涉及到的概念和理论较多, 需要我们进行艰苦的钻研和思考。
其次, 统计方法的运用需要借助计算机编程进行实现, 这要求我们具备一定的编程能力和统计软件的使用能力。
概率论课程小论文计算机科学与技术学院信息安全专业一班(1303201)姓名:宫庆红学号:1130320103结果, 称为基本事件或样本点, 用w 表示。
而随机事件由若干个基本事件组成, 可看作样本空间的一个子集, 用A 、B 、C 表示。
在一次试验中出现的样本点w A事件A 发生, 反之, 若w A事件∈⇔∉⇔A 不发生。
Ω是自身的子集, 每次试验中必然发生, 称必然事件。
空集也是样本空间的子集, 在每次试验中不可能发生, 称不可能∅事件。
1.2集合的关系及运算。
集合的关系和运算有: 包含、相等、并、交、差、补、对称差。
而用集合论观点定义的事件也有相应的关系及运算: 包含、相等、和、交、互不相容、差、对立、对称差。
集合论中, 通常用文氏图来表示集合间的关系及运算, 全集U 用一个矩形表示, 矩形中的点表示元素, 每个子集用该矩形内的闭区域( 常用圆形区域) 表示。
类似地, 当事件间的关系及运算借助于文氏图来表示时, 就比较直观,易于理解、掌握。
1.3 运算律。
集合的运算律对事件同样适用, 运算律包括否定律、幂等律、交换律、结合律、分配律和对偶原则。
以上性质关于和与交的等式有一特点, 等式都是配对出现的, 把其中一个等式中的运算和换成交,交换成和, 那么便得到另一等式, 这种性质称为对偶性质, 和与交是一对对偶运算。
而关于差, 对称差就没有这种对偶性质, 如分配律, 有C ( A - B ) = CA - CB 成立, 即交对差的分配律成立, 而和对差的分配律不成交。
有A(B C)∆P(A B)=P(A)+P(B),即古典概率的有限可加性。
U同理, 将性质(2) (3) (4) 中式子两边同除以# (Ω) , 可得:减法公式: A B 时, 有P( A - B) = P( A ) - P ( B )一般加法公式: P ( A B ) = P( A ) + P ( B ) - P( AB )U对立事件概率公式: P ( A ) = 1 - P ( A )可见, 古典概率的有关公式可由集合论知识推得。
2024年哈工大概率论与数理统计学习心得____年哈工大概率论与数理统计学习心得在____年,我作为一个学生,有幸能够参加哈尔滨工业大学的概率论与数理统计课程学习。
这门课程对于我来说是一门非常重要的学科,它不仅是我大学数学专业的基础,也是我未来职业道路中必不可少的一部分。
在这门课程的学习过程中,我经历了许多挑战和困惑,但也积累了很多宝贵的知识和经验。
在这篇学习心得中,我将总结自己在学习概率论与数理统计过程中的体会和心得。
首先,概率论与数理统计是一门非常重要的基础学科。
它研究的是不确定性现象和随机事件的规律性,对于我们理解和分析现实生活中的各种现象和问题具有重要的意义。
在课程的学习中,我对概率论和数理统计的概念和原理有了更深入的了解,也学会了运用数学模型和方法来处理和解决实际问题。
通过学习概率论与数理统计,我认识到数学不仅仅是一门抽象的学科,更是一种思维工具和解决问题的方法。
其次,概率论与数理统计的学习需要扎实的数学基础和逻辑思维能力。
在学习过程中,我发现数学的基础知识对于理解和掌握概率论与数理统计的知识非常重要。
尤其是对于概率论来说,掌握好集合论、数列极限、数列级数和极限、微积分等数学基础知识是非常有帮助的。
另外,概率论与数理统计的推理和证明也需要具备良好的逻辑思维能力。
通过学习,我逐渐提高了自己的数学基础和逻辑思维能力,也更加明白了数学的重要性和美妙之处。
再次,概率论与数理统计的学习需要灵活运用数学知识和方法。
在学习过程中,我发现概率论与数理统计的知识不仅仅是机械的记忆和应用,更需要我们具备创新和灵活运用的能力。
在解决问题时,往往需要我们结合具体情况,灵活选择合适的数学模型和方法。
此外,概率论与数理统计的学习还需要我们具备良好的数学建模能力,能够将实际问题抽象成数学模型,并通过分析和计算得出有效的结论。
通过反复练习和实践,我逐渐培养了自己的数学思维和创新能力,也提高了自己的数学建模和解决问题的能力。
工程概率论课程设计一、课程目标知识目标:1. 掌握概率论的基本概念,如随机事件、样本空间、概率等;2. 理解并掌握条件概率、独立事件的判定与运用;3. 掌握离散型随机变量的概率分布及其数学期望、方差的计算方法;4. 了解连续型随机变量的概率密度函数、分布函数及其性质。
技能目标:1. 能够运用概率论的基本理论分析实际工程问题中的不确定性;2. 能够运用概率计算方法,解决具有随机性的工程问题;3. 能够运用统计软件或工具进行概率数据的处理和分析;4. 能够撰写有关概率论在实际工程应用中的分析报告。
情感态度价值观目标:1. 培养学生严谨的科学态度,认识到概率论在工程领域的重要性;2. 培养学生的团队合作意识,学会与他人合作解决问题;3. 激发学生对工程领域中概率与统计的兴趣,提高学生的创新意识。
本课程针对高年级本科或研究生阶段的学生,结合工程实际,注重理论与实践相结合。
课程目标旨在使学生在掌握概率论基本知识的基础上,能够运用所学解决实际问题,提高学生在工程领域中的数据分析能力,培养学生严谨的科学态度和团队合作精神。
通过本课程的学习,使学生具备运用概率论进行工程问题分析和决策的能力。
二、教学内容1. 概率论基本概念:随机事件、样本空间、概率、条件概率、独立性;2. 离散型随机变量:概率分布、期望、方差、协方差、相关系数;3. 连续型随机变量:概率密度函数、分布函数、数学期望、方差;4. 大数定律与中心极限定理;5. 概率论在工程中的应用案例分析。
教学内容安排与进度:第一周:概率论基本概念,包括随机事件、样本空间、概率的定义及计算方法;第二周:条件概率、独立事件的判定及运用;第三周:离散型随机变量,介绍常见离散分布及其性质;第四周:连续型随机变量,介绍常见连续分布及其性质;第五周:数学期望、方差、协方差、相关系数的计算与应用;第六周:大数定律与中心极限定理的阐述及理解;第七周:概率论在工程中的应用案例分析,结合实际工程问题进行讨论。
概率论课程设计随机数的产生摘要:随机数是概率论与数理统计中一个重要的概念。
本文研究了随机数的产生,先给出了均匀分布的随机数的产生算法,再通过均匀分布的随机数变换得到其他连续型随机数的产生算法.利用编程给出了产生均匀分布随机数的算法,探讨了同余法的理论原理.通过均匀随机数产生其他分布的随机数,我们列举了几种通用算法,并讨论各个算法的优缺点,最后以正态分布为例验证高效舍选法的优势.关键词:随机数;概率论;均匀分布;算法;目录:一 随机数与伪随机数二 均匀分布随机数的产生三 非均匀分布随机数的产生正文一、 随机数与伪随机数随机变量η的抽样序列12,,n ηηη,…称为随机数列.如果随机变量η是均匀分布的,则η的抽样序列12,,n ηηη,…称为均匀随机数列;如果随机变量η是正态分布的随机变量则称其抽样序列为正态随机数列.比如在掷一枚骰子的随机试验中出现的点数x 是一个随机变量,该随机变量就服从离散型均匀分布,x 取值为1,2,3,4,5,6,取每个数的概率相等均为1/6.如何得到x 的随机数?通过重复进行掷骰子的试验得到的一组观测结果12,,,n x x x 就是x 的随机数.要产生取值为0,1,2,…,9的离散型均匀分布的随机数,通常的操作方法是把10个完全相同的乒乓球分别标上0,1,2,…,9,然后放在一个不透明的袋中,搅拦均匀后从中摸出一球记号码1x 后放回袋中,接着仍将袋中的球搅拌均匀后从袋中再摸出一球记下号码2x 后再放回袋中,依次下去,就得到随机序列12,,,n x x x .通常称类似这种摸球的方法产生的随机数为真正的随机数.但是,当我们需要大量的随机数时,这种实际操作方法需要花费大量的时间,通常不能满足模拟试验的需要,比如教师不可能在课堂上做10000次掷硬币的试验,来观察出现正面的频率.计算机可以帮助人们在很短时间产生大量的随机数以满足模拟的需要,那么计算机产生的随机数是用类似摸球方法产生的吗?不是.计算机是用某种数学方法产生的随机数,实际上是按照一定的计算方法得到的一串数,它们具有类似随机数的性质,但是它们是依照确定算法产生的,便不可能是真正的随机数,所以称计算机产生的随机数为伪随机数.在模拟计算中通常使用伪随机数.对这些伪随机数,只要通过统计检验符合一些统计要求,如均匀性、随机性等,就可以作为真正的随机数来使用,我们将称这样产生的伪随机数为随机数.在计算机上用数学方法产生随机数的一般要求如下:1)产生的随机数列要有均匀性、抽样的随机性、试验的独立性和前后的一致性.2)产生的随机数列要有足够长的周期,以满足模拟实际问题的要求.3)产生随机数的速度要快,占用的内存少.计算机产生随机数的方法内容是丰富的,在这里我们介绍几种方法,计算机通常是先产生[0,1]区间上均匀分布的随机数,然后再产生其他分布的随机数.二、均匀分布随机数的产生2.1 算法1在vc的环境下,为我们提供了库函数rand()来产生一个随机的整数.该随机数是平均在0~RAND_MAX之间平均分布的,RAND_MAX是一个常量,在VC6.0环境下是这样定义的:#define RAND_MAX 0x7fff它是一个short 型数据的最大值,如果要产生一个浮点型的随机数,可以将rand()/1000.0这样就得到一个0~32.767之间平均分布的随机浮点数.如果要使得范围大一点,那么可以通过产生几个随机数的线性组合来实现任意范围内的平均分布的随机数.例如要产生-1000~1000之间的精度为四位小数的平均分布的随机数可以这样来实现.先产生一个0到10000之间的随机整数.方法如下:int a = rand()%10000;然后保留四位小数产生0~1之间的随机小数:double b = (double)a/10000.0;然后通过线性组合就可以实现任意范围内的随机数的产生,要实现-1000~1000内的平均分布的随机数可以这样做:double dValue =(rand()%10000)/10000.0*1000-(rand()%10000)/10000.0*1000;则dValue就是所要的值.但是,上面的式子化简后就变为:double dValue = (rand()%10000)/10.0-(rand()%10000)/10.0;这样一来,产生的随机数范围是正确的,但是精度不正确了,变成了只有一位正确的小数的随机数了,后面三位的小数都是零,显然不是我们要求的,什么原因呢,又怎么办呢.先找原因,rand()产生的随机数分辨率为32767,两个就是65534,而经过求余后分辨度还要减小为10000,两个就是20000而要求的分辨率为1000*10000*2=20000000,显然远远不够.下面提供的方法可以实现正确的结果:double a = (rand()%10000) * (rand()%1000)/10000.0;double b = (rand()%10000) * (rand()%1000)/10000.0;double dValue = a-b;则dValue就是所要求的结果.在下面的函数中可以实现产生一个在一个区间之内的平均分布的随机数,精度是4位小数.double AverageRandom(double min,double max){int minInteger = (int)(min*10000);int maxInteger = (int)(max*10000);int randInteger = rand()*rand();int diffInteger = maxInteger - minInteger;int resultInteger = randInteger % diffInteger + minInteger;return resultInteger/10000.0;}但是有一个值得注意的问题,随机数的产生需要有一个随机的种子,因为用计算机产生的随机数是通过递推的方法得来的,必须有一个初始值,也就是通常所说的随机种子,如果不对随机种子进行初始化,那么计算机有一个缺省的随机种子,这样每次递推的结果就完全相同了,因此需要在每次程序运行时对随机种子进行初始化,在vc 中的方法是调用srand (int )这个函数,其参数就是随机种子,但是如果给一个常量,则得到的随机序列就完全相同了,因此可以使用系统的时间来作为随机种子,因为系统时间可以保证它的随机性.2.2 算法2:用同余法产生随机数同余法简称为LCG(Linear Congruence Gener-ator),它是Lehmer 于1951年提出来的.同余法利用数论中的同余运算原理产生随机数.同余法是目前发展迅速且使用普遍的方法之一.同余法(LCG)递推公式为1()(mod )n n x ax c m -=+ (n=1,2,…), (1) 其中n x ,a ,c 均为正整数.只需给定初值x.,就可以由式(1)得到整数序列{n x },对每一n x ,作变换n u =n x /m ,则{n u }(n=1,2,…)就是[0,1)上的一个序列.如果{n u }通过了统计检验,那么就可以将n u 作为[0,1)上的均匀分布随机数.在式(1)中,若c=0,则称相应的算法为乘同余法,并称口为乘子;若c ≠0,则称相应的算法为混合同余法.同余法也称为同余发生器,其中0x 称为种子.由式(1)可以看出,对于十进制数,当取模m=10k(k 为正整数)时,求其同余式运算较简便.例如36=31236(mod102),只要对21236从右截取k=2位数,即得余数36.同理,对于二进制数,取模m=2k时,求其同余式运算更简便了.电子计算机通常是以二进制形式表示数的.在整数尾部字长为L 位的二进制计算机上,按式(1)求以m 为模的同余式时,可以利用计算机具有的整数溢出功能.设L 为计算机的整数尾部字长,取模m=2L ,若按式(1)求同余式时,显然有 11111;[()/].n n n n n n n ax c m x ax c ax c m x ax c m ax c m -----+<=++≥=+-+当时,则当时,则这里[x]是取x 的整数部分.在电子计算机上由1n x -求n x 时,可利用整数溢出原理.不进行上面的除法运算.实际上,由于计算机的整数尾部字长为L ,机器中可存放的最大整数为2L -1,而此时a 1n x -+c ≥m ≥2L-1,因此a 1n x -+c 在机器里存放时占的位数多于L 位,于是发生溢出,只能存放n x 的右后L 位.这个数值恰是模m=2L 的剩余,即n x .这就减少了除法运算,而实现了求同余式.经常取模m=2L (L 为计算机尾部字长),正是利用了溢出原理来减少除法运算.由式(1)产生的n x (n=1,2,……),到一定长度后,会出现周而复始的周期现象,即{n x }可以由其某一子列的重复出现而构成,这种重复出现的子列的最短长度称为序列n x 的周期.由式(1)不难看出,{n x }中两个重复数之间的最短距离长度就是它的周期,用T 代表周期.周期性表示一种规律性,它与随机性是矛盾的.因此,通常只能取{n x }的一个周期作为可用的随机序列.这样一来,为了产生足够多的随机数,就必须{n x }的周期尽可能地大.由前所述,一般取m=2L ,这就是说模m 已取到计算机能表示的数的最大数值,意即使产生的随机数列{n x }的周期达到可能的最大数值,如适当地选取参数0x ,a ,c 等,还可能使随机数列{n x }达到满周期. 三、非均匀分布随机数的产生3.1 一般通用方法3.1.1组合法组合法的基本思想是把预定概率密度函数f ( x ) 表为其它一些概率密度的线性组合.而这些概率密度的随机抽样容易产生.通过这种避难就易的手段我们也许可以达到较高的输出速度和较好的性能.若分布密度函数f ( x ) 能表为如下式(2)所示的函数项级数的和,1()()i i i f x p f x ∞==∑ (2) 其 中1ii p ∞=∑,诸f( x )皆为概率密度函数.则依如下步骤可产生分布为f ( x )一次抽样. ( 1 ) 产生一个随机自然数I , 使I 服从如下分布律:P ( I = i ) = p i i = 1 , 2 , 3……( 2 ) 产生服从f I ( x )的随机数0X证明利用全概率公式,有:11()()()()()i i i i P x X x dx P I i P x X x dx I i p f x dxf x dx∞=∞=<≤+==<≤+|===∑∑故X 服从f ( x ) 分布.我们以产生双指数(或拉普拉斯)分布的随机数为例来简单说明这种方法.双指数分布具有 概率密度函数f ( x ) = 0 . 5x e- f ( x ) 可表为:()0.5()0.5()l r f x f x f x =+ (3)其中()r f x 是指数分布,()l f x 是指数分布的对称分布.故产生双指数分布的抽样可按如下方法: 产生U 1 , U 2~U ( 0 , 1 ) ;若U 1 > 0 . 5 , 则令X = I n U 2,否则X = - I n U 2. 在式(2) 中, 若i →∞, 有p i → 0 ,则可用函数列{()}i i p f x 的前有限项和逼近f ( x ).这是一种近似的方法,与通常的函数逼近原理相同.只要近似的精度 ( 在某种“精度”的意义之下) 达到要求,我们就可以采用近似的方法.使用组合法时,各f( x ) 的抽样应该i( x )}把任意连续分布表为式(2) ,乃是使用组容易产生,故选用合适的概率密度函数族{ fi合法的关键.3.3.2 概率密度变换法这是一种比较新的通用随机数产生方法.其主要的目的是对一般的f(x)找出较好的覆盖函数以达到较高的效率.我们知道,对某一特定的概率密度f(x),我们可以使用最优化技术找到好的覆盖函数.但对于一般情况,我们只能期望产生效率尚可的覆盖函数. H O R M A N N用概率密度变换的方法生成一曲边梯形作为覆盖函数.其原理如下:使用一个变换函数T (x)把预定密度函数f ( x ) 变换为h ( x ) = T ( f ( x ) ) ,用一个分段线性函数l ( x )覆盖h ( x ),如图2 - 4 左图; h ( x ) 若是上凸的,则T1 ( l ( x ) )将是f ( x ) 的一个较好的覆盖函数这个方法在选择合适的T ( x ) ( l o g ( x ) 或1 / x a等) 后,能产生随机数包括了较多的分布类型.这个方法有较短的预处理时间,但需要较多的函数计算,不太适合硬件实现.此外,A h r e n s l用每段为常数的分段函数作为覆盖函数.L e y d o l d基于r a t i o - o f - u n i f o r m s 的方法也是一个通用算法.还有一种近似的方法,其产生的随机数与指定分布的随机数具有相同的前四阶矩,但概率分布不一定相同.这里就不详细介绍了.3.2 我们的方法当前的通用算法的问题是效率不能任意提高,不够灵活. 通常产生每个所需随机数X需以较大的概率计算f ( x )等函数.我们认为在速度要求非常高的场合,计算f ( x )是不利的,尤其以硬件进行函数计算是十分不利的.针对己有通用算法的不足,我们提出了基于组合法的通用算法.主要目的是尽可能地减少三角、指数、对数等超越函数的计算,以便硬件实现.产生任意连续分布随机数的高效舍选算法本文提出一种通用算法,可视需要使效率接近1 , 而且f ( x ) 的计算概率可任意小. 这些优点的取得是以长的预处理时间为代价的.在需要产生大量随机样本的场合( 例如通信系统的误码率测试,可能需要数小时乃至数天的仿真时间) ,本算法将有很大的优势,尽管有看法认为只有能用简单代码实现的算法才会被经常使用.3.2.1 算法原理假定预定的连续概率密度函数f ( x ) 为单峰的( 这是实际的大多数情况) ,已知其峰值点为m .一般f ( x ) 不关于x =m 对称,如图2 -5 .我们假定f ( x ) 定义在有界的区间[ a , b ] 上( 上文说过,对正态分布这类定义区间无限的情况,我们把这个区间取得足够大就可以了) . 直线X=m把f ( x ) 曲线与X轴所围面积分为左右两部分,我们把左右两部分各等分为K份,一共得到2 K个曲边梯形.并用2 K个矩形各自覆盖相应的曲边梯形.我们的想法是利用舍选法的几何意义,分别在上述 2 K 个曲边梯形内均匀投点,从而使随机点在f ( x ) 曲线与x 轴所围的整个区域中均匀分布,这样即可产生f ( x ) 的抽样X . 而在曲边梯形内均匀投点可使用简单舍选法:先在各个矩形内均匀投点,再选出落于相应曲 边梯形内的点. 这种投点法浪费的点只位于各个矩形的一角, 显然效率大大高于简单舍选法.最为重要的是:随着K 的增大,效率会不断提高.另外,只有当投点位于曲边梯形的曲边之下时, 才需计算f ( x ) ,而且计算f ( x ) 概率是随着K 的增加而减小的.我们每次“ 按概率”随机选中一个曲 边梯形进行投点. 这需要两步完成:先选择左边还是右边,再于此边的K 个曲边梯形中选择一个.这里的概率显然就是面积,这可以从以下的推导中看出来.为清晰起见,我们先阐述随机数的产生法,而把面积的均分这个预处理过程置于随后.3.2.2 算法推导令()mP f x dx -∞=⎰为左边面积.则左边各曲边梯形面积皆为 P / K ,右边各曲边梯形面积皆为( ( I -P ) / K . f ( x ) 可表为: 12111()()()K Ki i i i P P f x f x f x K K ==-=+∑∑ (4) 诸ji f ( x ) ( j = 1 , 2 ; i = 1 , 2 . . . k ) 皆为一腰为曲边的梯形形状的概率密度函数.依如下步骤可产生分布为f ( x ) 的一次抽样:S t e p l :产生一个随机自然数J ,使J 服从如下两点分布: P ( J = 1 ) = P , P ( J = 2 ) = 1 - P : S t e p 2 :产生一个随机自然数I , 使I 服从如下均匀分布律:P ( I = i ) = 1 / K , i = 1 , 2 . . . . K ;S t e p 3 : 用基本舍选法产生概率密度为f ( x ) 的随机数X .证明利用全概率公式,有: 2111211()()()(,)1(()())()Kj i K Ki i i i P x X x dx P J j P I i P x X x dx J j I i P P f x f x dx K K f x dx ====<≤+===<≤+∣==-=+=∑∑∑∑故x 服从 f ( x ) 分布.下面完整地描述这个方法:S t e p l( 产生J ) :S t e p l . l 产生[ 0 , 1 ] 上的均匀随机数U 1 ;S t e p 1 . 2若U 1 < P ,则返回J = 1 , 否则返回J = 2 ;S t e p 2( 产生I ) :S t e p 2 . l 产生 [ 0 , I ] 上的均匀随机数U 2 ;S t e p 2 . 2 21;I kU x =+⎢⎥⎢⎥⎣⎦⎣⎦表示不大于x 的最大整数.产生 ji f ( x ) 的样本需区别j = 1 与j = 2 两种情况. 图2 - 6 示出j = 2 时一 典型的ji f ( x ) , 用简单舍选法产生其抽样,覆盖函数为矩形. 首先产生一个[ 0 , R i ] 的均匀数, 如它属于[ 0 , R 1i -] 小无需再产生y 轴方向的均匀随机数,接受此均匀数即可;否则还需产生一个Y 轴方向的均匀随机数进行投点,那些落在曲边下方的点被接受,投在矩形右上角的点被舍弃.同理易得j = 1 时的产生法.整个S t e p 3 如下:S t e p 3( 产生X ) :i f J = =1{ l o o p :产生[ 0 , 1 ] 上的均匀随机数U 3 , W = ( L 0 - L 1 ) U 3 + L 1 : i f W> L 1i -,返回 X = W;e l s e { 产生[ O , l ] 上的均匀随机数V ;i f f ( W) - f ( L 1) < ( f ( L 1j - ) - f ( L 1 ) ) V 返回X = W; e l s e 舍弃W ,重复l o o p ;} }e l s e{ l o o p : 产生[ 0 , 1 ] 上的 均匀随机数U 3 , W = ( R 1 - R o ) U 3 + R o ; i f W< R 1i -,返回 X = W;e l s e {产生[ 0 , 1 ] 上的均匀随机数V ;i f f ( W) - f ( R 1) C ( f ( R 1I - ) - f ( R 1) ) V , 返回X = W; e l s e 舍弃W ,重复l o o p ;} }均匀随机数U 2 实际上可由U 1 变换得到, U 3 可由均匀数U2变换得到. 例如从U1 产生U 2 的方法是:当J = l 时, U 1 在[ 0 , P ] 上均匀分布, 故可令U 2 = U l / P ;当J = 2 时, U 1在[ P , 1] 上均匀分布, 故可令U 2 = ( U 1 - P ) / ( 1 - P ) . 从U 2 产生U 3 的方法是:当I = i 时, U 2 在 [ i / K , ( i + l ) / K ]上均匀分布, 故可令U 3 = K ( U 2 - i / K ) . 这样的做法节省了均匀随机数,增加了一些乘法和除法运算.对F P G A 等并行处理的硬件来说,产生均匀随机数是便宜的,除法运算是耗费的,所以我们不提倡减少均匀数的做法. 而对有C P U 的硬件来说, 减少均匀随机数意味着减少了过程调用,也许是值得的. 再介绍预处理过程.各分点需解下列递推方程求得:从i=1开始求解,直至i = K - 1 .这些方程可事先利用软件求解.3.2.3 算法性能分析影响随机数产生速度的主要因素之一是f ( x ) 的计算,故把产生每个抽样平均计算f ( x )的次数 ( 计算概率)做为一个性能指标.另外舍选法的平均效率也作为一个性能指标,这个指标反映了每产生一个随机数所需的均匀数个数.产生每个样点X 需计算f ( x ) 的平均概率P f 可利用全概率公式计算:其中10i i iL L L L ---的分母是左边第i 个曲边梯形的下底长,分子是下底与上底的差,这个比值就是在此曲边梯形内投点时计算f ( x ) 的概率.10i i i R R R R ---的意义相仿. 舍选法的平均效率” 可利用全概率公式计算: 11()()11(1)()()L R KK i i L R A i A i P P K B i K B i η===+-∑∑ 诸(),(),(),()L L R R A i B i A i B i 分别表示左边各曲边梯形面积、左边各矩形面积、右边各曲边梯形面积和右边各矩形面积.在不同的K 值下,计算了算法用于产生正态分布、 指数分布、 瑞利分布三种标准分布时的上述两个性能参数.各个概率密度函数如下:正态分布:2())2x f x =- 指数分布:()x f x e -= 瑞利分布: 2()exp()48x x f x =- 结果如下图6 :左图反映出概率密度函 数的计算概率P f 随K 的增大而减小, 最终趋于零,例如当K = 1 0 2 4 时, P f 已 非常小;右图反映出 舍选法的平均效率随K 的 增加而提高, 最终趋于 1 , 也就是三个均匀随机数产生一个预期的随机数.我们可根据实际情况选择合适的K 值.3.3 正态分布的随机数的产生下面提出了一种已知概率密度函数的分布的随机数的产生方法,以典型的正态分布为例来说名任意分布的随机数的产生方法.如果一个随机数序列服从一维正态分布,那么它有有如下的概率密度函数:22()2()x f x μσ--=参考文献:[1] 肖云茹.概率统计计算方法[M].天津:南开大学出版社,1994.[2]王永德等.随机信号分析基础.北京:电子工业出版社,2 0 0 3.[3]皇甫堪等. 现代数字信号处理. 国防科技大学电子科学与工程学院内部印刷,2 0 0 2.。