初一七年级数学第11讲:二元一次方程组
- 格式:docx
- 大小:222.35 KB
- 文档页数:8
七年级下册数学二元一次方程组的知识点
七年级下册数学有关二元一次方程组的知识点
学生们在享受假期的同时,也要面对一件重要的事情那就是学习。
店铺为大家提供了七年级下册数学知识点,希望对大家有所帮助。
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的.方程叫做二元一次方程,一般形式是ax+by=c(a0,b0)。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。
二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
归纳:基本思路:消元把二元变为一元。
七年级下册数学二元一次方程组知识点一元一次方程是指只有一个未知数的一次方程,例如:2x - 3 = 7。
而二元一次方程是指含有两个未知数的一次方程,例如:2x + 3y= 7。
在七年级下册的数学课程中,我们将学习关于二元一次方程组的知识。
方程组是一个由多个方程组成的集合,其中每个方程都有相同的未知数。
接下来,我们将学习以下知识点:1.二元一次方程组的概念:二元一次方程组是由两个二元一次方程组成的集合。
一般形式为:a1x + b1y = c1a2x + b2y = c22.解二元一次方程组的方法:a.消元法:通过某种操作使得方程组中的一个未知数的系数相等,然后将方程相加或相减,从而消去该未知数。
b.代入法:选取一个方程,将其中一个未知数表示成另一个未知数的式子,然后将其代入另一个方程,从而得到一个只含一个未知数的方程。
c.矩阵法:将方程组的系数分别放入矩阵中,计算矩阵的行列式,从而求得方程组的解。
3.解二元一次方程组的步骤:a.利用某种方法将方程组化简为易于求解的形式。
b.求解方程组中的一个未知数。
c.将求解得到的未知数代入另一个方程,求解另一个未知数。
d.检验所求解是否满足原方程组。
4.二元一次方程组的解的情况:a.唯一解:方程组有且仅有一个解。
b.无解:方程组没有解,即方程组的解不存在。
c.无穷多解:方程组有无数个解。
5.在解二元一次方程组时要注意的问题:a.方程组是否有解。
b.方程组是否有无穷多解。
c.是否可以进行消元操作。
d.是否正确地代入方程。
通过学习二元一次方程组的知识,我们可以解决一些实际问题,例如在解答题或应用题中,通过列方程组来求解问题。
希望以上简要介绍的二元一次方程组的知识点能对你的学习有所帮助!。
七年级下册数学二元一次方程组二元一次方程组是数学中的一个重要概念。
在七年级下册数学教材中,学生将学习如何解决这类问题,掌握相关求解的方法和技巧。
本文将从什么是二元一次方程组、二元一次方程组的解的求法、解题步骤等方面进行介绍,通过本文的学习,读者可以更好地理解并掌握这一概念。
首先,我们来了解一下什么是二元一次方程组。
二元一次方程组是由两个或两个以上的二元一次方程联立而成的方程集合。
其中,二元一次方程是指方程中只有两个未知数,并且未知数的最高次数为一。
举个例子,我们来看一个简单的二元一次方程组:1. 3x + 2y = 72. 2x - y = 4在这个例子中,我们可以看到有两个未知数x和y,以及两个方程。
解这个方程组的过程就是求出同时满足这两个方程的x和y的值。
接下来,我们来讨论二元一次方程组的解的求法。
解二元一次方程组的方法有多种,常用的有代入法、减法法、加法法和分离变量法。
这些方法都是通过某种变换手段,将原方程组化为一个只含一个未知数的一元方程。
然后通过解决这个一元方程来求出未知数的值。
这些方法需要根据具体的方程组来选择,有时候也需要结合使用不同的方法来求解。
接着,我们来讨论解题步骤。
首先,我们需要明确要解的方程组,把方程组写出来。
然后,选择一种适合的方法进行求解,进行变换和化简,得到一个只含一个未知数的一元方程。
接着,解决这个一元方程,求出未知数的值。
最后,将得到的未知数的值代回原方程组中,检查是否满足原方程组。
这样就完成了对二元一次方程组的求解。
总结一下,七年级下册数学二元一次方程组的学习内容包括什么是二元一次方程组、二元一次方程组的解的求法以及解题步骤。
通过学习,学生可以掌握如何解决这类问题,提高数学运算的能力和思维能力。
同时也为以后的数学学习打下基础。
希望本文对读者有所帮助。
初一数学下册知识点一、知识概述1. 《二元一次方程组》①基本定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
把两个含有相同未知数的二元一次方程联立在一起,就组成了一个二元一次方程组。
说实话,就像两个小伙伴一起合作,缺了谁都不行。
②重要程度:在初一数学下册里,这是很关键的内容。
它能帮我们解决很多实际问题,就像一个万能钥匙,能打开好多类型问题的大门。
③前置知识:要先掌握一元一次方程,因为二元一次方程组的很多解法思路和一元一次方程有关。
就好比你要先学会走,才能跑起来。
④应用价值:在生活中如果遇到需要同时根据两个不同条件去求两个未知量的情况,二元一次方程组就派上用场了。
像算两种不同价格的物品一共花多少钱、两种不同速度的交通工具赶路需要多久之类的。
二、知识体系①知识图谱:它是一元一次方程的延伸拓展,也是后续学习更多复杂方程、函数等知识的基础。
就像是一座桥,连接了之前学的基础和后面更深奥的知识。
②关联知识:和整式的运算有关,因为在解方程组过程中会运用到整式加减等知识。
好比做饭,整式运算就是准备食材的过程,二元一次方程组就是烹饪这些食材的锅。
③重难点分析:重难点在于消元这个方法的掌握。
就是把两个未知数变成一个未知数的关键一步,就像要把两条乱麻拧成一股绳一样不容易。
④考点分析:在考试中占比挺重的,常见考查方式是让你解方程组,或者根据实际问题列出方程组再求解。
三、详细讲解【理论概念类】①概念辨析:核心就是两个未知量,次数是一次,而且是以方程组合的形式存在,就像两个并肩作战的士兵。
②特征分析:主要特征就是每个方程里有两个未知数,未知数最高次是1次。
形象点说就像一个跷跷板两边重量都是单一形式的。
③分类说明:一般有普通的二元一次方程组,还有一些特殊形式的,比如果系数有一定规律或某些项的值特殊。
④应用范围:只要是涉及两个相关的未知数量并且关系符合一次函数形式的,都可以用。
但是遇到不是一次关系或者未知量之间关系特别复杂的时候就不适用了,就像小刀只能切小菜,遇到大骨头就不行了。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。