智能传感器与现代汽车电子
- 格式:pdf
- 大小:768.29 KB
- 文档页数:6
人工智能与现代汽车结合的益处人工智能与现代汽车结合带来了许多显著的益处,这些益处主要体现在以下几个方面:1.提高驾驶安全性:人工智能可以通过智能传感器、摄像头和雷达等设备实时监测车辆周围环境,及时发现并应对潜在的驾驶风险。
例如,自动紧急制动系统可以在检测到前方障碍物时自动刹车。
避免碰撞事故的发生。
此外,人工智能还可以通过疲劳驾驶检测等功能提醒驾驶员保持警觉,进一步降低驾驶风险。
2.优化驾驶体验:人工智能技术可以根据驾驶员的偏好和习惯,自动调整车辆设置,如座椅位置、音乐福放等,使驾驶更加舒适和便捷。
同时,智能导航系统可以实时更新路况信息,为驾驶员提供最佳的路线建议。
避免拥堵和延误。
3.提高能源利用效率:人工智能可以通过优化车辆的动力系统和驾驶模式,降低能耗和排放。
例如,智能能源管理系统可以根据行驶状况自动调整发动机的工作状态,提高燃油经济性。
此外,新能源汽车与人工智能的结合还可以实现更精准的电池管理和充电策略,延长电池寿命并提高能源利用效率。
4.实现自动驾驶:随着人工智能技术的不断发展,自动驾驶汽车逐渐成为现实。
自动驾驶汽车可以彻底解放驾驶员的手脚,提高行车安全性、舒适性和效率。
在未来,自动驾驶汽车甚至有可能彻底改变我们的出行方式和交通模式。
5.促进智能交通系统的发展:人工智能与现代汽车的结合还有助于推动智能交通系统的发展。
智能交通系统可以实现车与车、车与基础设施之间的互联互通,提高道路通行效率和安全性。
例如,智能信号灯可以根据实时交通流显自动调整信号灯配时,减少交通拥堵和等待时间。
总之,人工智能与现代汽车的结合为我们带来了更加安全、舒适、高效和环保的出行体验。
随著技术的不断进步和应用场景的不断拓展,我们有理由相信这一领域将继续保持快速发展势头。
传感器在汽车中的应用摘要: 随着电子技术的发展,现代汽车正朝着高档智能化、电子信息自动化的机电一体化产品方向发展。
汽车传感器作为汽车电子控制系统的关键部件,是现代汽车发展的主导与核心。
随着汽车工业与电子工业的不断发展,汽车传感器将成为汽车电子产品市场中最有需求力的产品。
关键词: 汽车传感器汽车电子控制系统现代汽车正朝着高档智能化、电子信息自动化的机电一体化产品方向发展,汽车传感器作为汽车电子控制系统的关键部件,是现代汽车发展的主导与核心,尤其伴随着汽车电子技术的飞速发展,低成本、智能、集成多功能的微型新型传感器将逐步取代传统的传感器,成为现代“电子汽车”发展的助推剂。
汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,已在汽车设计与制造的发展中起主要角色作用。
这一作用随着汽车功能,如稳定性控制、安全性控制和电子油门控制等技术领域研究内容的增多而愈来愈大。
目前,一般汽车装配有几十到近百个传感器,高级豪华汽车更是有大约几百乃至上千个传感器。
而且随着汽车制造业的发展,一辆普通轿车安装的传感器数量和种类都将越来越繁多。
这些形形色色的传感器坚守于汽车的各个关键部位,承担起汽车自身检测和诊断的重要责任,将汽车时时刻刻的温度、压力、速度及湿度等信息传达到汽车的神经中枢即中央控制系统中,从而将汽车故障消于未形,因此,有人形象地将传感器形容为汽车的敏感神经未梢。
当前,常用的汽车传感器主要表现在发动机控制系统、底盘控制系统、车身控制系统和导航系统中。
它的应用大大提高了汽车电子化的程度,增加了汽车驾驶的安全系数。
其作用就是对汽车温度、压力、位置、转速、加速度和振动等各种信息进行实时、准确的测量和控制。
常用的有温度传感器、压力传感器、位置和转速传感器、加速度传感器、距离传感器、陀螺仪和车速传感器、方向盘转角传感器等。
一、汽车发动机控制用传感器发动机的电子控制一直被认为是MEMS技术在汽车中的主要应用于领域之一。
传感器在现代汽车中的应用与发展随着科技的发展,汽车已经不再是简单的交通工具,而是一个集成了大量高科技系统的智能化设备。
而传感器作为现代汽车不可或缺的一部分,其应用与发展对汽车的性能、安全和舒适度起着至关重要的作用。
一、传感器在汽车中的应用1. 发动机控制系统在现代汽车中,各种传感器被广泛应用于发动机控制系统中。
例如氧传感器、进气压力传感器、节气门位置传感器等,它们可以监测和控制发动机燃料喷射、点火正时等参数,保证发动机的高效运转和低排放。
2. 车身稳定性控制系统车身稳定性控制系统利用加速度传感器、车速传感器等来监测车辆的姿态和转向,一旦检测到车辆出现侧滑或失控情况,系统就会通过制动力分配和动力调整等手段及时干预,提高汽车的行驶稳定性和安全性。
3. 智能驾驶辅助系统近年来,随着人工智能和自动驾驶技术的发展,各种传感器如激光雷达、摄像头、毫米波雷达等被应用于智能驾驶辅助系统中,它们能够实现车道保持、自动泊车、自动跟车等功能,提升了汽车的驾驶体验和安全性。
二、传感器在汽车中的发展趋势1. 多元化随着汽车功能的不断扩展,传感器的种类和数量也在不断增加,未来汽车中可能会出现更多种类的传感器,如车内环境传感器、疲劳驾驶传感器等,以提升汽车的舒适性和安全性。
2. 互联化随着互联网技术的发展,汽车和智能设备之间的连接越来越紧密,传感器将会与其他设备进行更多的信息交换和共享,从而实现更智能化、智能化的汽车功能。
3. 高精度传感器的精度要求也在不断提高,未来传感器将会更加精准、稳定和可靠,以满足汽车对于高性能、高可靠的要求。
三、个人观点和理解在我看来,传感器在现代汽车中的应用和发展势头将会持续增强,并在未来发挥更加重要的作用。
传感器的不断进步将会带来更智能、更安全、更舒适的汽车,使人们的驾驶和出行更加便利和愉悦。
总结回顾通过本篇文章的全面介绍,我们了解了传感器在现代汽车中的应用和发展趋势。
从发动机控制系统到智能驾驶辅助系统,传感器在汽车中发挥着越来越重要的作用,未来将会呈现出多元化、互联化和高精度的发展趋势。
智能传感器技术在汽车上的应用摘要:当前,电子技术受到了国内汽车行业的广泛重视,逐渐成为汽车行业的参考标准之一,电子传感器是汽车电子系统当中重要的组成部分,发挥着重要的功能,但是传感器技术在不断更新换代中发展,传统的传感器无法及时获得外部的数据信息,也无法预测外界环境的干扰。
在此背景下,智能传感器技术替代了传统的传感器技术,让现代汽车使用性能得到了提高,表现出明显的智能化特征,合理开发智能传感器技术,将能大大提高汽车的行驶安全性,因此要对现代汽车电子技术中的智能传感器技术进行研究。
关键词:智能传感器技术;汽车;应用1智能传感器技术智能传感器技术是一种具有信息处理功能的传感器。
它主要是由微处理器驱动的传感器和仪表组件。
具有通信和车载诊断功能。
主要为监控系统或操作员提供相关信息,以提高工作效率,降低设备维护成本。
智能传感器技术集成了传感器、控制器和智能仪器的功能。
它具有线性和低温度漂移,简化了传感器系统的结构难度。
智能传感器技术是人工智能技术、传感技术、控制技术等技术的综合。
它模拟人的感官和大脑的协调动作,具有信息检测、信息处理、信息记忆和逻辑判断等功能。
与传统传感器技术相比,智能传感器技术具有以下优点:第一,提高了传感器的精度。
智能传感器具有信息处理能力。
通过软件可以对传感器输入输出的非线性误差、零位误差、正负编队误差进行校正。
此外,微处理器通过拟合和差分计算的方法弥补了测试信号的非线性和漂移,从而提高了测量结果的准确性。
其次,提高了传感器的可靠性。
智能传感器技术具有自诊断功能。
一旦接通电源,系统将立即进行自检。
通过自诊断,可以判断智能传感器设备部件是否存在故障,并根据设备的使用时间进行在线修正,从而提高传感器的测量精度,保证传感器系统的良好稳定性。
第三,价格便宜。
在相同精度要求下,智能传感器和普通传感器的价格更低。
目前的智能传感器大多采用单片机。
国产单片机的价格从几美分到几十美元不等,非常便宜。
第四,综合发展。
智能传感器在汽车电子技术中的应用研究摘要:本文的主要目的为探究在汽车技术中如何进一步应用智能传感器技术,提高汽车技术的应用质量,同时融入现代化通信以及互联网技术,进一步地实现智能信息互动以及资源共享,进而提高智能传感器在汽车技术应用过程中的整体效果。
关键词:智能传感器;汽车电子技术;应用研究随着信息技术的飞速发展,智能传感器已经广泛地应用在了当前的汽车电子系统中,其能够实现安全保障,实现节约能源这一目标。
其中国外的学者,由于对智能传感器的研究相对较早,并且近几年智能传感器已经应用在了自动控制领域以及自动驾驶领域,能基本满足当前汽车电子功能的实际需求。
如何在我国将智能传感器应用在汽车电子技术中,并且提高其应用效果,则成为时代发展过程中所面对的一个必然问题,也需要针对这一问题进行解决,才能够确保我国汽车电子技术的发展速度得以提升。
一、智能传感器智能传感器是一种具有信息交换和传递功能的传感器,智能传感器在进行使用过程中,可以实现信息的收集,信息的处理以及信息的交换,智能传感器是传感器和处理器的一种混合体。
智能传感器系统通常情况下其拥有多个不同的传感器,并且在信息处置以及信息应用过程中,其应用质量和效果等均可以得到显著的提升,满足当前智能传感器在应用时的后续应用需求,也能够进一步提高智能传感器在后续使用时的使用效果,确保目前智能传感器建设的效果和质量等得到提升。
使用智能传感器,相比传统的传感器而言,在软件技术的提供上,其更加高精度,并且能够实现低成本的进行运输,确保其运输管理质量能够得到提升,满足目前智能传感器在使用时的实际使用需求。
为了确保智能传感器在使用时的效果,应明确智能传感器的技术要求,确保智能传感器在运行的过程中,其整体的运行效果和运行质量均可以得到明显的提升,并且及时的展现出其准确性,及时性以及可靠性,提高电路在进行振动化管理时的整体水平。
在现阶段的智能化管理过程中应明确汽车的所有机械部件本身都是由电子设备控制的,并且在车内空间有限的情况下,提高其管理的整体质量,这也使得智能传感器管理质量在当下显得尤为重要,需要将电子测试和控制单元与监管组件进行紧密集成,最大限度地减少其在集成过程中所需要消耗的空间以及控制电路,确保其在后续的管理过程中管理质量能够得到进一步的提升,管理效果也能够得到真正的改善。
汽车电子与传感器及检测摘要:现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。
其中最有代表性的核心器件之一就是智能传感器。
它担负着发动机的燃油喷射、电子点火、怠速控制、进气控制、废气再循环、蒸汽回收及底盘部分的传动、行驶、转向、制动、电子悬架和车身部分的防盗、中央门锁、自动空调等汽车各大电子控制系统的信息采集和传输,是电子控制系统中非常重要的元件。
如果没有它的正常工作,汽车就不可能正常地行驶。
本文介绍了汽车用传感器作用、结构、原理、检测方法和它与电控系统的联系。
关键词:传感器汽车电子电控系统近几年来我国汽车工业增长迅速,发展势头很猛。
电子信息技术已经成为新一代汽车发展方向的主导因素,传感器在汽车上的使用越来越多,整个电控系统都是在传感器的基础上得以进行的。
其中最有代表性的核心器件之一就是智能传感器。
一、汽车电子已经经历的几个发展阶段:从分立电子元器件搭建的电路监测控制,经过了电子元器件或组件加微处理器构筑的各自独立的、专用的、半自动和自动的操控系统,现在已经进入了采用高速总线(目前至少有5种以上总线已开发使用),统一交换汽车运行中的各种电子装备和系统的数据,实现综合、智能调控的新阶段。
新的汽车电子系统由各个电子控制单元(ECU)组成,可以独立操控,同时又能协调到整体运行的最佳状态。
例如为使发动机处于最佳工作状态,就需要从吸入汽缸的空气流量、进气压力的测定开始,再根据水温、空气温度等工作环境参数计算出基本喷油量,同时还要通过节气门位置传感器检测节气门的开度,确定发动机的工况,进而控制,调整最佳喷油量,最后还需要通过曲轴的角速度传感器监测曲轴转角和发动机转速,最终计算出并发出最佳点火时机的指令。
这个发动机燃油喷射系统和点火综合控制系统还可以与废气排放的监控系统和起动系统等组合,构筑成可使汽车发动机功率和扭矩最大化,而同时燃油消耗和废气排放最低化的智能系统。
二、汽车发展对汽车电子的一些基本要求:1.电子操控系统的动作必须快速、正确、可靠。
智能传感器与现代汽车电子一、汽车电子操控和安全系统谈起:近几年来我国汽车工业增长迅速,发展势头很猛。
因此评论界出现了一些专家的预测:汽车工业有可能超过IT产业,成为中国国民经济最重要的支柱产业之一。
其实,汽车工业的增长必将包含与汽车产业相关的IT产业的增长。
例如,虽然目前在我国一汽的产品中电子产品和技术的价值含量只占10%—15%左右,但国外汽车中电子产品和技术的价值含量平均约为22%,中、高档轿车中汽车电子已占30%以上,而且这个比例还在、不断地快速增长,预期很快将达到50%。
电子信息技术已经成为新一代汽车发展方向的主导因素,汽车(机动车)的动力性能、操控性能、安全性能和舒适性能等各个方面的改进和提高,都将依赖于机械系统及结构和电子产品、信息技术间的完美结合。
汽车工程界专家指出:电子技术的发展已使汽车产品的概念发生了深刻的变化。
这也是最近电子信息产业界对汽车电子空前关注的原因之一。
但是,必须指出的是,除了一些车内音响、视频装备,车用通信、导航系统,以及车载办公系统、网络系统等车内电子设备的本质改变较少外,现代汽车电子从所应用的电子元器件(包括传感器、执行器、微电路等)到车内电子系统的架构均已进入了一个有本质性提高的新阶段。
其中最有代表性的核心器件之一就是智能传感器(智能执行器、智能变送器)。
实际上,汽车电子已经经历了几个发展阶段:从分立电子元器件搭建的电路监测控制,经过了电子元器件或组件加微处理器构筑的各自独立的、专用的、半自动和自动的操控系统,现在已经进入了采用高速总线(目前至少有5种以上总线已开发使用),统一交换汽车运行中的各种电子装备和系统的数据,实现综合、智能调控的新阶段。
新的汽车电子系统由各个电子控制单元(ECU)组成,可以独立操控,同时又能协调到整体运行的最佳状态。
例如为使发动机处于最佳工作状态,就需要从吸入汽缸的空气流量、进气压力的测定开始,再根据水温、空气温度等工作环境参数计算出基本喷油量,同时还要通过节气门位置传感器检测节气门的开度,确定发动机的工况,进而控制,调整最佳喷油量,最后还需要通过曲轴的角速度传感器监测曲轴转角和发动机转速,最终计算出并发出最佳点火时机的指令。
这个发动机燃油喷射系统和点火综合控制系统还可以与废气排放的监控系统和起动系统等组合,构筑成可使汽车发动机功率和扭矩最大化,而同时燃油消耗和废气排放最低化的智能系统。
还可以举一个安全驾驶方面的例子,出于平稳、安全驾驶的需要,仅只针对四个轮子的操控上,除了应用大量压力传感器并普遍安装了刹车防抱死装置(ABS)外,许多轿车,包括国产车,已增设了电子动力分配系统(EBD),ABS+EBD可以最大限度的保障雨雪天气驾驶时的稳定性。
现在,国内外的一些汽车进一步加装了紧急刹车辅助系统(EBA),该系统在发生紧急情况时,自动检测驾驶者踩制动踏板时的速度和力度,并判断紧急制动的力度是否足够,如果需要,就会自动增大制动力。
EBA的自控动作必须在极短时间(例如百万分之一秒级)内完成。
这个系统能使200km/h高速行驶车辆的制动滑行距离缩短极其宝贵的20多米。
针对车轮的还有分别监测各个车轮相对于车速的转速,进而为每个车轮平衡分配动力,保证在恶劣路面条件下各轮间具有良好的均衡抓地能力的“电子牵引力控制”(ETC)系统等。
从以上列举的两个例子可以清楚看到,汽车发展对汽车电子的一些基本要求:1.电子操控系统的动作必须快速、正确、可靠。
传感器(+调理电路)+微处理器,然后再通过微处理器(+功率放大电路)+执行器的技术途径已经不再能满足现代汽车的要求,需要通过硬件集成、直接交换数据和简化电路,并提高智能化程度来确保控制单元动作的正确性、可靠性和适时性。
2.现在几乎所有的汽车的机械结构部件都已受电子装置控制,但汽车车体内的空间有限,构件系统的空间更是极其有限。
理想的情况当然是,电子控制单元应与受控制部件紧密结合,形成一个整体。
因此器件和电路的微型化、集成化是不可回避的道路。
3.电子控制单元必须具有足够的智能化程度。
以安全气囊为例,它在关键时刻必须要能及时、正确地瞬时打开,但在极大多数时间内气囊是处在待命状态,因此安全气囊的ECU必须具有自检、自维护能力,不断确认气囊系统的可正常运作的可靠性,确保动作的“万无一失”。
4.汽车的各种功能部件都有各自的运动、操控特性,并且,对电子产品而言,大多处于非常恶劣的运行环境中,而且各不相同。
诸如工作状态时的高温,静止待命时的低温,高浓度的油蒸汽和活性(毒性)气体,以及高速运动和高强度的冲击和振动等。
因此,电子元器件和电路必须要有高稳定、抗环境和自适应、自补偿调整的能力。
5.与上述要求同样重要,甚至有时是关键性的条件是,汽车电子控制单元用的电子元器件、模块必须要能大规模工业生产,并能将成本降低到可接受的程度。
一些微传感器和智能传感器就是这方面的典范。
例如智能加速度传感器,它不仅能较好地满足现代汽车的各项需要,而且因为可以在集成电路标准硅工艺线上批量生产,生产成本较低(几美元至十几或几十美元),所以在汽车工业中找到了自己最大的应用市场,反过来也有力地促进了汽车工业的电子信息化。
二、智能传感器:微传感器与集成电路融合的新一代电子器件:微传感器、智能传感器是近几年才开始迅速发展起来的新兴技术。
在我国的报刊杂志上目前所使用的技术名称还比较含混,仍然笼统地称之为传感器,或者含糊地归纳为汽车半导体器件,也有将智能传感器(或智能执行器、智能变送器)与微系统、MEMS等都归入了MEMS(微机电系统)名称下的。
这里介绍当前一些欧美专著中常用的技术名词的定义和技术内涵。
首先必须说明的是,在绝大多数情况下,本文大小标题及全文中所说的传感器其实是泛指了三大类器件:将非电学输入参量转换成电磁学信号输出的传感器;将电学信号转换成非电学参量输出的执行器;以及既能用作传感器又能用作执行器,其中较多的是将一种电磁学参量形式转变成另一种电磁学参量形态输出的变送器。
就是说,关于微传感器、智能传感器的技术特性可以扩大类推到微执行器、微变送器——传感器(或执行器、或变送器)的物理尺度中至少有一个物理尺寸等于或小于亚毫米量级的。
微传感器不是传统传感器简单的物理缩小的产物,而是基于半导体工艺技术的新一代器件:应用新的工作机制和物化效应,采用与标准半导体工艺兼容的材料,用微细加工技术制备的。
因此有时也称为硅传感器。
可以用类似的定义和技术特征类推描述微执行器和微变送器。
图1是一个微加速度计的结构示意图。
它由两块芯片组成,一是具有自检测能力的加速度计单元(微加速度传感器),另一块则是微传感器与微处理器(MCU)间的接口电路和MCU。
这是一种较早期(1996年前后)的,但已相当实用的器件,可用于汽车的自动制动和悬挂系统中,并且因微加速度计具有自检能力,还可用于安全气囊。
从此例中可以清楚看到,微传感器的优势不仅是体积的缩小,更在于能方便地与集成电路组合和规模生产。
应该指的是,采用这种两片的解决方案可以缩短设计周期、降低开发前期小批量试产的成本。
但对实际应用和市场来说,单芯片的解决方案显然更可取,生产成本更低,应用价值更高。
智能传感器(Smart Sensor)、智能执行器和智能变送器——微传感器(或微执行器,或微变送器)和它的部分或全部处理器件、处理电路集成在一个芯片上的器件(例如上述的微加速度计的单芯片解决方案)。
因此智能传感器具有一定的仿生能力,如模糊逻辑运算、主动鉴别环境,自动调整和补偿适应环境的能力,自诊断、自维护等。
显然,出于规模生产和降低生产成本的要求,智能传感器的设计思想、材料选择和生产工艺必须要尽可能地和集成电路的标准硅平面工艺一致。
可以在正常工艺流程的投片前,或流程中,或工艺完成后增加一些特殊需要的工序,但也不应太多。
图2是一种智能硅压力传感器的布局示意图。
在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(SAR)、微处理器(摩托罗拉69HC08)、存储器和串行接口(SPI)等集成在一个芯片上。
其前端的硅压力传感器是采用体硅微细加工技术制作的。
制备硅压力传感器的工序既可安排在集成CMOS电路工艺流程之前,亦可在后。
这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。
智能压力传感器的应用很广,不局限于汽车工业。
目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。
结果是智能压力传感器体积越来越小,随之控制单元所需的外围接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快(现在约为几美元一只)。
顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将Smart Sensor(或device)和Intelligent sensor(或device)都称之为智能传感器,但在欧美文献中是有所差别的。
西方专家和公众通常认为,Smart(智能型)传感器比Intelligent(知识型)的智慧层次和能力更高。
当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。
相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的CCD图像传感器了。
这是一种非智能型传感器莫属的情况,因为CCD阵列中每个硅单元由光转换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。
还有更复杂一些的,在中、高档长焦距(IOX)光学放大数码相机和摄像机上装备的电子和光学防抖系统,特别是高端产品中的真正光学防抖系统。
它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。
微系统(Microsystem)和MEMS(微机电系统)——由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。
如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为MEMS。
图3示出了MEMS芯片的基本构架,MEMS芯片的左侧给出的是制备MEMS芯片需要的基本工艺技术。
它的右侧则为主要应用领域列举。
很明显,MEMS的最好解决方案也是选用与硅工艺兼容的材料及物理效应、设计理念和工艺流程,也即采用常规标准的CMOS工艺与二维、三维微细加工技术相结合的方法,其中也包括微机械结构件的制作。
微传感器合乎逻辑的发展延伸是智能传感器,智能传感器自然延伸则是微系统和MEMS,MEMS的进一步发展则是能够自主接收、分辨外界信号和指令,进而能独立、正确动作的微机械(Micromachines)。