2019_2020学年高中数学第二章平面解析几何初步2.3.4圆与圆的位置关系应用案巩固提升课件新人教B版必修2
- 格式:ppt
- 大小:867.00 KB
- 文档页数:22
2.3.4 圆与圆的位置关系A级必备知识基础练1.设r>0,圆(x-1)2+(y+3)2=r2与圆x2+y2=16的位置关系不可能是( )A.内切B.相交C.内切或内含D.外切或外离2.两圆C1:x2+y2=16,C2:x2+y2+2x+2y-7=0,则两圆公切线条数为( )A.1B.2C.3D.43.圆x2+y2=4与圆x2+y2+2y-6=0的公共弦长为( )A.1B.2C.√3D.2√34.过点M(2,-2)以及圆x2+y2-5x=0与圆x2+y2=2交点的圆的方程是( )A.x2+y2-154x-12=0B.x2+y2-154x+12=0C.x2+y2+154x-12=0D.x2+y2+154x+12=05.若圆x2+y2=r2与圆x2+y2+2x-4y+4=0有公共点,则r满足的条件是( )A.r<√5+1B.r>√5+1C.|r-√5|≤1D.|r-√5|<16.已知两圆(x+2)2+(y-2)2=4和x2+y2=4相交于M,N两点,则|MN|= .7.若圆x2+y2-2ax+a2=2和圆x2+y2-2by+b2=1外离,则a,b满足的条件是 .8.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值为 .9.已知圆O1:x2+(y+1)2=4,圆O2的圆心O2(2,1).若圆O2与圆O1交于A,B两点,且|AB|=2√2,求圆O2的方程.10.已知圆x2+y2-2x-6y-1=0和圆x2+y2-10x-12y+m=0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.B级关键能力提升练11.已知圆C的方程为(x-3)2+y2=1,若y轴上存在一点A,使得以A为圆心,半径为3的圆与圆C有公共点,则A的纵坐标可以是( )A.1B.-3C.5D.-712.(多选题)圆O1:x2+y2-2x=0和圆O2:x2+y2+2x-4y=0的交点为A,B,则有( )A.公共弦AB所在直线的方程为x-y=0B.线段AB中垂线的方程为x+y-1=0C.公共弦AB的长为√22D.P为圆O1上一动点,则P到直线AB距离的最大值为√22+113.在平面直角坐标系xOy中,已知圆C1:x2+y2=8与圆C2:x2+y2+2x+y-a=0相交于A,B两点.若圆C1上存在点P,使得△ABP为等腰直角三角形,则实数a的值组成的集合为 .14.已知点P(t,t-1),t∈R,点E是圆x2+y2=14上的动点,点F是圆(x-3)2+(y+1)2=94上的动点,则|PF|-|PE|的最大值为 .15.与圆C1:(x-1)2+y2=1,圆C2:(x-4)2+(y+4)2=4均外切的圆中,面积最小的圆的方程是 .16.已知圆C1:x2+y2=5与圆C2:x2+y2-4x+3=0相交于A,B两点.(1)求过圆C1的圆心与圆C2相切的直线方程;(2)求圆C1与圆C2的公共弦长|AB|.C级学科素养创新练17.已知圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,则方程f(x,y)-f(x1,y1)-f(x2,y2)=0表示的圆C2与圆C1的关系是( )A.与圆C1重合B.与圆C1同心圆C.过P1且与圆C1圆心相同的圆D.过P2且与圆C1圆心相同的圆18.(多选题)设有一组圆C k:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四个结论中正确的有( )A.存在一条定直线与所有的圆均相切B.存在一条定直线与所有的圆均相交C.存在一条定直线与所有的圆均不相交D.所有的圆均不经过原点2.3.4 圆与圆的位置关系1.D 两圆的圆心距为d=√(1-0)2+(-3-0)2=√10,两圆的半径之和为r+4,因为√10<r+4,所以两圆不可能外切或外离,故选D.2.B 两圆C1:x2+y2=16,圆心C1(0,0),半径为4,C2:x2+y2+2x+2y-7=0,其标准方程为(x+1)2+ (y+1)2=9,圆心C2(-1,-1),半径为3,圆心距|C1C2|=√2,|4-3|<√2<|4+3|,即两圆相交,所以公切线恰有两条.3.D 两圆方程相减,得公共弦所在直线方程为y=1,圆x2+y2=4的半径R=2,圆心(0,0)到直线y=1的距离d=1,则弦长l=2√R2-d2=2√3.故选D.4.A 设经过圆x2+y2-5x=0与圆x2+y2=2交点的圆的方程是x2+y2-5x+λ(x2+y2-2)=0,λ≠-1,再把点M(2,-2)代入可得4+4-10+λ(4+4-2)=0,求得λ=13,故要求的圆的方程为x2+y2-154x-12=0.5.C 由x2+y2+2x-4y+4=0,得(x+1)2+(y-2)2=1,两圆圆心之间的距离为√(-1)2+22=√5.∵两圆有公共点,∴|r-1|≤√5≤r+1,∴√5-1≤r≤√5+1,即-1≤r-√5≤1,∴|r-√5|≤1.6.2√2 由题意可知直线MN的方程为(x+2)2+(y-2)2-x2-y2=0,即l MN:x-y+2=0,圆x2+y2=4的圆心为(0,0),半径为2,则圆心(0,0)到x-y+2=0的距离d=2√=√2,所以|MN|=2√r2-d2=2×22-(√2)2=2√2.7.a2+b2>3+2√2 由题意可得两圆的圆心坐标和半径长分别为(a,0),√2和(0,b),1.因为两圆外离,所以√a2+b2>√2+1,即a2+b2>3+2√2.8.43 ∵圆C的方程为x2+y2-8x+15=0,整理得(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆.又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴圆C':(x-4)2+y2=4与直线y=kx-2有公共点.设圆心C(4,0)到直线y=kx-2的距离为d,则d=√2即3k2≤4k,∴0≤k≤43,故可知参数k的最大值为43.9.解设圆O2的方程为(x-2)2+(y-1)2=r22,因为圆O1的方程为x2+(y+1)2=4,将两圆的方程相减,即得两圆公共弦AB所在的直线方程为4x+4y+r22-8=0,作O1H⊥AB,H为垂足,图略,则|AH|=12|AB|=√2,所以|O1H|=√r12-|AH|2=√4-2=√2.由圆心O1(0,-1)到直线4x+4y+r22-8=024√2√2,得r22=4或r22=20,故圆O2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.10.解两圆的标准方程为(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,圆心分别为M(1,3),N(5,6),半径分别为√11和√61-m.两圆圆心之间的距离d=√(5-1)2+(6-3)2=5.(1)当两圆外切时,5=√11+√61-m,解得m=25+10√11.(2)当两圆内切时,因定圆的半径√11小于两圆圆心间距离5,故只有√61-m−√11=5,解得m=25-10√11.(3)两圆的公共弦所在直线方程为(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,即4x+3y-23=0,∴公共弦长为2√(√11)2-|4×1+3×3-23|√222=2√7.11.A 圆C 的方程为(x-3)2+y 2=1,则圆心C (3,0).设y 轴上一点A (0,b ),当以A 为圆心,半径为3的圆与圆C 有公共点时,满足3-1≤|CA|≤3+1,即2≤√(0-3)2+(b -0)2≤4,所以2≤√9+b 2≤4,化简得b 2≤7,∴-√7≤b ≤√7,∴A 的纵坐标可以是1.12.ABD 对于A,由圆O 1:x 2+y 2-2x=0与圆O 2:x 2+y 2+2x-4y=0的交点为A ,B ,两式作差可得4x-4y=0,即公共弦AB 所在直线方程为x-y=0,故A 正确;对于B,圆O 1:x 2+y 2-2x=0的圆心为(1,0),又k AB =1,则线段AB 中垂线的斜率为-1,即线段AB 中垂线的方程为y-0=-1×(x-1),整理可得x+y-1=0,故B 正确;对于C,圆O 1:x 2+y 2-2x=0,圆心O 1(1,0)到直线x-y=0的距离d=√√22,半径r=1,所以|AB|=2√1-(√22)2=√2,故C 不正确;对于D,P 为圆O 1上一动点,圆心O 1(1,0)到直线x-y=0的距离为d=√22,半径r=1,即P 到直线AB距离的最大值为√22+1,故D 正确.13.{8,8-2√5,8+2√5} 由题知,直线AB 为2x+y+8-a=0.当∠PAB=90°或∠PBA=90°时,设C 1到AB 的距离为d.因为△ABP 为等腰直角三角形,所以d=12|AB|,即d=√8-d 2,所以d=2,所以|8-a |√222,解得a=8±2√5.当∠APB=90°时,AB 经过圆心C 1,则8-a=0,即a=8.14.4 ∵P (t ,t-1),∴P 点在直线y=x-1上,作E关于直线y=x-1的对称点E',且圆O:x2+y2=14关于直线y=x-1对称的圆O1的方程为(x-1)2+(y+1)2=14,所以E'在圆O1上,∴|PE|=|PE'|,设圆(x-3)2+(y+1)2=94的圆心为O2,∴|PE'|≥|PO1|-|E'O1|,|PF|≤|PO2|+|FO2|,∴|PF|-|PE|=|PF|-|PE'|≤(|PO2|+|FO2|)-(|PO1|-|E'O1|)=|PO2|-|PO1|+2≤|O1O2|+2=4,当P,E',F,O1,O2五点共线,E'在线段PO1上,O2在线段PF上时等号成立.因此,|PF|-|PE|的最大值为4.15.(x-115)2+(y+85)2=1 当三圆圆心在一条直线上时,所求圆面积最小.设所求圆的圆心坐标为(a,b),已知两圆圆心之间的距离为d=√(1-4)2+(0+4)2=5,所以所求圆半径为1.由已知可知a-14-1=25,所以a=115,b-0-4-0=25,所以b=-85,所以所求圆的方程为(x-115)2+(y+85)2=1.16.解(1)已知圆C1:x2+y2=5的圆心坐标为(0,0),半径为√5,圆C2:x2+y2-4x+3=0的圆心坐标为(2,0),半径为1.若过圆C1的圆心(0,0)与圆C2相切的直线斜率存在,则可设直线方程为y=kx,则圆心(2,0)到直线kx-y=0的距离d=√21,整理得3k2=1,解得k=±√3 3,所以直线方程为y=±√3 3x.若直线斜率不存在,直线不与圆C2相切.综上所述,直线方程为y=±√3 3x.(2)圆C1:x2+y2=5与圆C2:x2+y2-4x+3=0相交于A,B两点,则过点A和B的直线方程为4x-3=5,即x=2.所以(0,0)到直线x=2的距离d=2,所以|AB|=2(√5)2-22=2.17.D 由题意,圆方程C1:f(x,y)=0,点P1(x1,y1)在圆C1上,点P2(x2,y2)不在圆C1上,∴f(x1,y1)=0,f(x2,y2)≠0,由f(x,y)-f(x1,y1)-f(x2,y2)=0,得f(x,y)=f(x2,y2)≠0,它表示过P2且与圆C1圆心相同的圆.18.BD 根据题意得,圆心(k-1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项B正确;考虑两圆的位置关系,圆C k:圆心(k-1,3k),半径为r=√2k2,圆C k+1:圆心(k-1+1,3(k+1)),即(k,3k+3),半径为R=√2(k+1)2,两圆的圆心距d=√(k-k+1)2+(3k+3-3k)2=√10,两圆的半径之差R-r=√2(k+1)2-√2k2=2√2 k+√2,任取k=1或2时,(R-r>d),C k含于C k+1之中,选项A错误;若k取无穷大,则可以认为所有直线都与圆相交,选项C错误;将(0,0)代入圆的方程,则有(-k+1)2+9k2=2k4,即10k2-2k+1=2k4(k∈N*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆均不过原点,选项D正确.。
2.3.4圆与圆的位置关系课程学习目标[课程目标]目标重点:两圆位置关系的判断.目标难点:通过两圆方程联立方程组的解来研究两圆位置关系.[学法关键]1.从几何角度去分析圆与圆的位置关系. 两圆的位置关系有五种,在判断两圆的位置关系时,还是用几何法——从圆的几何性质(即利用圆心距和两圆半径的关系)出发为好,一方面较为简洁,另一方面若从代数法去判断两圆相切时,不管两圆是外切还是内切,由两圆的方程所组成的方程组都只有一组解,很难判断出是外切还是内切.2.几何法判断两圆位置关系的步骤:①计算两圆的半径,r1,r2;②计算两圆的圆心距d;③根据d与r1,r2之间的关系,判断两圆的位置关系,体会其中的算法思想.要熟悉圆系方程在解题时的运用,利用圆系方程可达到简化运算的目的.研习点1.两圆的位置关系平面上两圆的位置关系有五种:(1)两圆外离:如图,两圆没有公共点.(2)两圆外切:如图,两圆有且仅有一个公共点.(3)两圆相交:如图,两圆有两个公共点.(4)两圆内切:如图,两圆有一个公共点(5)两圆内含:如图,两圆没有公共点研习点2. 两圆位置关系的判断已知圆C1:(x-a)2+(y-b)2=r12与圆C2:(x-c)2+(y-d)2=r22,它们的位置关系有三种判断方法:两个圆的位置关系有:外离、外切、相交、内切、内含.(1)用平面几何法判断这五种位置关系的步骤:第一步:计算两圆的半径r1,r2;第二步:计算两圆的圆心距d;第三步:根据d与r1,r2之间的关系,判断两圆的位置关系.(2)平面几何法判断圆与圆的位置关系公式:两圆的方程分别为C1:(x-x1)2+(y-y1)2=r12,C2:(x-x2)2+(y-y2)2=r22.两圆外离r1+r2<d;两圆外切r1+r2=d;两圆相交|r1-r2|<d<r1+r2;两圆内切|r1-r2|=d;两圆内含|r1-r2|>d.(3)代数法判断圆与圆的位置关系:将两个圆方程联立,消去其中的一个未知数y或x,得关于x或y的一元二次方程.若方程中△>0,则两圆相交;若方程中△=0,则两圆相切;若方程中△<0,两圆外离或内含.(此方法仅用于判断两个圆的位置关系,不适用于其他的二次曲线的位置关系的判断问题)题型1.两圆位置关系的判定例1.判断下列两个圆的位置关系:(1)C 1:x 2+y 2-6x =0,C 2:x 2+y 2+8y +12=0;(2)C 1:x 2+y 2-2x +4y =0,C 2:x 2+y 2-2y -6=0;解:(1)已知两圆方程可分别变形为(x -3)2+y 2=32,x 2+(y +4)2=22 .由此可知圆心C 1的坐标为(3,0),半径r 1=3;圆心C 2的坐标为(0,-4),半径r 2=2.所以两圆的圆心距为d =|C 1C 2|=5,r 1+r 2=5,因此两圆外切.(2)已知两圆方程可分别变形为(x -1)2+(y +2)2=5,x 2+(y -1)2=7.由此可知圆心C 1的坐标为(1,-2),半径为r 1=5.圆心C 2的坐标为(0,1),半径为7.则两圆的圆心距d =|C 1C 2|=10<<所以两圆相交于两点.例2.已知圆C 1:x 2+y 2-10x -10y =0和圆C 2:x 2+y 2+6x +2y -40=0相交于A 、B 两点,求公共弦AB 的长.解法一:由两圆的方程相减,消去二次项得到一个二元一次方程,此方程即为公共弦AB 所在的直线方程,4x +3y =10由22431010100x y x y x y +=⎧⎨+--=⎩,解得26x y =-⎧⎨=⎩或42x y =⎧⎨=-⎩, 所以两点的坐标分别是A (-2,6)、B (4,-2).故|AB 10=.解法二:同解法一,先求出公共弦所在直线的方程:4x +3y =10.过C 1作C 1D ⊥AB 于D .圆C 1的圆心C 1(5,5),半径)r 1=52,则|C 1D |=|201510|55+-=.所以AB =2|AD |=10=.例3.已知圆C 与圆C1:x 2+y 2-2x =0相外切,并且与直线l :x +3y =0相切于点P (3,-3),求此圆C 的方程.解:设所求圆的圆心为C (a ,b ),半径长为r .因为C (a ,b )在过点P 且与l 垂直的直线上,= ①.又因为圆C 与l 相切于点P ,所以|r = ②因为圆C 与圆C 1相外切,所以 1== ③ 由①得3a -b -43=0|26|1a =-+,解得40a b =⎧⎨=⎩或0a b =⎧⎪⎨=-⎪⎩ 此时r =2或r =6,所以所求圆C 的方程为(x -4)2+y 2=4,或x 2+(y +43)2=36 .例4.已知圆C 1:x 2+y 2-2mx +m 2=4和圆C 2:x 2+y 2+2x -4my =8-4m 2相交,求实数m 的取值范围.解:由题意得C 1(m ,0),C 2(-1,2m ),r 1=2,r 2=3,而两圆相交,有|r 1-r 2|<|C 1C 2|<r 1+r 2,即1<(m +1)2+4m 2<25,解得122(,)(0,2)55m ∈--【教考动向·演练】1.圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( C )(A )相离 (B )外切 (C )相交 (D )内切2.两圆(x -a )2+(y -b )2=c 2和(x -b )2+(y -a )2=c 2相切,则( B )(A )(a -b )2=c 2 (B )(a -b )2=2c 2 (C )(a +b )2=c 2 (D )(a +b )2=2c 23.M ={(x ,y )| x 2+y 2≤4},N ={(x ,y )| (x -1)2+(y -1)2=r 2 (r >0)},若M ∩N =N ,则r 的取值范围是( C )(A)1) (B )(0,1] (C)(0,2- (D )(0,2] 4.圆x 2+y 2=1和圆(x -1)2+(y -1)2=1例5.求证:到圆心距离为a (a >0)的两个相离定圆的切线长相等的点的轨迹是直线. 解:如图所示,建立平面直角坐标系,设圆O 以原点O 为圆心,r 为半径,圆A 以点A (a ,0)为圆心,半径为R . 过点P (x ,y )的直线PB 与圆O 相切于点B ,直线PC 与圆A 相切于点C ,且PB =PC .圆O 的方程为x 2+y 2=r 2 ,圆A 的方程为(x -a )2+y 2=R 2.因为PB =PC ,所以PB 2=PC 2,由PO 2-OB 2=PA 2-AC 2,即x 2+y 2-r 2=(x -a )2+y 2-R 2,得x =2222a r R a+-(a >0). 这就是点P 的轨迹方程,它表示一条垂直于x 轴的直线例6.已知圆C 1:x 2+y 2-4x -2y -5=0与圆C 2:x 2+y 2-6x -y -9=0.(1)求证两圆相交;(2)求两圆公共弦所在的直线方程;(3)在平面上找一点P ,过P 点引两圆的切线并使它们的长都等于62.解:(1)圆C 1:(x -2)2+(y -1)2=10,圆C 2:(x -3)2+(y -21)2=734, 因为两圆心距|C 1C 2=<<所以圆C 1与圆C 2相交;(2)联立两圆方程22224250690x y x y x y x y ⎧+---=⎨+---=⎩,两圆方程相减即得两圆公共弦所在直线方程:2x -y +4=0.(3)设P (x ,y ),依题意得:22240690x y x y x y -+=⎧⎨+---=⎩, 解方程组得点P (3,10)或2326(,)55--.6.两圆x 2+y 2=r 2与(x -3)2+(y +1)2=r 2外切,则r 是( B )(A )10 (B )2(C )5 (D )5 7.半径为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程是( D )(A )(x -4)2+(y -6)2=6 (B )(x ±4)2+(y -6)2=6(C )(x -4)2+(y -6)2=36 (D )(x ±4)2+(y -6)2=368.若圆:x 2+y 2-2ax +a 2=2和:x 2+y 2-2by +b 2=1外离,则a 、b 满足的条件是 .a 2+b 2≥3+229.已知圆(x -2)2+(y +3)2=13和圆(x -3)2+y 2=9交于A 、B 两点,则弦AB 的垂直平分线的方程是 3x -y -9=0 .10.求两圆:x 2+y 2-2x +10y -24=0与:x 2+y 2+2x +2y -8=0的交点坐标.(-4,0)、(0,2)。
圆与圆的位置关系示X教案整体设计教学分析教材通过例题介绍了利用方程判断两圆的位置关系.让学生进一步感受坐标方法在研究几何问题中的作用.值得注意的是针对学生的实际情况来学习坐标法讨论两圆的位置关系,对于基础较差的学生,建议不学习,对于基础较好的学生可以作为课后阅读教材,否那么本节课的教学目标完不成.三维目标1.掌握圆与圆的位置关系的判定,培养学生分析问题和解决问题的能力.2.了解用坐标方法讨论两圆位置关系,体会坐标方法在研究几何问题中的作用,提高应用能力.重点难点教学重点:利用方程判定两圆位置关系.教学难点:用坐标方法讨论两圆位置关系.课时安排1课时教学过程导入新课设计1.前面我们学习了利用方程判断点与圆的位置关系、直线与圆的位置关系,那么,圆与圆的位置关系有哪几种呢?如何利用方程判断圆与圆之间的位置关系呢?教师板书课题:圆与圆的位置关系.设计 2.我们知道,日食和月食都是一种自然现象,如果把月球、地球、太阳都抽象成圆,那么这两种自然现象就展现了两圆的位置关系,如何利用方程来描述这一现象呢?教师点出课.推进新课新知探究提出问题初中学过的平面几何中,圆与圆的位置关系有几种?画图表示,并指出判断方法.讨论结果:应用示例思路1例1判断以下两个圆的位置关系:(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0.解:(1)两圆的方程可分别变形为(x-1)2+y2=22,(x-2)2+(y+1)2=(2)2.由此可知圆心C1的坐标为(1,0),半径r1=2;圆心C2的坐标为(2,-1),半径r2= 2.设两圆的圆心距为d,那么:d=|C1C2|=2-12+-12= 2.r1+r2=2+2,r1-r2=2- 2.所以r1-r2<d<r2+r2.因此这两个圆相交.(2)两圆的方程分别变形为:x2+(y-1)2=12,(x-3)2+y2=32.由此可知圆心C1的坐标为(0,1),半径r1=1;圆心C2的坐标为(3,0),半径r2=3,那么两圆的圆心距d=32+12=2,所以d=r2-r1.因此这两个圆内切.点评:判断两个圆的位置关系.几何法:即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.设两圆的连心线长为d,那么判别圆与圆的位置关系的依据有以下几点:①当d>R+r时,圆C1与圆C2外离;②当d=R+r时,圆C1与圆C2外切;③当|R-r|<d<R+r时,圆C1与圆C2相交;④当d=|R-r|时,圆C1与圆C2内切;⑤当d<|R-r|时,圆C1与圆C2内含.变式训练1.在平面直角坐标系中分别作出圆心为C1(0,0),C2(1,1),半径分别为1,2的两圆,并判断两圆的位置关系.解:作出两圆,如下图.两圆半径分别记作r1和r2,那么r1=1,r2=2,圆心距d=|C1C2|=0-12+0-12=2,于是,1=|r1-r2|<d<r1+r2=3,所以两圆相交.2.判断圆C1:x2+y2+2x-6y-26=0与圆C2:x2+y2-4x+2y+4=0的位置关系,并画出图形.解:由得圆C1:(x+1)2+(y-3)2=36,其圆心C1(-1,3),半径r1=6;圆C2:(x-2)2+(y+1)2=1,其圆心C2(2,-1),半径r2=1.于是|C1C2|=2+12+-1-32=5.又|r1-r2|=5,即|C1C2|=|r1-r2|,所以两圆内切.如下图.3.x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切解析:圆O 1:x 2+y 2-2x =0(x -1)2+y 2=1, 故圆心为(1,0),半径为1.圆O 2:x 2+y 2-4y =0x 2+(y -2)2=4, 故圆心为(0,2),半径为2.那么圆心距d =1-02+0-22= 5. 而2-1<5<1+2,即两圆相交. 答案:B例2试用坐标方法讨论两圆位置关系.(此题针对学生实际选用)解:如下图所示,以O 1为坐标原点,使x 轴通过O 1,O 2,且O 2在x 轴的正半轴上,建立直角坐标系xOy.这样,可设⊙O 2的圆心的坐标为(d,0).这时两圆的圆心距等于d ,两圆的方程分别为 x 2+y 2=r 21 ①(x -d)2+y 2=r 22. ②将①②两式联立,研究此方程组的解. ①-②,整理可得x =r 21-r 22+d22d .将x 值代入①,得 y 2=r 21-r 21-r 22+d224d2=2dr 1+r 21-r 22+d 22dr 1-r 21+r 22-d 24d2=[r 1+d2-r 22][r 22-r 1-d2]4d2=r 1+r 2+d r 1-r 2+dr 1+r 2-dr 2-r 1+d4d2=[r 1+r 22-d 2][d 2-r 1-r 22]4d2.由此可见,如果 |r 1-r 2|<d<r 1+r 2那么等式右边两个因式都为正数,于是方程组有解,且有两解.这时相应的两圆相交于两点(如下图).如果:r 1+r 2=d 或|r 1-r 2|=d ,那么等式右边分子的因式中至少有一个为0,那么方程组有唯一解,这时两圆相切(外切或内切)(上图(2)(3)).如果:r 1+r 2<d 或|r 1-r 2|>d ,那么方程组无解,这时两圆不相交(相离或内含)(上图(4)(5)).思路2例3圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.分析:因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x 2项、y 2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.解:设两圆交点为A(x 1,y 1)、B(x 2,y 2),那么A 、B 两点坐标满足方程组⎩⎪⎨⎪⎧ x 2+y 2+2x -6y +1=0,x 2+y 2-4x +2y -11=0,①②①-②,得3x -4y +6=0. 因为A 、B 两点坐标都满足此方程,所以3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r =3.又点C 1到直线的距离为d =|-1×3-4×3+6|32+-42=95. 所以AB =2r 2-d 2=232-952=245,即两圆的公共弦长为245. 点评:处理圆有关的问题,利用圆的几何性质往往比较简单,要注意体会和应用.此题中求两圆公共弦所在直线方程可以作为结论记住.变式训练判断以下两圆的位置关系,如果两圆相交,请求出公共弦的方程.(1)(x +2)2+(y -2)2=1与(x -2)2+(y -5)2=16,(2)x 2+y 2+6x -7=0与x 2+y 2+6y -27=0.解:(1)根据题意,得两圆的半径分别为r 1=1和r 2=4,两圆的圆心距d =[2--2]2+5-22=5. 因为d =r 1+r 2,所以两圆外切.(2)将两圆的方程化为标准方程,得(x +3)2+y 2=16,x 2+(y +3)2=36. 故两圆的半径分别为r 1=4和r 2=6, 两圆的圆心距d =0-32+-3-02=3 2.因为|r 1-r 2|<d<r 1+r 2,所以两圆相交. 两圆方程相减得公共弦的方程: 6x -6y +20=0,即3x -3y +10=0.例4求过点A(0,6)且与圆C :x 2+y 2+10x +10y =0切于原点的圆的方程.分析:如下图.所求圆经过原点和A(0,6),且圆心应在圆的圆心与原点的连线上.根据这三个条件可确定圆的方程.解:将圆C 化为标准方程,得(x +5)2+(y +5)2=50,那么圆心为C(-5,-5),半径为5 2.所以经过此圆心和原点的直线方程为x -y =0.设所求圆的方程为(x -a)2+(y -b)2=r 2.由题意,知O(0,0),A(0,6)在此圆上,且圆心M(a ,b)在直线x -y =0上,那么有⎩⎪⎨⎪⎧0-a 2+0-b 2=r 2,0-a 2+6-b 2=r 2,a -b =0,解得⎩⎨⎧a=3,b =3,r =3 2.于是所求圆的方程是(x -3)2+(y -3)2=18.点评:求圆的方程,一般可从圆的标准方程和一般方程入手,至于选择哪一种方程形式更恰当,要根据题目的条件而定,总之要让所选择的方程形式使解题过程简单.变式训练求经过点A(4,-1),且与圆C :(x +1)2+(y -3)2=5相外切于点B(1,2)的圆的方程.解:如下图,设所求的圆C′的方程为(x -a)2+(y -b)2=R 2.因为C′既在弦AB 的垂直平分线上,又在直线BC 上,AB 中垂线方程为x -y -2=0,BC 所在直线的方程为x +2y -5=0,所以,圆心C′的坐标应满足方程组⎩⎪⎨⎪⎧a -b -2=0,a +2b -5=0.解得a =3,b =1.因为所求圆C′过点A(4,-1),所以(4-3)2+(-1-1)2=R 2=5.所以,所求圆的方程为(x -3)2+(y -1)2=5.知能训练1.在(x +k)2+(y +2k +5)2=5(k +1)2(k≠-1)所表示的一切圆中,任意两圆的位置关系是( )A .相切或相交B .相交C .相切D .内切或相交 答案:C2.圆x 2+y 2+m =0与圆x 2+y 2-6x +8y =0没有公共点,那么实数m 的取值X 围为( ) A .-10<m<0 B .-100<m<-10 C .m<-100 D . 答案:C3.半径为5且与圆x 2+y 2-6x +8y =0相切于原点的圆的方程是________.答案:x 2+y 2+6x -8y =04.一圆过两圆x 2+y 2+6x -3=0和x 2+y 2-6y -3=0的交点,圆心在直线x +y +6=0上,求此圆的方程.答案:x 2+y 2+9x +3y -3=05.求圆心在直线x -y -4=0上,且经过两圆x 2+y 2-4x -3=0和x 2+y 2-4y -3=0的交点的圆的方程.解:设经过两圆的交点的圆的方程为x 2+y 2-4x -3+λ(x 2+y 2-4y -3)=0(λ≠-1),那么其圆心坐标为(21+λ,2λ1+λ).∵所求圆的圆心在直线x -y -4=0上,∴21+λ-2λ1+λ-4=0,λ=-13.∴所求圆的方程为x 2+y 2-6x +2y -3=0.拓展提升求经过原点,且过圆x 2+y 2+8x -6y +21=0和直线x -y +5=0的两个交点的圆的方程.解法一:由⎩⎪⎨⎪⎧x 2+y 2+8x -6y +21=0,x -y +5=0,求得交点(-2,3)或(-4,1).设所求圆的方程为x 2+y 2+Dx +Ey +F =0.因为(0,0),(-2 3),(-4,1)三点在圆上,所以⎩⎪⎨⎪⎧F =0,4+9-2D +3E +F =0,16+1-4D +E +F =0,解得⎩⎪⎨⎪⎧F =0,E =-95,D =195.所以所求圆的方程为x 2+y 2+195x -95y =0.解法二:设过交点的圆系方程为x 2+y 2+8x -6y +21+λ(x-y +5)=0(λ为参数). 将原点(0,0)代入上述方程得λ=-215.那么所求方程为x 2+y 2+195x -95y =0.课堂小结本节课学习了:利用方程判断两圆位置关系,解决与两圆有关的问题.作业本节练习A 1,2题.设计感想这堂课是建立在初中已经对圆与圆的位置关系有个粗略地了解的基础上,对这个位置关系的进一步深化,而且前一堂课学习过直线与圆的位置关系,圆与圆的位置关系的研究和直线与圆的位置关系的研究方法是类似的,所以可以用类比的思想来引导学生自主地探究圆与圆的位置关系.作为解析几何的一堂课,判断圆与圆的位置关系,表达的正是解析几何的思想:用代数方法处理几何问题,用几何方法处理代数问题.所以在教材处理上,对判断两圆位置关系用了几何方法,使学生对解析几何的本质有所了解.备课资料圆的参数方程一般地,在取定的坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f t ,y =gt.①并且对于t 的每一个允许值,由方程①所确定的点M(x ,y)都在一条曲线上,那么方程组①就叫这条曲线的参数方程,联系x ,y 之间的关系的变数叫做参变数,简称参数.参数方程中的参数可以是有物理、几何意义的变数,也可以是没有明显意义的变数.相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程.参数方程能把曲线上的点坐标通过参数直接地写出来,因此,能比较清楚地说明曲线上点的坐标的特点,尤其是借助于参数方程,可以使有的问题变得容易解决.这也正是在解有关问题时,将普通方程化为参数方程来解的原因.当然在解答有关问题时,根据问题的需要,有时也将参数方程化为普通方程,比如研究有关曲线的性质时,由于我们对普通方程下曲线性质比较熟悉,这时,常把曲线参数方程化为普通方程来研究问题.圆的参数方程参数方程:⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rsinθ.其中,θ为参数,圆心为(a ,b),r 为半径.需注意的两点:(1)标准方程含有a ,b ,r ,当a ,b ,r 确定下来时,圆的参数方程才唯一地确定下来,确定圆的参数方程同样需要三个独立条件.(2)要掌握圆的标准方程(x -a)2+(y -b)2=r 2与参数方程⎩⎪⎨⎪⎧x =a +rcosθ,y =b +rcosθ(θ为参数)之间的互化.。
2.2.3 圆与圆的位置关系A级基础巩固1.两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是( )A.相离B.相交C.内切D.外切解析:圆C1:x2+y2=9的圆心为C1(0,0),半径长为r1=3;圆C2:x2+y2-8x+6y+9=0化为(x-4)2+(y+3)2=16,圆心为C2(4,-3),半径长为r2=4,圆心距|C1C2|=42+(-3)2=5.因为|r1-r2|<|C1C2|<r1+r2=3+4,所以两圆相交.答案:B2.已知0<r<2+1,则两圆x2+y2=r2与(x-1)2+(y+1)2=2的位置关系是( ) A.外切 B.相交 C.外离 D.内含解析:设圆(x-1)2+(y+1)2=2的圆心为O′,则O′(1,-1).圆x2+y2=r2的圆心O(0,0),两圆的圆心距离d OO′=12+(-1)2= 2.显然有|r-2|<2<2+r.所以两圆相交.答案:B3.两圆x2+y2-6x+16y-48=0与x2+y2+4x-8y-44=0的公切线条数为( )A.4 B.3 C.2 D.1解析:⊙O1为(x-3)2+(y+8)2=121,O1(3,-8),r=11,⊙O2为(x+2)2+(y-4)2=64,O2(-2,4),R=8,所以|O1O2|=(3+2)2+(-8-4)2=13.所以r-R<|O1O2|<R+r.所以两圆相交.所以公切线有2条.答案:C4.(2014·湖南卷)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( ) A.21 B.19 C.9 D.-11解析:将圆C2的方程化为标准方程,利用圆心距等于两圆半径之和求解.圆C2的标准方程为(x-3)2+(y-4)2=25-m.又圆C1:x2+y2=1,所以|C1C2|=5.又因为两圆外切,所以5=1+25-m,解得m=9.答案:C5.半径长为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A .(x -4)2+(y -6)2=6B .(x ±4)2+(y -6)2=6C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:因为半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6. 再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.答案:D6.圆x 2+y 2=50与圆x 2+y 2-12x -6y +40=0公共弦长为( ) A. 5 B. 6 C .2 5 D .2 6解析:x 2+y 2=50与x 2+y 2-12x -6y +40=0作差,得两圆公共弦所在的直线方程为2x +y -15=0,圆x 2+y 2=50的圆心(0,0)到2x +y -15=0的距离d =35,因此,公共弦长为2(52)2-(35)2=2 5.答案:C7.若圆C 1:x 2+y 2+m =0与圆C 2:x 2+y 2-6x +8y =0没有公共点,则实数m 的取值范围是________.解析:因为圆C 1以原点为圆心,而圆C 2过原点,所以两圆无公共点必有圆C 2内含于圆C 1,从而-m >100,即m <-100.答案:(-∞,-100)8.圆x 2+y 2-2x -1=0关于直线x -y +3=0对称的圆的方程是________.解析:已知圆方程为(x -1)2+y 2=2,则该圆圆心关于直线x -y +3=0的对称点为(-3,4),半径也是 2.答案:(x +3)2+(y -4)2=29.过两圆x 2+y 2-x -y -2=0与x 2+y 2+4x -4y -8=0的交点和点(3,1)的圆的方程是________.解析:设所求圆方程为(x 2+y 2-x -y -2)+λ(x 2+y 2+4x -4y -8)=0,又过点(3,1)代入求出λ=-25. 答案:x 2+y 2-133x +y +2=0 10.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公切线有________条.解析:易判知两圆相外切,故有3条公切线.答案:311.已知圆C 1:x 2+y 2+4x -4y -1=0与圆C 2:x 2+y 2-2x +2y -7=0相交于A ,B 两点,求公共弦AB 的长.解:由方程⎩⎪⎨⎪⎧x 2+y 2+4x -4y -1=0,x 2+y 2-2x +2y -7=0,消去二次项得6x -6y +6=0,即x -y +1=0为所求的公共弦AB 所在的直线的方程.圆C 1即:(x +2)2+(y -2)2=9,所以C 1(-2,2)到直线AB 的距离d =|-2-2+1|2=32. 又圆C 1半径r =3,故弦长|AB |=2 32-322=3 2. B 级 能力提升12.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是( )A .5B .1C .35-5D .35+5 解析:圆C 1:x 2+y 2-8x -4y +11=0,即(x -4)2+(y -2)2=9,圆心为C 1(4,2);圆C 2:x 2+y 2+4x +2y +1=0,即(x +2)2+(y +1)2=4,圆心为C 2(-2,-1),两圆相离,|PQ |的最小值为|C 1C 2|-(r 1+r 2)=35-5.答案:C13.若直线mx +2ny -4=0始终平分圆x 2+y 2-4x -2y +4=0的周长,则mn 的最大值是________.解析:由直线mx +2ny -4=0始终平分圆x 2+y 2-4x -2y +4=0的周长,知直线过圆的圆心(2,1),所以2m +2n -4=0,m +n =2.所以mn =m (2-m )=-(m -1)2+1≤1.答案:114.一束光线从点A (-1,1)出发经x 轴反射,到达圆C :(x -2)2+(y -3)2=1上一点的最短路程是________. 解析:圆C :(x -2)2+(y -3)2=1.关于x 轴的对称圆C ′:(x -2)2+(y +3)2=1.所以A (-1,1)到C ′的圆心C ′(2,-3)的距离|AC ′|=5.所以从A 发出的光线经x 轴反射到圆C 上一点的最短距离等于A 到圆C ′的圆心C ′的距离减去半径长1.即d min =5-1=4.答案:415.求圆C 1:x 2+y 2+2kx +k 2-1=0与圆C 2:x 2+y 2+2(k +1)y +k 2+2k =0的圆心距的最小值及相应的k 值,并指出此时两圆的位置关系.解:两圆的圆心C 1(-k ,0),C 2(0,-k -1),所以圆心距|C 1C 2|=k 2+(k +1)2=2k 2+2k +1,当k =-12时,C 1C 2有最小值22. 此时,两圆的方程为C 1:⎝ ⎛⎭⎪⎫x -122+y 2=1, C 2:x 2+⎝ ⎛⎭⎪⎫y +122=1,由|r 1-r 2|<d <r 1+r 2,可知两圆相交. 16.已知两定圆O 1:(x -1)2+(y -1)2=1,圆O 2:(x +5)2+(y +3)2=4,动圆P 恒将两定圆的周长平分.试求动圆圆心P 的轨迹方程.解:设动圆P 的方程为(x -a )2+(y -b )2=r 2,即x 2+y 2-2ax -2by +a 2+b 2-r 2=0.将此方程分别与圆O 1,圆O 2的方程相减得公共弦所在的直线方程为:(2-2a )x +(2-2b )y +a 2+b 2-r 2-1=0.(10+2a )x +(6+2b )y +30-a 2-b 2+r 2=0.由于圆P 平分两定圆的周长,所以公共弦分别过两圆圆心,从而有:⎩⎪⎨⎪⎧-2a -2b +3+a 2+b 2=r 2,10a +6b +a 2+b 2+38=r 2. 消去r 2得:12a +8b +35=0.用(x ,y )替换(a ,b ),得点P 的轨迹方程为:12x +8y +35=0.。