人教版七年级下册第五章讲义
- 格式:doc
- 大小:649.00 KB
- 文档页数:36
第五章相交线与平行线5.1相交线5.1.1相交线有关概念邻补角:假如两个角有一条公共边,它们的另一边互为反向延长线,那么这两个角互为邻补角。
对顶角:假如一个角的两边是另一个角的两边的反向延长线,那么这两个角互为对顶角。
对顶角的性质: 对顶角相等.5.1.2垂线有关概念1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线相互垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。
从垂直的定义可知,推断两条直线相互垂直的关键:只要找到两条直线相交时四个交角中一个角是直角。
2 垂直的表示:1)图形:2)文字:a、b相互垂直, 垂足为O3)符号:a⊥b或b⊥a,若要强调垂足,则记为:a⊥b, 垂足为O 3.垂直的书写形式:如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O。
3 书写形式:①断定:∵∠AOD=90°(已知)∴AB⊥CD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°。
书写形式:②性质:∵ AB⊥CD (已知)∴∠AOD=90°(垂直的定义) (∠AOC=∠BOC=∠BOD=90°)4.垂线的性质(1)过一点有且只有一条直线与已知直线垂直. 垂线的性质(2)连接直线外一点与直线上各点的全部线段中,垂线段最短或说成垂线段最短直线外一点到这条直线的垂线段的长度,叫做点到直线的间隔。
5.1.3同位角、内错角、同旁内角5.2平行线及其断定5.2.1平行线有关概念1.平行线的定义:在同一平面内不相交的两条直线叫做平行线。
2.平行线的表示:我们通常用符号“//”表示平行。
同一平面内的两条不重合的直线的位置关系只有两种:相交或平行3.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
假如两条直线都和第三条直线平行,那么这两条直线也相互平行假如a//c, b//c;那么a//b假如两条直线都垂直于第三条直线,那么这两条直线相互平行.假如a⊥c, a⊥b;那么b//c 5.2.25.2.2平行线的断定有关概念一般地,断定两直线平行有以下的方法:1.两条直线被第三条所截,假如同位角相等,那么这两条直线平行.简洁地说,同位角相等,两直线平行.2.两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行. 简洁说成:内错角相等,两直线平行.3.两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行. 简洁说成:同旁内角互补,两直线平行.5.3 平行线的性质5.3.1 平行线的性质1.平行线的性质1两条平行线被第三条直线所截,同位角相等. 简写为:两直线平行,同位角相等.2.平行线的性质2两条平行线被第三条直线所截,内错角相等. 简写为:两直线平行,内错角相等.3.平行线的性质3两条平行线被第三条直线所截,同旁内角互补. 简写为:两直线平行,同旁内角互补.5.3.2命题、定理推断一件事情的语句叫做命题。
课题:5.1.1 相交线学习目标:1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3、通过辨别对顶角与邻补角,培养识图的能力。
学习重点:邻补角和对顶角的概念及对顶角相等的性质。
学习难点:在较复杂的图形中准确辨认对顶角和邻补角。
学习过程:一、学前准备填空:①两个角的和是,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。
②同角或的补角。
二、探索与思考(一)邻补角、对顶角1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角逐渐变小,剪刀刃之间的角度也相应。
我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。
2、探索活动:①任意画两条相交直线,在形成的四个角(∠1,∠2,∠3,∠4)中,两两相配共能组成对角。
分别是。
②分别测量一下各个角的度数,是否发现规律?你能否把他们分类?完成教材中2页表格。
③再画两条相交直线比较。
图11、归纳:邻补角、对顶角定义邻补角。
两条直线相交所构成的四个角中,有公共顶点的两个角是对顶角。
2、总结:①两条直线相交所构成的四个角中,邻补角有对。
对顶角有对。
②对顶角形成的前提条件是两条直线相交......。
5、对应练习:①下列各图中,哪个图有对顶角?B B B AC D C D C DA AB B B (A )C D C A C D A D(二)邻补角、对顶角的性质1、邻补角的性质:邻补角 。
注意:邻补角是互补的一种特殊的情况,数量上 ,位置上有一条 。
2、对顶角的性质:完成推理过程如图,∵∠1+∠2 = ,∠2+∠3 = 。
(邻补角定义)∴∠1=180°- ,∠3 =180°- (等式性质)∴∠1=∠3 (等量代换)或者∵∠1与∠2互补,∠3与∠2互补(邻补角定义), ∴∠l=∠3(同角的补角相等).由上面推理可知,对顶角的性质:对顶角 。
三、 应用(一)例 如图,已知直线a 、b 相交。
∠1=40°,求∠2、∠3、∠4的度数解:∠3=∠1=40°( )。
∠2=180°-∠1=180°-40°=140°( )。
∠4=∠2=140°( )。
你还有别的思路吗?试着写出来(二)变式训练:把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.变式1:把∠l=40°变为∠2-∠1=40° 变式2:把∠1=40°变为∠2是∠l 的3倍变式3:把∠1=40°变为∠1 :∠2=2:9 四 自我检测: (一)选择题:1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°O E C B A cb a 3412OFE D CB A O DCBA(1) (2) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为( ) A.62° B.118° C.72° D.59° (二)填空题:1. 如图3所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.34D CBA 12OFE D CB A ODC BA12(3) (4) (5) 2.如图3所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图4所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.4.如图5所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____. 5、已知∠1与∠2是对顶角,∠1与∠3互为补角,则∠2+∠3= 。
五、拓展延伸1、如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.3、如图所示, 直线AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE 的 度数.变式训练:(1)直线AB,CD 相交于点O,OE 平分∠AOD, ∠BOD-∠BOC=50°,求∠EOC 的度数。
A BCDO (2)直线AB,CD 相交于点O,若∠AOD=40°,∠AOE:∠EOD=2:3,求∠EOD 的度数。
3、两条直线交于一点,有几对对顶角? 三条直线交于一点,有几对对顶角? 四条直线交于一点,有几对对顶角? X 条直线交于一点,有几对对顶角?课题:5.1.2 垂线学习目标:1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
学习重点:垂线的定义及性质。
学习难点:垂线的画法 学习过程: 一、学前准备填空:①如果∠α与∠β互为余角,∠α=37°,那么∠β= 。
②已知∠1与∠2互为余角,∠1与∠3互为余角,那么∠2与∠3的关系是 。
二、探索与思考 (一)垂线的定义1、观察思考:转动相交线模型,观察两条直线所成的夹角的变化。
当夹角变化到 °时,就是我们今天要研究的两条直线垂直。
2、定义:两条直线相交所成的四个角中,有一个角是 时,这两条直线就互相垂直。
其中一条直线叫做另一条直线的 ,它们的交点叫做 。
3、符号表示:①如果直线AB 、CD 互相垂直,记作AB⊥CD,垂足为O 。
②由两条直线垂直,可知四个角为直角。
记为∵AB⊥CD(已知)∴∠AOD=90°(垂C B A 直定义)由两条直线交角为直角,可知两条直线互相垂直。
记为∵∠AOD=90°(已知)∴AB⊥CD (垂直定义)4、总结:①垂直是相交。
是相交的一种特殊情况。
②垂直是一种相互关系,即a⊥b,同时b⊥a③当提到线段与线段,线段与射线,射线与射线,射线与直线的垂直情况时,是指它们所在的直线互相垂直。
5、生活中的垂直关系:日常生活中,两条直线互相垂直很常见,你能举出几个例子吗?(二)垂线的性质一1、垂线的画法有两种:利用 或者 。
2、垂线性质: 。
(三)垂线的性质二1、思考:在灌溉时,要把河中的水引到农田P 处,如何挖渠能使渠道最短?2、探究:上面思考问题可以转化为数学问题:“已知直线l 和直线外一点P ,连接点P 到直线l 上各点O,A 1,A 2,A 3…,其中 PO⊥l(我们称PO 为点P 到直线l 的垂线段)。
请你比较线段PO ,PA 1,PA 2,PA 3…的长短,哪一条最短?结论: 。
简记为: 。
2、对应练习:①修一条公路将村庄A 、B 与公路MN 连接起来,怎样修才能使所修的公路最短?画出线路图,并说明理由。
NM(四)点到直线的距离: 1、定义:直线外一点到这条直线的 ,叫做点到直线的距离。
2、注意:定义中说的是“垂线段的长度..”,而不是“垂线段”。
因为,距离是一个数量,而“垂线段”是指一个具体的几何图形。
3、对应练习:如图,∠BCA=90°,CD⊥AB,垂足为D ,则下列结论中正确的个数为( )①AC 与BC 互相垂直;②CD 与BC 互相垂直;③点B 到AC 的垂线段是线段AC ;④点C 到AB 的距离是线段CD ;⑤线段AC的长度是点A 到BC 的距离;⑥线段AC 是点A 到BC 的距离。
A.2 B.3 C.4 D.5三、自我检测:A ●B ●ODCA (一)选择题:1.如图1所示,下列说法不正确的是( )A.点B 到AC 的垂线段是线段AB;B.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段;D.线段BD 是点B 到AD 的垂线段DCBAD CBA(1) (2) 2.如图1所示,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条 3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=a cm, BC=b cm ,则BD 的范围是( ) A.大于a cm B.小于b cmC.大于a cm 或小于b cmD.大于b cm 且小于a cm 5.到直线L 的距离等于2cm 的点有( )A.0个B.1个;C.无数个D.无法确定6.点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到 直线m 的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm(二)填空题:1、如图4所示,直线AB 与直线CD 的位置关系是_______,记作_______,此时, ∠AOD=∠_______=∠_______=∠_______=90°.2、如图5,AC⊥BC,C 为垂足,CD⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点的距离是_________.CBAFE D C B A(2)ODCBA E(3)ODCB A (4) (5) (6) (7) (8)B DOF D CB A 3、如图6,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为_________________. 4、如图7,AO⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________. 5、如图8,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.五、拓展延伸1、已知,如图,∠AOD 为钝角,OC⊥OA,OB⊥OD 求证:∠AOB=∠COD证明:∵OC⊥OA,OB⊥OD( ) ∴∠AOB+∠1= ,∠COD+∠1=90°(垂直的定义)∴∠AOB=∠COD( )变式训练:如图OC⊥OA,OB⊥OD ,O 为垂足,若∠BOC=35°,则∠AOD=________.2、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AO C.试判断OD 与OE 的位置关系.E DC B3、如图,分别画出点A 、B 、C 到BC 、AC 、AB 的垂线段,再量出A 到BC 、点B 到AC 、 点C 到AB 的距离.CBA4、如图,直线AB,CD 相交于O,OE⊥CD,OF⊥AB,∠DOF=65°,求∠BOE 和∠AOC 的度数。