09年中考数学一轮复习专题训练31
- 格式:doc
- 大小:120.00 KB
- 文档页数:4
考向09 一元一次方程【考点梳理】1.一元一次方程的一般式:ax+b=0(x 是未知数,a 、b 是常数,且a ≠0).2.一元一次方程解法的一般步骤:整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… 得到方程的解.3.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.【题型探究】题型一:一元一次方程定义1.(2021·全国·九年级专题练习)关于x 的一元一次方程2224a x m --+=的解为1x =,则a m +的值为( )A .9B .8C .7D .52.(2022·广东·九年级专题练习)已知关于x 的方程()()22426k x k x k -+-=+是一元一次方程,则方程的解为( )A .-2B .2C .-6D .-13.(2019·福建漳州·校联考中考模拟)若x =2是关于x 的一元一次方程ax -2=b 的解,则3b -6a +2的值是( ).A .-8B .-4C .8D .4题型二:一元一次方程方程的解法4.(2022·贵州黔西·统考中考真题)小明解方程12123x x +--=的步骤如下:解:方程两边同乘6,得()()31122x x +-=-①去括号,得33122x x +-=-②移项,得32231x x -=--+③合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( )A .①B .②C .③D .④5.(2023·河北·九年级专题练习)解方程221123x x --=-,嘉琪写出了以下过程:①去分母,得3(2)62(21)x x -=--;②去括号,得36642x x -=--;③移项、合并同类项,得710x =;④系数化为1,得107x =,开始出错的一步是( ) A .① B .② C .③ D .④6.(2022·重庆南岸·统考一模)解一元一次方程()()11151753x x +=--的过程如下. 解:去分母,得()()3151557x x +=--. ①去括号,得3451557x x +=-+. ②移项、合并同类项,得823x =-. ③化未知数系数为1,得823x =-. ④ 以上步骤中,开始出错的一步是( )A .①B .②C .③D .④题型三:配套 工程和销售问题7.(2022·广西南宁·南宁二中校考三模)用200张彩纸制作圆柱,每张彩纸可制作圆柱侧面20个或底面60个,一个圆柱侧面与两个底面组成一个圆柱.为使制作的圆柱侧面和底面正好配套,设把x 张彩纸制作圆柱侧面,则方程可列为( )A .6020(200)x x =-B .20260(200)x x =⨯-C .26020(200)x x ⨯=-D .22060(200)x x ⨯=-8.(2021·新疆乌鲁木齐·乌鲁木齐市第六十八中学校考三模)某工程甲单独完成要25天,乙单独完成要20天.若乙先单独干10天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .101012025x ++=B .101012520x ++=C .101012520x -+=D .101012520x -+= 9.(2022·贵州遵义·统考二模)如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()A .72.2元B .78元C .80元D .96.8元题型四:比赛 积分和数字问题10.(2022·贵州铜仁·统考中考真题)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .1711.(2022·福建·模拟预测)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.设该店有x 间客房,则所列方程为( )A .7x-7=9x+9B .7x +9=9x+7C .7x +7=9x ﹣9D .7x-7=9x ﹣912.(2022·湖南长沙·模拟预测)《九章算术》一书中记载了一道题:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?题意是:有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.则买鸡的人数和鸡的价钱各是( )A .8人,61文B .9人,70文C .10人,79文D .11人,110文题型五:几何 和差倍和水电问题13.(2022·江苏南通·统考模拟预测)如图,矩形ABCD 中,8cm AB =,4cm BC =,动点E 和F 同时从点A 出发,点E 以每秒2cm 的速度沿A D →的方向运动,到达点D 时停止,点F 以每秒4cm 的速度沿A B C D →→→的方向运动,到达点D 时停止.设点F 运动x (秒)时,AEF △的面积为()2cm y ,则y 关于x 的函数的图象大致为( )A .B .C .D .14.(2022·福建南平·统考模拟预测)中国一本著名数学文献《九章算术》,书中出现了一个“共买鸡问题”,原文是:今有共买鸡,人出九,盈十一;人出六,不足十六,问人数、物价各几何?其题意是:有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.问买鸡的人数、鸡的价钱各是多少?设买鸡的人数为x ,则下面符合题意的方程是( )A .9+11616x x =-B .9+61611x x =+C .9+11616x x =+D .911616x x =+-15.(2018·四川绵阳·校联考中考模拟)滴滴快车是一种便捷的出行工具,计价规则如下表: 计费项目里程费 时长费 远途费 单价 1.8元/公里 0.3元/分钟 0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A .10分钟B .13分钟C .15分钟D .19分钟题型六:行程 比例和行程问题16.(2022·重庆璧山·统考一模)小明和爸爸从家里出发,沿同一路线到图书馆,小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店买水花费了5分钟,从商店出来后,爸爸的骑车速度比他之前的骑车速度增加60米/分钟,结果与小明同时到达图书馆.小明和爸爸两人离开家的路程s (米)与小明出发的时间t (分钟)之间的函数图像如图所示,则下列说法错误的是( )A .17a =B .小明的速度是150米/分钟C .爸爸从家到商店的速度是200米/分钟D .9t =时,爸爸追上小明17.(2023·福建泉州·泉州五中校考三模)明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注: 明代时 1 斤=16 两,故有“半斤八两”这个成语).设总共有 x 个人,根据题意所列方程正确的是( )A .7x - 4 = 9x +8B .7x +4 = 9x -8C .4879x x +-=D .4879x x -+= 18.(2019·湖北荆州·统考一模)在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A .23B .51C .65D .75题型七:一元一次方程的综合19.(2019·重庆·统考中考真题)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .6 20.(2020·江苏盐城·统考中考真题)把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .621.(2022·湖北宜昌·统考中考真题)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值; (3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【必刷基础】一、 单选题22.(2022·重庆沙坪坝·统考一模)若关于x 的方程25x a +=的解是2x =,则a 的值为( )A .9-B .9C .1-D .123.(2022·辽宁营口·统考中考真题)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A .24015015012x x +=⨯B .24015024012x x -=⨯C .24015024012x x +=⨯D .24015015012x x -=⨯24.(2022·江苏苏州·统考中考真题)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是()A.60100100x x=-B.60100100x x=+C.10010060x x=+D.10010060x x=-25.(2022·云南昆明·云南师范大学实验中学校考三模)若整数a使关于x的方程21x a+=的解为负数,且使关于的不等式组()122113x axx⎧-->⎪⎪⎨+⎪-≥⎪⎩无解,则所有满足条件的整数a的值之和是()A.6 B.7 C.9 D.1026.(2022·湖南长沙·长沙市湘郡培粹实验中学校考三模)周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,张老师和8个学生跳舞……依次下去,一直到何老师,他和参加跳舞的所有学生跳过舞,这个晚会上参加跳舞的学生人数是()A.15 B.14 C.13 D.1227.(2022·山东济宁·济宁市第十三中学校考一模)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只;(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入-投入总成本).28.(2022·宁夏吴忠·校考一模)2020年,一场突如其来的疫情席卷全国,给人民生命、财产造成巨大损失,但英勇的中国人民不畏艰难,众志成城,最终取得了抗击疫情的阶段性胜利,疫情防控初期,某药店库存医用外科口罩10000副,进价2元/副,由于市民疯狂抢购,量价齐升,5天销售一空,通过5天的销售情况进行统计,得到数据如下:(1)求该药店这5天销售口罩的平均利润.(2)通过对上面表格分析,发现销售量y (副)与单价x (元/副)存在函数关系,求y 与x 的函数关系式.(3)该药店购进第二批口罩20000副,进价2.5元/副,虽然畅销,但被物价部门限价,每副口罩销售价为m 元,销售一半后,该药店响应国家号召,将剩余口罩全部捐献给了抗疫定点医院,若在两批口罩销售中,药店不亏也不赚,则m 的值是多少?【必刷培优】一、单选题29.(2022·云南德宏·统考模拟预测)若关于x 的方程()6324x k -=-的解为非负整数,且关于x 的不等式组()23432x x k x x ⎧-+≤-⎪⎨-≤⎪⎩无解,则符合条件的整数k 的值可以为( ) A .0 B .3 C .4 D .630.(2023·全国·九年级专题练习)解方程2233522x x x x x--+=--,以下去分母正确的是( ) A .22335x x x ---=B .22335x x x --+=C .()223352x x x x ---=-D .()223352x x x x --+=-31.(2022·广西钦州·统考模拟预测)《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有人共买鹅,人出九,盈十一;人出六,不足十六,人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.设买鹅的人数有x 人,可列方程为( )A .911616x x -=-B .911616x x -=+C .911616x x +=+D .911616x x +=-32.(2022·河北·统考二模)数学实践活动课上,陈老师准备了一张边长为a 和两张边长为()b a b >的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD 内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l .陈老师说,如果126l l -=,求a 或b 的值.下面是四位同学得出的结果,其中正确的是( )A .甲:6a =,4b =B .乙:6a =,b 的值不确定C .丙:a 的值不确定,3b =D .丁:a ,b 的值都不确二、填空题33.(2022·山东济南·山东师范大学第二附属中学校考模拟预测)已知224x x +=,且224120ax ax +-=,则22a a +的值为______.34.(2022·江苏扬州·校考二模)我国古代名著《九章算术》中有一问题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”假设经过x 天相逢,则可列方程为_____.35.(2022·重庆大渡口·重庆市第三十七中学校校考二模)青团是清明节的一道极具特色的美食,据调查,广受消费者喜欢的口味分别是:红豆青团、肉松青团、水果青团,故批发商大量采购红豆青团、肉松青团、水果青团,为了获得最大利润,批发商需要统计数据,更好地进货.3月份批发商统计销量后发现,红豆青团、肉松青团、水果青团销量之比为2:3:4,随着市场的扩大,预计4月份青团总销量将在3月份基础上有所增加,其中水果青团增加的销量占总增加的销量的15,则水果青团销量将达到4月份总销量的13,为使红豆青团、肉松青团4月份的销量相等,则4月份肉松青团还需要增加的销量与4月份总销量之比为_____________.36.(2022·四川攀枝花·统考中考真题)如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程1103x -=是关于x 的不等式组2220x n n x -≤⎧⎨-<⎩的关联方程,则n 的取值范围是 ___________.37.(2022·北京西城·校考模拟预测)我校学生会正在策划一次儿童福利院的慰问活动.为了筹集到600元活动资金,学生会计划定制一批穿校服的毛绒小熊和带有校徽图案的钥匙扣,表格中有这两种商品的进价和售价.另外,若将一个小熊和一个钥匙扣组成一份套装出售,则将售价打九折.为了更好的制定进货方案,学生会利用抽样调查的方式统计了校内学生对商品购买意向的百分比情况(见表格),若按照这个百分比情况定制商品,至少定制小熊______个和钥匙扣______个,才能筹集到600元资金(即获得600元利润).38.(2022·广西·统考中考真题)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.三、解答题39.(2022·福建泉州·校考三模)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额.注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000(180%)60260⨯-+=(元).(1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(1250)x >的商品,那么该顾客获得的优惠额为多少?(用含有x 的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(1250)x >的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为______元.40.(2022·河北邯郸·校考三模)如图,数轴上a 、b 、c 三个数所对应的点分别为A 、B 、C ,已知b 是最小的正整数,且a 、c 满足2(6)20c a -++=.(1)①直接写出数a、c的值,;②求代数式222+-的值;a c ac(2)若将数轴折叠,使得点A与点C重合,求与点B重合的点表示的数;(3)请在数轴上确定一点D,使得AD=2BD,则D表示的数是.41.(2022·江苏镇江·统考中考真题)某地交警在一个路口对某个时段来往的车辆的车速进行监测,统计数据如下表:车速(km/h)40 41 42 43 44 45频数 6 8 15 a 3 2其中车速为40、43(单位:km/h)的车辆数分别占监测的车辆总数的12%、32%.(1)求出表格中a的值;(2)如果一辆汽车行驶的车速不超过40km/h的10%,就认定这辆车是安全行驶.若一年内在该时段通过此路口的车辆有20000辆,试估计其中安全行驶的车辆数.42.(2022·广西玉林·统考二模)疫情期间,消毒液、口罩成为了咱们的生活必需品.淘宝某医用器械药房推出2种口罩进行销售,医用一次性口罩2.5元/个,医用外科口翠3元/个.(1)某地某学校购进两种口罩25000个,共花费70000元,请问学校购买医用外科口罩多少个?(2)因为4月份疫情逐渐过去,但口罩的市场需求盘依旧旺盛,该药房决定用320000元再次购进一批口罩进行销售.医用一次性口罩100个/盒,每盒120元,医用外科口罩50个/盒,每盒100元.要求购进的医用外科口罩个数不超过医用一次性口罩的2.6倍,但不低于医用一次性口罩的1.9倍.若这批口罩全部销售完毕,为使获利最大,该药房应如何进货?最大获利为多少元?43.(2021·贵州遵义·校考模拟预测)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是______千米/小时;轿车的速度是______千米/小时.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)求货车出发多长时间两车相距90千米.参考答案:1.C【分析】先根据一元一次方程的定义可得出a 的值,再根据一元一次方程的解定义可求出m 的值,然后代入求值即可. 【详解】方程2224a x m --+=是关于x 的一元一次方程,21a ∴-=,解得3a =,∴方程为224x m -+=,又1x =是方程224x m -+=的解,2124m ∴⨯-+=,解得4m =,则347a m +=+=,故选:C .【点睛】本题考查了一元一次方程的定义、以及解定义,掌握理解一元一次方程的定义是解题关键.2.D【分析】利用一元一次方程的定义确定出k 的值,进而求出k 的值即可.【详解】解:∵方程()()22426k x k x k -+-=+是关于x 的一元一次方程,∴24020k k ⎧-=⎨-≠⎩, 解得:k =-2,方程为-4x =-2+6,解得:x =-1,故选:D .【点睛】此题考查了解一元一次方程,以及一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.3.B【分析】根据已知条件与两个方程的关系,可知2a- 2= b ,即可求出3b-6a 的值,整体代入求值即可.【详解】把x=2代入ax -2=b ,得2a- 2= b .所以3b-6a=-6.所以,3b -6a +2=-6+2=-4.故选B .【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.4.A【分析】按照解一元一次方程的一般步骤进行检查,即可得出答案.【详解】解:方程两边同乘6,得()()31622x x +-=-①∴开始出错的一步是①,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解决问题的关键.5.B【分析】解决此题应先去括号,再移项,移项时要注意符号的变化.【详解】在第②步,去括号得36642x x -=--,等式右边去括号时忘记变号,故选B .【点睛】解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1;在移项时要注意符号的变化,此题是形式较简单的一元一次方程.6.B【分析】检查解一元一次方程的解题过程,根据去分母,去括号,移项,合并同类项,系数华为1,找出出错的步骤,以及出错的原因.【详解】第②步出现错误,3451557x x +=-+. ②错误的原因是去括号时出现错误,应该改为:34515535x x +=-+.故选:B【点睛】此题考查了解一元一次方程,解方程去括号时,要注意不要漏乘括号里的每一项.7.D【分析】根据题意列出一元一次方程求解即可.【详解】解:设把x 张彩纸制作圆柱侧面,则有(200-x )张纸作圆柱底面,根据题意可得:22060(200)x x ⨯=-故选:D .【点睛】题目主要考查一元一次方程的应用,理解题意,列出方程是解题关键.8.D【分析】设甲、乙一共用x 天完成,根据题意,列出方程,即可求解.【详解】解:设甲、乙一共用x 天完成,根据题意得:101012520x -+=. 故选:D【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.9.C【分析】根据原价和售价的关系,列方程计算即可.【详解】解:设原价为x 元,由题意,得(1+10%)×95%·x =83.6,解得:x =80.故选:C .【点睛】此题考查了一元一次方程的应用—打折销售,解题的关键是确定等量关系列方程求解.10.B【分析】设小红答对的个数为x 个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可.【详解】解:设小红答对的个数为x 个,由题意得()52070x x --=,解得15x =,故选B .【点睛】本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键.11.C【分析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【详解】设该店有x 间客房,则7x+7=9x-9,故选:C.【点睛】本题考查了一元一次方程的应用,熟练掌握一元一次方程的解题方法是解题的关键.12.B【分析】买鸡的人数为x 人,根据“如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.”列出方程,即可求解.【详解】解:买鸡的人数为x 人,根据题意得:911616x x -=+ ,解得:9x = ,∴鸡的价钱为911991170x -=⨯-= ,答:买鸡的人数为9人,鸡的价钱为70文.故选:B【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.13.B【分析】由点的运动,可知点E 从点A 运动到点D ,用时2s ,点F 从点A 到点B ,用时2s ,从点B 运动到点C ,用时1s,从点C运动到点D,用时2s,y与x的函数图象分三段:①当0≤x≤2时,②当2<x≤3时,③当3<x≤5时,根据每种情况求出△AEF的面积.【详解】解:点E从点A运动到点D,用时2s,点F从点A到点B,用时2s,从点B运动到点C,用时1s,从点C 运动到点D,用时2s,∴y与x的函数图象分三段:①当0≤x≤2时,AE=2x,AF=4x,•2x•4x=4x2,∴y=12这一段函数图象为抛物线,且开口向上,由此可排除选项A和选项D;②当2<x≤3时,点F在线段BC上,AE=4,×4×8=16,此时y=12③当3<x≤5时,×4×(4+8+4−4x)=32−8x,由此可排除选项C.y=12故选:B.【点睛】本题考查了动点问题的函数图象,二次函数图象,三角形的面积,矩形的性质,根据题意理清动点的时间分段,并根据三角形的面积公式列出函数关系式是解题的关键,难度不大.14.D【分析】设买鸡的人数为x,根据鸡的价格不变,建立等量关系,列出相关方程即可.【详解】解:设买鸡的人数为x,则由题意有:-,=+x x911616故选:D.【点睛】本题考查了一元一次方程的实际应用,准确找到等量关系是解题的关键.15.D【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.16.D【分析】利用到商店时间+停留时间可确定A ,利用爸爸所用时间+2分与路程3300米可求小明速度可确定B ,利用设爸爸开始时车速为x 米/分,列方程求解即可确定C ,利用小明和爸爸行走路程一样,设t 分爸爸追上小明,列方程求解可知D .【详解】解:A .12517a +==,故A 正确,不合题意;B .小明的速度为330022150÷=米/分,故B 正确,不合题意;C .设爸爸开始时车速为x 米/分,()()1225603300x x -++=,解得200x =米/分,故爸爸从家到商店的速度为200米/分钟正确,不合题意;D .设y 分爸爸追上小明,()1502200y y +=,解得:6y =,故9t =时,爸爸追上小明,选项不正确,符合题意故选:D .【点睛】本题考查行程问题的函数图像,会看图像,能从中获取信息,掌握速度,时间与路程三者关系,把握基准时间是解题关键.17.B【分析】直接根据题中等量关系列方程即可.【详解】解:根据题意,7x +4 = 9x -8,故选:B .【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.18.B【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x ,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x ,因而这三个数的和一定是3的倍数.【详解】设中间的数是x ,则上面的数是x-7,下面的数是x+7,则这三个数的和是(x-7)+x+(x+7)=3x ,因而这三个数的和一定是3的倍数,则,这三个数的和都为3的倍数,观察只有51与75是3的倍数,但75÷3=25,25+7=32不符合题意,所以这三个数的和可能为51,故选B .。
专题09 反比例函数一、单选题1.(2022·天津)若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x=的图像上,则123,,x x x 的大小关系是( ) A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<2.(2022·云南)反比例函数y =6x的图象分别位于( )A .第一、第三象限B .第一、第四象限C .第二、第三象限D .第二、第四象限3.(2022·贵州贵阳)如图,在平面直角坐标系中有P ,Q ,M ,N 四个点,其中恰有三点在反比例函数()0ky k x =>的图象上.根据图中四点的位置,判断这四个点中不在函数k y x=的图象上的点是( )A .点PB .点QC .点MD .点N4.(2021·辽宁阜新)已知点()11,A x y ,()22,B x y 都在反比例函数1y x=-的图象上,且120x x <<,则1y ,2y 的关系是( ) A .12y y >B .12y y <C .120y y +=D .120y y -=5.(2021·广西梧州)如图,在同一平面直角坐标系中,直线y =t (t 为常数)与反比例函数y 14x=,y 21x =-的图象分别交于点A ,B ,连接OA ,OB ,则△OAB 的面积为( )A .5tB .52t C .52D .56.(2020·辽宁营口)反比例函数y =1x(x <0)的图象位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2020·广西贺州)在反比例函数2y x=中,当1x =-时,y 的值为( ) A .2B .2-C .12D .12-8.(2020·四川巴中)如图,一次函数y 1=ax +b (a ≠0)与反比例函数2ky x=(k ≠0,x >0)的交点A 坐标为(2,1),当y 1≤y 2时,x 的取值范围是( )A .0<x ≤2B .0<x <2C .x >2D .x ≥29.(2020·辽宁阜新)若()2,4A 与()2,B a -都是反比例函数(0)ky k x=≠图象上的点,则a 的值是( ) A .4B .4-C .2D .2-10.(2020·山东烟台)如图,正比例函数y 1=mx ,一次函数y 2=ax+b 和反比例函数y 3=kx的图象在同一直角坐标系中,若y 3>y 1>y 2,则自变量x 的取值范围是( )A .x <﹣1B .﹣0.5<x <0或x >1C .0<x <1D .x <﹣1或0<x <1 11.(2020·黑龙江大庆)已知正比例函数1y k x =和反比例函数2k y x=,在同一直角坐标系下的图象如图所示,其中符合120k k ⋅>的是( )A .△△B .△△C .△△D .△△12.(2020·山东淄博)如图,在直角坐标系中,以坐标原点O (0,0),A (0,4),B (3,0)为顶点的Rt△AOB ,其两个锐角对应的外角角平分线相交于点P ,且点P 恰好在反比例函数y =kx的图象上,则k 的值为( )A .36B .48C .49D .6413.(2020·山东威海)一次函数y ax a =-与反比例函数(0)ay a x=≠在同一坐标系中的图象可能是( ) A . B .C .D .14.(2020·黑龙江鹤岗)如图,正方形ABCD 的两个顶点B ,D 在反比例函数ky x=的图象上,对角线AC ,BD 的交点恰好是坐标原点O ,已知(1,1)B -,则k 的值是( )A .-5B .-4C .-3D .-115.(2020·湖南娄底)如图,平行于y 轴的直线分别交1k y x=与2ky x =的图象(部分)于点A 、B ,点C 是y轴上的动点,则ABC 的面积为( )A .12k k -B .()1212k k - C .21k k - D .()2112k k - 16.(2021·贵州黔西)对于反比例函数y =﹣5x,下列说法错误的是( )A .图象经过点(1,﹣5)B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大17.(2021·辽宁朝阳)如图,O 是坐标原点,点B 在x 轴上,在OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =kx(k ≠0)图象上,则k 的值( )A .﹣12B .﹣15C .﹣20D .﹣3018.(2021·湖南湘西)如图所示,小英同学根据学习函数的经验,自主尝试在平面直角坐标系中画出了一个解析式为21yx 的函数图象.根据这个函数的图象,下列说法正确的是( )A .图象与x 轴没有交点B .当0x >时0y >C .图象与y 轴的交点是1(0,)2-D .y 随x 的增大而减小19.(2021·辽宁大连)下列说法正确的是( ) △反比例函数2y x=中自变量x 的取值范围是0x ≠; △点()3,2P -在反比例函数6y x=-的图象上;△反比例函数3y x=的图象,在每一个象限内,y 随x 的增大而增大. A .△△B .△△C .△△D .△△△20.(2022·广西贺州)已知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A.B.C.D.21.(2022·吉林长春)如图,在平面直角坐标系中,点P在反比例函数kyx=(0k>,0x>)的图象上,其纵坐标为2,过点P作PQ//y轴,交x轴于点Q,将线段QP绕点Q顺时针旋转60°得到线段QM.若点M也在该反比例函数的图象上,则k的值为()AB C.D.422.(2022·黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数3yx=的图象上,顶点A在反比例函数kyx=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.1-D.2-23.(2022·山东潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是()A .海拔越高,大气压越大B .图中曲线是反比例函数的图象C .海拔为4千米时,大气压约为70千帕D .图中曲线表达了大气压和海拔两个量之间的变化关系24.(2022·四川内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l △y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣2225.(2022·湖南怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =1a x-(a >1)的图像于A 、B 两点,过点B 作BD △y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A .8B .9C .10D .1126.(2022·湖南邵阳)如图是反比例函数y =1x的图象,点A (x ,y )是反比例函数图象上任意一点,过点A 作AB △x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .12C .2D .3227.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =120BDC ∠=︒,BCD S =△()0ky x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-28.(2022·湖南郴州)如图,在函数()20=>y x x的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .1029.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >30.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x=>和()220ky k x =>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .931.(2022·湖南娄底)在平面直角坐标系中,O 为坐标原点,已知点(),1P m 、()1,Q m (0m >且1m ≠),过点P 、Q 的直线与两坐标轴相交于A 、B 两点,连接OP 、OQ ,则下列结论中成立的是( ) △点P 、Q 在反比例函数my x=的图象上;△AOB 成等腰直角三角形;△090POQ ︒<∠<︒;△POQ ∠的值随m 的增大而增大. A .△△△B .△△△C .△△△D .△△△32.(2021·山东青岛)已知反比例函数by x=的图象如图所示,则一次函数y cx a =+和二次函数2y ax bx c =++在同一直角坐标系中的图象可能是( )A .B .C .D .33.(2021·山东滨州)如图,在OAB 中,45BOA ∠=︒,点C 为边AB 上一点,且2BC AC =.如果函数()90y x x=>的图象经过点B 和点C ,那么用下列坐标表示的点,在直线BC 上的是( )A .(-2019,674)B .(-2020,675)C .(2021,-669)D .(2022,-670)34.(2021·西藏)如图.在平面直角坐标系中,△AOB 的面积为278,BA 垂直x 轴于点A ,OB 与双曲线y =kx相交于点C ,且BC △OC =1△2,则k 的值为( )A .﹣3B .﹣94C .3D .9235.(2021·山东淄博)如图,在平面直角坐标系中,四边形AOBD 的边OB 与x 轴的正半轴重合,//AD OB ,DB x ⊥轴,对角线,AB OD 交于点M .已知:2:3,AD OB AMD =的面积为4.若反比例函数ky x=的图象恰好经过点M ,则k 的值为( )A .275B .545C .585D .1236.(2020·西藏)如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x(x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .437.(2020·辽宁辽宁)如图,矩形ABCD 的顶点D 在反比例函数(0)k y x x=>的图象上,点(1,0)E 和点(0,1)F 在AB 边上,AE EF =,连接,//DF DF x 轴,则k 的值为( )A .B .3C .4D .38.(2020·辽宁朝阳)如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)ky x x=<的图象上,则k 的值为( )A .12-B .42-C .42D .21-39.(2020·内蒙古赤峰)如图,点B 在反比例函数6y x=(0x >)的图象上,点C 在反比例函数2y x =-(0x >)的图象上,且//BC y 轴,AC BC ⊥,垂足为点C ,交y 轴于点A ,则ABC 的面积为 ( )A .3B .4C .5D .640.(2020·吉林长春)如图,在平面直角坐标系中,点A 的坐标为()3,2,AB x ⊥轴于点B ,点C 是线段OB 上的点,连结AC .点P 在线段AC 上,且2=AP PC .函数()0ky x x=>的图象经过点P .当点C 在线段OB 上运动时,k 的取值范围是( )A .02k <≤B .233k ≤≤ C .232k ≤≤D .834k ≤≤41.(2020·山东威海)如图,点(,1)P m ,点(-2,)Q n 都在反比例函数4y x=的图象上,过点P 分别向x 轴、y 轴作垂线,垂足分别为点M ,N .连接OP ,OQ ,PQ .若四边形OMPN 的面积记作1S ,POQ △的面积记作2S ,则( )A .12:2:3S S =B .12:1:1S S =C .12:4:3S S =D .12:5:3S S =42.(2020·辽宁营口)如图,在平面直角坐标系中,△OAB 的边OA 在x 轴正半轴上,其中△OAB =90°,AO =AB ,点C 为斜边OB 的中点,反比例函数y =kx (k >0,x >0)的图象过点C 且交线段AB 于点D ,连接CD ,OD ,若S △OCD =32,则k 的值为( )A .3B .52C .2D .1二、填空题43.(2022·青海)如图,一块砖的A ,B ,C 三个面的面积之比是5:3:1,如果A ,B ,C 三个面分别向下在地上,地面所受压强分别为1P ,2P ,3P ,压强的计算公式为FP S=,其中P 是压强,F 是压力,S 是受力面积,则1P ,2P ,3P 的大小关系为______(用小于号连接).44.(2022·广西河池)如图,点P (x ,y )在双曲线ky x=的图象上,P A △x 轴,垂足为A ,若S △AOP =2,则该反比例函数的解析式为 _____.45.(2022·辽宁)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.46.(2022·湖北武汉)在反比例1k y x-=的图象的每一支上,y 都随x 的增大而减小,且整式24x kx -+是一个完全平方式,则该反比例函数的解析式为___________. 47.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB △y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且△ABC 的面积为4,则k =______________.48.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.49.(2022·湖北鄂州)如图,已知直线y =2x 与双曲线ky x=(k 为大于零的常数,且x >0)交于点A ,若OA k 的值为 _____.50.(2021·江苏徐州)如图,点,A D 分别在函数36,y y x x-==的图像上,点,B C 在x 轴上.若四边形ABCD 为正方形,点D 在第一象限,则D 的坐标是_____________.51.(2021·湖北鄂州)如图,点A 是反比例函数()120y x x=>的图象上一点,过点A 作AC x ⊥轴于点C ,AC交反比例函数()0k y x x=>的图象于点B ,点P 是y 轴正半轴上一点.若PAB ∆的面积为2,则k 的值为_____________.52.(2020·辽宁锦州)如图,平行四边形ABCD 的顶点A 在反比例函数(0)ky x x=>的图象上,点B 在y 轴上,点C ,点D 在x 轴上,AD 与y 轴交于点E ,若3BCES=,则k 的值为_______.53.(2020·辽宁沈阳)如图,在平面直角坐标系中,O 是坐标原点,在OAB 中,,AO AB AC OB =⊥于点C ,点A 在反比例函数(0)ky k x=≠的图象上,若OB =4,AC =3,则k 的值为__________.54.(2020·湖南永州)如图,正比例函数y x =-与反比例函数6y x=-的图象交于A ,C 两点,过点A 作AB x⊥轴于点B ,过点C 作CD x ⊥轴于点D ,则ABD △的面积为_________.55.(2020·湖南株洲)如图所示,在平面直角坐标系Oxy 中,四边形OABC 为矩形,点A 、C 分别在x 轴、y 轴上,点B 在函数1k y x=(0x >,k 为常数且2k >)的图象上,边AB 与函数22(0)y x x =>的图象交于点D ,则阴影部分ODBC 的面积为________(结果用含k 的式子表示)56.(2020·山东日照)如图,在平面直角坐标系中,▱ABCD 的顶点B 位于y 轴的正半轴上,顶点C ,D 位于x 轴的负半轴上,双曲线y =kx(k <0,x <0)与▱ABCD 的边AB ,AD 交于点E 、F ,点A 的纵坐标为10,F (﹣12,5),把△BOC 沿着BC 所在直线翻折,使原点O 落在点G 处,连接EG ,若EG △y 轴,则△BOC 的面积是_____.57.(2020·湖北荆门)如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,()2,1B -,将OAB 绕点O 顺时针旋转,点B 落在y 轴上的点D 处,得到OED ,OE 交BC 于点G ,若反比例函数(0)ky x x=<的图象经过点G ,则k 的值为______.58.(2020·广西)反比例函数y =kx(x <0)的图象如图所示,下列关于该函数图象的四个结论:△k >0;△当x <0时,y 随x 的增大而增大;△该函数图象关于直线y =﹣x 对称;△若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有_____个.59.(2020·贵州黔南)如图,正方形ABCD 的边长为10,点A 的坐标为()8,0-,点B 在y 轴上,若反比例函数(0)ky k x==的图象过点C ,则该反比例函数的解析式为_________.60.(2020·内蒙古呼伦贝尔)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为(0,3),点A 在x 轴的正半轴上.直线1y x =-分别与边,AB OA 相交于,D M 两点,反比例函数(0)ky x x=>的图象经过点D 并与边BC 相交于点N ,连接MN .点P 是直线DM 上的动点,当CP MN =时,点P 的坐标是________________.61.(2020·内蒙古鄂尔多斯)如图,平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为6,4,反比例函数y =kx(x >0)的图象经过A ,B 两点,若菱形ABCD 的面积为k 的值为_____.62.(2021·山东日照)如图,在平面直角坐标系xOy 中,正方形OABC 的边OC 、OA 分别在x 轴和y 轴上,10OA =,点D 是边AB 上靠近点A 的三等分点,将OAD △沿直线OD 折叠后得到'OA D △,若反比例函数()0ky k x=≠的图象经过'A 点,则k 的值为_______.63.(2021·辽宁鞍山)如图,ABC 的顶点B 在反比例函数(0)ky x x=>的图象上,顶点C 在x 轴负半轴上,//AB x 轴,AB ,BC 分别交y 轴于点D ,E .若32BE CO CE AD ==,13ABCS =,则k =_____.64.(2021·贵州毕节)如图,直线AB 与反比例函数()0,0ky k x x=>>的图象交于A ,B 两点,与x 轴交于点C ,且AB BC =,连接OA .已知OAC 的面积为12,则k 的值为_____________.65.(2021·黑龙江齐齐哈尔)如图,点A 是反比例函数1(0)k y x x=<图象上一点,AC x ⊥轴于点C 且与反比例函数2(0)k y x x=<的图象交于点B ,3AB BC = ,连接OA ,OB ,若OAB 的面积为6,则12k k +=_________.66.(2022·辽宁辽宁)如图,矩形OABC 的顶点B 在反比例函数y =kx(x >0)的图像上,点A 在x 轴的正半轴上,AB =3BC ,点D 在x 轴的负半轴上,AD =AB ,连接BD ,过点A 作AE △BD 交y 交于点E ,点F 在AE 上,连接FD ,FB .若△BDF 的面积为9,则k 的值是_______.67.(2022·广东深圳)如图,已知直角三角形ABO 中,1AO =,将ABO 绕点O 点旋转至A B O ''△的位置,且A '在OB 的中点,B '在反比例函数ky x=上,则k 的值为________________.68.(2022·山东烟台)如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC △x 轴于点C ,交OB 于点D .若D 为AC 的中点,△AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.69.(2022·贵州铜仁)如图,点A 、B 在反比例函数ky x=的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.70.(2022·内蒙古包头)如图,反比例函数(0)ky k x=>在第一象限的图象上有(1,6)A ,(3,)B b 两点,直线AB 与x 轴相交于点C ,D 是线段OA 上一点.若AD BC AB DO ⋅=⋅,连接CD ,记,ADC DOC 的面积分别为12,S S ,则12S S -的值为___________.71.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.72.(2022·广西玉林)如图,点A 在双曲线(0,0)k y k x x=>>上,点B 在直线2(0,0)y mx b m b =->>上,A 与B 关于x 轴对称,直线l 与y 轴交于点C ,当四边形AOCB 是菱形时,有以下结论:△()A b △当2b =时,k =△m =△22AOCB S b =四边形 则所有正确结论的序号是_____________.73.(2022·四川宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=kx(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB△OM于点B,则k的值为______.74.(2022·四川乐山)如图,平行四边形ABCD的顶点A在x轴上,点D在y=kx(k>0)上,且AD△x轴,CA的延长线交y轴于点E.若S△ABE=32,则k=______.75.(2022·安徽)如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数1yx=的图象经过点C,()0ky kx=≠的图象经过点B.若OC AC=,则k=________.三、解答题76.(2022·辽宁大连)密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:3m)变化时,气体的密度ρ(单位:kg/m)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示,当35mV=时,31.98kg /m ρ=.(1)求密度ρ关于体积V 的函数解析式; (2)若39V ≤≤,求二氧化碳密度ρ的变化范围.77.(2022·广东广州)某燃气公司计划在地下修建一个容积为V (V 为定值,单位:m 3)的圆柱形天然气储存室,储存室的底面积S (单位:m 2) 与其深度d (单位:m )是反比例函数关系,它的图象如图所示.(1)求储存室的容积V 的值;(2)受地形条件限制,储存室的深度d 需要满足16≤d ≤25,求储存室的底面积S 的取值范围.78.(2022·四川乐山)如图,已知直线1:y =x +4与反比例函数y =kx(x <0)的图象交于点A (−1,n ),直线l ′经过点A ,且与l 关于直线x =−1对称.(1)求反比例函数的解析式; (2)求图中阴影部分的面积.79.(2022·河南)如图,反比例函数()0ky x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.80.(2021·山东德州)已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.81.(2021·山东淄博)如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点.(1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP △的面积; (3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.82.(2021·湖南岳阳)如图,已知反比例函数()0ky k x=≠与正比例函数2y x =的图象交于()1,A m ,B 两点.(1)求该反比例函数的表达式;(2)若点C 在x 轴上,且BOC 的面积为3,求点C 的坐标.83.(2020·四川广安)如图,直线11y x =+与双曲线2ky x=(k 为常数,k≠0)交于A ,D 两点,与x 轴、y 轴分别交于B ,C 两点,点A 的坐标为(m ,2). (1)求反比例函数的解析式.(2)结合图象直接写出当12y y <时,x 的取值范围.84.(2020·吉林)如图,在平面直角坐标系中,O 为坐标原点,点A ,B 在函数ky x=()0x >的图象上(点B 的横坐标大于点A 的横坐标),点A 的坐示为()2,4,过点A 作AD x ⊥轴于点D ,过点B 作BC x ⊥轴于点C ,连接OA ,AB .(1)求k 的值.(2)若D 为OC 中点,求四边形OABC 的面积.85.(2020·广西贵港)如图,双曲线1k y x =(k 为常数,且0k ≠)与直线22y x b =+交于()1,A m 和1,22B n n ⎛+⎫ ⎪⎝⎭两点.(1)求k ,m 的值;(2)当0x >时,试比较函数值1y 与2y 的大小.86.(2020·广西柳州)如图,平行于y轴的直尺(部分)与反比例函数myx=(x>0)的图象交于A、C两点,与x轴交于B、D两点,连接AC,点A、B对应直尺上的刻度分别为5、2,直尺的宽度BD=2,OB=2.设直线AC的解析式为y=kx+b.(1)请结合图象,直接写出:△点A的坐标是;△不等式mkx bx+>的解集是;(2)求直线AC的解析式.87.(2020·山东济南)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,,反比例函数kyx=(x>0)的图象与BC,AB分别交于D,E,BD=12.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.88.(2020·四川)如图,一次函数y 1=ax +b 与反比例函数y 2=4x 的图象交于A 、B 两点.点A 的横坐标为2,点B 的纵坐标为1. (1)求a ,b 的值.(2)在反比例y 2=4x第三象限的图象上找一点P ,使点P 到直线AB 的距离最短,求点P 的坐标.89.(2020·辽宁盘锦)如图,A B 、两点的坐标分别为()()2,0,0,3-,将线段AB 绕点B 逆时针旋转90°得到线段BC ,过点C 作CD OB ⊥,垂足为D ,反比例函数ky x=的图象经过点C .(1)直接写出点C 的坐标,并求反比例函数的解析式; (2)点P 在反比例函数ky x=的图象上,当PCD 的面积为3时,求点P 的坐标.90.(2020·四川绵阳)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=kx(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足△AEB=90°,且AE=2﹣m,求反比例函数的解析式.91.(2020·云南昆明)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.92.(2021·辽宁鞍山)如图,在平面直角坐标系中,一次函数1y k x b =+的图象分别与x 轴、y 轴交于A ,B 两点,与反比例函数2k y x =的图象在第二象限交于C ,(6,2)D -两点,//DE OC 交x 轴于点E ,若13AD AC =. 本号资@料皆来源于微信:数学(1)求一次函数和反比例函数的表达式. (2)求四边形OCDE 的面积.93.(2021·江苏镇江)如图,点A 和点(2,1)E 是反比例函数(0)ky x x=>图象上的两点,点B 在反比例函数6(0)y x x=<的图象上,分别过点A ,B 作y 轴的垂线,垂足分别为点C ,D ,AC BD =,连接AB 交y 轴于点F . (1)k = ;(2)设点A 的横坐标为a ,点F 的纵坐标为m ,求证:2am =-; (3)连接CE ,DE ,当△CED =90°时,直接写出点A 的坐标: .94.(2021·四川巴中)如图,双曲线ymx=与直线y=kx+b交于点A(﹣8,1)、B(2,﹣4),与两坐标轴分别交于点C、D,已知点E(1,0),连接AE、BE.(1)求m,k,b的值;(2)求ABE的面积;(3)作直线ED,将直线ED向上平移n(n>0)个单位后,与双曲线ymx=有唯一交点,求n的值.本号资@料皆来源@于微信:数学95.(2022·湖北黄冈)如图,已知一次函数y1=kx+b的图像与函数y2=mx(x>0)的图像交于A(6,-12),B(12,n)两点,与y轴交于点C,将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图像,直接写出y 1<y 2时x 的取值范围;(3)连接AD ,CD ,若△ACD 的面积为6,则t 的值为 .96.(2022·山东潍坊)某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017-2021年△号田和△号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如下图.小亮认为,可以从y =kx +b (k >0) ,y =mx(m >0) ,y =−0.1x 2+ax +c 中选择适当的函数模型,模拟△号田和△号田的年产量变化趋势. (1)小莹认为不能选(0)my m x=>.你认同吗?请说明理由; (2)请从小亮提供的函数模型中,选择适当的模型分别模拟△号田和△号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测△号田和△号田总年产量....在哪一年最大?最大是多少?97.(2022·青海西宁)如图,正比例函数4y x =与反比例函数()0ky x x=>的图象交于点(),4A a ,点B 在反比例函数图象上,连接AB ,过点B 作BC x ⊥轴于点()2,0C .(1)求反比例函数解析式;(2)点D 在第一象限,且以A ,B ,C ,D 为顶点的四边形是平行四边形,请直接写出....点D 的坐标.98.(2022·辽宁锦州)如图,平面直角坐标系xOy 中,四边形OABC 是菱形,点A 在y 轴正半轴上,点B 的坐标是(4,8)-,反比例函数(0)ky x x=<的图像经过点C .(1)求反比例函数的解析式; (2)点D 在边CO 上,且34CD DO =,过点D 作DE x 轴,交反比例函数的图像于点E ,求点E 的坐标.99.(2022·湖北荆州)小华同学学习函数知识后,对函数()()2410410x x y x x x ⎧-<≤⎪=⎨-≤->⎪⎩或通过列表、描点、连线,画出了如图1所示的图象.请根据图象解答:(1)【观察发现】△写出函数的两条性质:______;______;△若函数图象上的两点()11,x y ,()22,x y 满足120x x +=,则120y y +=一定成立吗?______.(填“一定”或“不一定”)(2)【延伸探究】如图2,将过()1,4A -,()4,1B -两点的直线向下平移n 个单位长度后,得到直线l 与函数()41y x x=-≤-的图象交于点P ,连接P A ,PB . △求当n =3时,直线l 的解析式和△P AB 的面积; △直接用含....n 的代数式表示......△P AB 的面积.100.(2022·山东临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm ),确定支点O ,并用细麻绳固定,在支点O 左侧2cm 的A 处固定一个金属吊钩,作为秤钩; 第二步:取一个质量为0.5kg 的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤砣挂在支点О右侧的B 处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB 的长度随之变化.设重物的质量为kg x ,OB 的长为cm y .写出y 关于x 的函数解析式;若048y <<,求x 的取值范围.(2)调换秤砣与重物的位置,把秤砣挂在秤钩上,重物挂在支点О右侧的B 处,使秤杆平衡,如图2.设重物的质量为kg x ,OB 的长为cm y ,写出y 关于x 的函数解析式,完成下表,画出该函数的图象.。
专题01 有理数【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-2.(2021·山东滨州市·中考真题)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .4 3.(2021·广西百色市·中考真题)﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .2021 4.(2021·广西桂林市·中考真题)有理数3,1,﹣2,4中,小于0的数是( ) A .3 B .1 C .﹣2 D .4 5.(2021·湖北荆门市·中考真题)2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 6.(2021·内蒙古呼和浩特市·中考真题)几种气体的液化温度(标准大气压)如表:A .氦气B .氮气C .氢气D .氧气 7.(2021·湖北襄阳市·中考真题)下列各数中最大的是( )A .3-B .2-C .0D .18.(2021·山东济宁市·中考真题)若盈余2万元记作2+万元,则2-万元表示( ) A .盈余2万元 B .亏损2万元 C .亏损2-万元 D .不盈余也不亏损 9.(2021·广东深圳市·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1 10.(2021·湖北鄂州市·中考真题)实数6的相反数等于( )A .6-B .6C .6±D .1611.(2021·湖北恩施土家族苗族自治州·中考真题)-6的相反数是( )A .-6B .6C .6±D .1612.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-,115 5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .4513.(2021·广东广州市·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-14.(2021·广东广州市·中考真题)下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-415.(2021·贵州安顺市·中考真题)如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --16.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)-- D17.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-18.(2021·河北中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<19.(2021·湖南邵阳市·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-20.(2021·河北中考真题)能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 21.(2021·四川达州市·中考真题)﹣23的相反数是( ) A .﹣32 B .﹣23 C .23 D .3222.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .223.(2021·安徽中考真题)9-的绝对值是( )A .9B .9-C .19D .19- 24.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-25.(2021·山东枣庄市·中考真题)如图,数轴上有三个点A﹣B﹣C ,若点A﹣B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4二、填空题 26.(2021·辽宁盘锦市·2________27.(2021·江苏常州市·中考真题)数轴上的点A 、B 分别表示3-、2,则点__________离原点的距离较近(填“A ”或“B ”).28.(2021·湖北随州市·()012021π+-=______.29.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 30.(2021·甘肃兰州市·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .三、解答题31.(2021·广西桂林市·中考真题)计算:|﹣3|+(﹣2)2.32.(2021·河北中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.33.(2021·西宁市教育科学研究院中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 34.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:﹣以上解题过程中,第二步是依据______________(运算律)进行变形的;﹣第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.35.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.。
专题30 与圆有关的位置关系【基础训练】一、单选题1.(2021·吉林中考真题)如图,四边形ABCD 内接于O ,点P 为边AD 上任意一点(点P 不与点A ,D 重合)连接CP .若120B ∠=︒,则APC ∠的度数可能为( )A .30B .45︒C .50︒D .65︒2.(2021·吉林长春·中考真题)如图,AB 是O 的直径,BC 是O 的切线,若35BAC ∠=︒,则ACB ∠的大小为( )A .35︒B .45︒C .55︒D .65︒3.(2021·山东青岛·中考真题)如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C .58.5︒D .63︒4.(2021·山东滨州·中考真题)如图,O 是ABC 的外接圆,CD 是O 的直径.若10CD =,弦6AC =,则cos ABC ∠的值为( )A .45B .35C .43D .345.(2021·湖南湘潭·中考真题)如图,BC 为⊙O 的直径,弦AD BC ⊥于点E ,直线l 切⊙O 于点C ,延长OD 交l 于点F ,若2AE =,22.5ABC ∠=︒,则CF 的长度为( )A .2B .22C .23D .46.(2021·湖北荆门·中考真题)如图,P A ,PB 是⊙O 的切线,A ,B 是切点,若70P ∠=︒,则ABO ∠=( )A .30B .35︒C .45︒D .55︒7.(2021·广东广州·中考真题)一根钢管放在V 形架内,其横截面如图所示,钢管的半径是24cm ,若60ACB ∠=︒,则劣弧AB 的长是( )A .8πcmB .16πcmC .32πcmD .192πcm8.(2021·上海中考真题)如图,已知长方形ABCD 中,4,3AB AD ==,圆B 的半径为1,圆A 与圆B 内切,则点,C D 与圆A 的位置关系是( )A .点C 在圆A 外,点D 在圆A 内B .点C 在圆A 外,点D 在圆A 外 C .点C 在圆A 上,点D 在圆A 内 D .点C 在圆A 内,点D 在圆A 外9.(2021·湖南怀化·中考真题)如图,在ABC 中,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠ D .AD 一定经过ABC 的外心10.(2021·山东临沂·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒11.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒12.(2021·湖南怀化·中考真题)以下说法错误的是( )A .多边形的内角大于任何一个外角B .任意多边形的外角和是360︒C .正六边形是中心对称图形D .圆内接四边形的对角互补13.(2021·浙江中考真题)如图,已知点O 是ABC 的外心,⊙40A =︒,连结BO ,CO ,则BOC ∠的度数是( ).A .60︒B .70︒C .80︒D .90︒14.(2021·重庆中考真题)如图,四边形ABCD 内接于⊙O ,若⊙A =80°,则⊙C 的度数是( )A .80°B .100°C .110°D .120°15.(2021·四川凉山·中考真题)下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若AB BC =,则点B 是线段AC 的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心16.(2021·浙江嘉兴·中考真题)已知平面内有O 和点A ,B ,若O 半径为2cm ,线段3cm OA =,2cm OB =,则直线AB 与O 的位置关系为( )A .相离B .相交C .相切D .相交或相切 17.(2021·青海西宁·中考真题)如图,ABC 的内切圆О与,,AB BC AC 分别相切于点D ,E ,F ,连接OE ,OF ,90C ∠=︒,6AC =,8BC =,则阴影部分的面积为( )A .122π-B .142π-C .4π-D .114π- 18.(2021·辽宁沈阳·中考真题)如图,ABC 是O 的内接三角形,23AB =60ACB ∠=︒,连接OA ,OB ,则AB 的长是( )A .3πB .23πC .πD .43π 19.(2021·西藏中考真题)如图,⊙BCD 内接于⊙O ,⊙D =70°,OA ⊙BC 交⊙O 于点A ,连接AC ,则⊙OAC 的度数为( )A .40°B .55°C .70°D .110°20.(2021·江苏镇江·中考真题)如图,⊙BAC =36°,点O 在边AB 上,⊙O 与边AC 相切于点D ,交边AB 于点E ,F ,连接FD ,则⊙AFD 等于( )A .27°B .29°C .35°D .37°21.(2021·贵州遵义·中考真题)如图,AB 是⊙O 的弦,等边三角形OCD 的边CD 与⊙O 相切于点P ,连接OA ,OB ,OP ,A D .若⊙COD +⊙AOB =180°,,CD//AB AB =6,则AD 的长是( )A .2B .6C .13D 1322.(2021·内蒙古赤峰·中考真题)如图,点C ,D 在以AB 为直径的半圆上,120ADC ∠=︒,点E 是AD 上任意一点,连接BE ,CE ,则BEC ∠的度数为( )A .20°B .30°C .40°D .60°23.(2021·广西贵港·中考真题)如图,点A ,B ,C ,D 均在⊙O 上,直径AB =4,点C 是BD 的中点,点D 关于AB 对称的点为E ,若⊙DCE =100°,则弦CE 的长是( )A .3B .2C 3D .124.(2021·辽宁营口·中考真题)如图,O 中,点C 为弦AB 中点,连接OC ,OB ,56COB ∠=︒,点D 是AB 上任意一点,则ADB ∠度数为( )A .112︒B .124︒C .122︒D .134︒ 25.(2021·贵州安顺·中考真题)如图,O 与正五边形ABCDE 的两边,AE CD 相切于,A C 两点,则AOC ∠的度数是( )A .144︒B .130︒C .129︒D .108︒26.(2021·广东中考真题)设O 为坐标原点,点A 、B 为抛物线2yx 上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值( ) A .12 B 2C 3D .127.(2021·福建中考真题)如图,AB 为O 的直径,点P 在AB 的延长线上,,PC PD 与O 相切,切点分别为C ,D .若6,4AB PC ==,则sin CAD ∠等于( )A .35B .25C .34D .4528.(2021·山西中考真题)如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,过点A 作//AD OB 交O 于点D ,连接CD .若50B ∠=︒,则OCD ∠为( )A .15︒B .20︒C .25︒D .30︒29.(2021·山东泰安·中考真题)如图,四边形ABCD 是O 的内接四边形,90B ∠=︒,120BCD ∠=︒,2AB =,1CD =,则AD 的长为( )A .232B .33C .43D .230.(2021·四川广元·中考真题)如图,在边长为2的正方形ABCD 中,AE 是以BC 为直径的半圆的切线,则图中阴影部分的面积为( )A .32π+ B .2π- C .1 D .52π- 二、填空题31.(2021·广西河池·中考真题)如图,在平面直角坐标系中,以()23M ,为圆心,AB 为直径的圆与x 轴相切,与y 轴交于A ,C 两点,则点B 的坐标是____________.32.(2021·四川德阳·中考真题)如图,在圆内接五边形ABCDE 中,⊙EAB ⊙+⊙C +⊙CDE +⊙E =430°,则⊙CDA =_____度.33.(2021·河南中考真题)如图所示的网格中,每个小正方形的边长均为1,点A ,B ,D 均在小正方形的顶点上,且点B ,C 在AD 上,22.5∠︒=BAC ,则BC 的长为__________.34.(2021·江苏盐城·中考真题)如图,在⊙O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.35.(2021·四川宜宾·中考真题)如图,⊙O 的直径AB =4,P 为⊙O 上的动点,连结AP ,Q 为AP 的中点,若点P 在圆上运动一周,则点Q 经过的路径长是______.三、解答题36.(2021·山东济南·中考真题)已知:如图,AB 是O 的直径,C ,D 是O 上两点,过点C 的切线交DA 的延长线于点E ,DE CE ⊥,连接CD ,BC .(1)求证:2DAB ABC ∠=∠;(2)若1tan 2ADC ∠=,4BC =,求O 的半径. 37.(2021·四川内江·中考真题)如图,AB 是O 的直径,C 、D 是O 上两点,且BD CD =,过点D 的直线DE AC ⊥交AC 的延长线于点E ,交AB 的延长线于点F ,连结AD 、OE 交于点G . (1)求证:DE 是O 的切线;(2)若23DG AG =,O 的半径为2,求阴影部分的面积;(3)连结BE ,在(2)的条件下,求BE 的长.38.(2021·甘肃兰州·中考真题)如图,ABC 内接于O ,AB 是O 的直径,E 为AB 上一点,BE BC =,延长CE 交AD 于点D ,AD AC =.(1)求证:AD 是O 的切线;(2)若1tan 3ACE ∠=,3OE =,求BC 的长.39.(2021·青海西宁·中考真题)如图,ABC 内接于O ,AB AC =,AD 是O 的直径,交BC 于点E ,过点D 作//DF BC ,交AB 的延长线于点F ,连接BD .(1)求证:DF 是O 的切线;(2)已知12AC =,15AF =,求DF 的长.40.(2021·辽宁沈阳·中考真题)如图,AB 是O 的直径,AD 与O 交于点A ,点E 是半径OA 上一点(点E 不与点O ,A 重合).连接DE 交O 于点C ,连接CA ,CB .若CA CD =,ABC D ∠=∠.(1)求证:AD 是O 的切线.(2)若13AB =,5CA CD ==,则AD 的长是__________.41.(2021·四川德阳·中考真题)如图,已知:AB 为⊙O 的直径,⊙O 交⊙ABC 于点D 、E ,点F 为AC 的延长线上一点,且⊙CBF 12=⊙BOE .(1)求证:BF 是⊙O 的切线;(2)若AB =2⊙CBF =45°,BE =2EC ,求AD 和CF 的长.42.(2021·辽宁锦州·中考真题)如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C作CE⊙AD交AD的延长线于点E,延长EC,AB交于点F,⊙ECD=⊙BCF.(1)求证:CE为⊙O的切线;(2)若DE=1,CD=3,求⊙O的半径.43.(2021·辽宁朝阳·中考真题)如图,AB是⊙O的直径,点D在⊙O上,且⊙AOD=90°,点C是⊙O外一点,分别连接CA,CB、CD,CA交⊙O于点M,交OD于点N,CB的延长线交⊙O于点E,连接AD,ME,且⊙ACD=⊙E.(1)求证:CD是⊙O的切线;(2)连接DM,若⊙O的半径为6,tan E=13,求DM的长.44.(2021·四川巴中·中考真题)如图,ABC内接于⊙O,且AB=AC,其外角平分线AD 与CO的延长线交于点D.(1)求证:直线AD是⊙O的切线;(2)若AD=3BC=6,求图中阴影部分面积.45.(2021·山东滨州·中考真题)如图,在O中,AB为O的直径,直线DE与O相切于点D,割线AC DE⊥于点E且交O于点F,连接DF.(1)求证:AD平分⊙BAC;(2)求证:2DF EF AB=⋅.46.(2021·辽宁盘锦·中考真题)如图,⊙ABC内接于⊙O,AB是⊙O的直径,过⊙O外一点D作//DG BC,DG交线段AC于点G,交AB于点E,交⊙O于点F,连接DB,CF,⊙A =⊙D.(1)求证:BD与⊙O相切;(2)若AE=OE,CF平分⊙ACB,BD=12,求DE的长.47.(2021·江苏淮安·中考真题)如图,在Rt⊙ABC中,⊙ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=3,DE=52,求⊙O的直径.48.(2021·西藏中考真题)如图,AB是⊙O的直径,OC是半径,延长OC至点D.连接AD,AC,BC.使⊙CAD=⊙B.(1)求证:AD是⊙O的切线;(2)若AD=4,tan⊙CAD=12,求BC的长.49.(2021·广西梧州·中考真题)如图,在Rt ⊙ACD 中,⊙ACD =90°,点O 在CD 上,作⊙O ,使⊙O 与AD 相切于点B ,⊙O 与CD 交于点E ,过点D 作DF ⊙AC ,交AO 的延长线于点F ,且⊙OAB =⊙F .(1)求证:AC 是⊙O 的切线;(2)若OC =3,DE =2,求tan ⊙F 的值.50.(2021·江苏南通·中考真题)如图,AB 为O 的直径,C 为O 上一点,弦AE 的延长线与过点C 的切线互相垂直,垂足为D ,35CAD ∠=︒,连接BC .(1)求B 的度数;(2)若2AB =,求EC 的长.51.(2021·辽宁丹东·中考真题)如图,O 是ABC 的外接圆,点D 是BC 的中点,过点D 作//EF BC 分别交AB 、AC 的延长线于点E 和点F ,连接AD 、BD ,ABC ∠的平分线BM 交AD 于点M .(1)求证:EF 是O 的切线;(2)若:5:2AB BE =,14AD DM 的长.52.(2021·贵州毕节·中考真题)如图1,在Rt ABC 中,90BAC ∠=︒,AB AC =,D 为ABC 内一点,将线段AD 绕点A 逆时针旋转90°得到AE ,连接CE ,BD 的延长线与CE 交于点F . (1)求证:BD CE =,BD CE ⊥;(2)如图2.连接AF ,DC ,已知135BDC ∠=︒,判断AF 与DC 的位置关系,并说明理由.53.(2021·贵州毕节·中考真题)如图,O 是ABC 的外接圆,点E 是ABC 的内心,AE 的延长线交BC 于点F ,交O 于点D ,连接BD ,BE .(1)求证:DB DE =;(2)若3AE =,4DF =,求DB 的长.54.(2021·湖南湘西·中考真题)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D .(1)求证:AC 平分DBA ∠;(2)若8AD =,3tan 4CAB ∠=,求:边AC 及AB 的长.55.(2021·内蒙古鄂尔多斯·中考真题)如图,在ABC 中,AB AC =,以AB 为直径的O 交AC 于点D ,BC 于点E ,直线EF AC ⊥于点F ,交AB 的延长线于点H .(1)求证:HF 是O 的切线;(2)当16,cos 3EB ABE =∠=时,求tan H 的值. 56.(2021·内蒙古赤峰·中考真题)如图,在菱形ABCD 中,对角线AC 、BD 相交于点M ,C ,交对角线BD 于点E ,且CE BE =,连接OE 交BC 于点F .(1)试判断AB 与⊙O 的位置关系,并说明理由;(2)若3255BD =1tan 2CBD ∠=,求⊙O 的半径.57.(2021·广西贵港·中考真题)如图,⊙O 是ABC 的外接圆,AD 是⊙O 的直径,F 是AD延长线上一点,连接CD ,CF ,且⊙DCF =⊙CAD .(1)求证:CF 是⊙O 的切线; (2)若cos B =35,AD =2,求FD 的长.58.(2021·辽宁营口·中考真题)如图,AB 是O 直径,点C ,D 为O 上的两点,且AD CD =,连接AC ,BD 交于点E ,O 的切线AF 与BD 延长线相交于点F ,A 为切点.(1)求证:AF AE =;(2)若8AB =,2BC =,求AF 的长.59.(2021·黑龙江齐齐哈尔·中考真题)如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AE 和过点C 的切线CD 互相垂直,垂足为E ,AE 与⊙O 相交于点F ,连接AC .(1)求证:AC 平分EAB ∠;(2)若12AE =,3tan CAB ∠=OB 的长. 60.(2021·贵州铜仁·中考真题)如图,已知ABC ∆内接干O ,AB 是O 的直径,CAB ∠的平分线交BC 于点D ,交O 于点E ,连接EB ,作BEF CAE ∠=∠,交AB 的延长线于点F .(1)求证:EF 是O 的切线;(2)若10BF =,20EF =,求O 的半径和AD 的长.。
第二讲整式及其运算【命题1 列代数式及代数式求值】类型一列代数式1.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100﹣x)元C.8(100﹣x)元D.(100﹣8x)元2.(2022•杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则()A.||=320B.||=320C.|10x﹣19y|=320D.|19x﹣10y|=3203.(2022•舟山)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示).类型二列代数式求值4.(2022•北碚区自主招生)已知x﹣y=1,则代数式3x﹣3y+1的值是()A.2B.﹣2C.4D.﹣4 5.(2022•六盘水)已知(x+y)4=a1x4+a2x3y+a3x2y2+a4xy3+a5y4,则a1+a2+a3+a4+a5的值是()A.4B.8C.16D.32 6.(2022•郴州)若=,则=.7.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b ﹣1的值是.8.(2022•岳阳)已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.9.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.【命题点2 整式的有关概念及运算】类型一整式的有关概念10.(2022•攀枝花)下列各式不是单项式的为()A.3B.a C.D.x2y 11.(2022•广东)单项式3xy的系数为.类型二整式的运算12.(2022•淮安)计算a2•a3的结果是()A.a2B.a3C.a5D.a6 13.(2022•镇江)下列运算中,结果正确的是()A.3a2+2a2=5a4B.a3﹣2a3=a3C.a2•a3=a5D.(a2)3=a514.(2022•淄博)计算(﹣2a3b)2﹣3a6b2的结果是()A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b2 15.(2022•毕节市)计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x6 16.(2022•河北)计算a3÷a得a,则“?”是()A.0B.1C.2D.317.(2022•包头)若24×22=2m,则m的值为()A.8B.6C.5D.2 18.(2022•黔西南州)计算(﹣3x)2•2x正确的是()A.6x3B.12x3C.18x3D.﹣12x3 19.(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1 20.(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣4 21.(2022•甘肃)计算:3a3•a2=.22.(2022•常州)计算:m4÷m2=.23.(2022•包头)若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为.类型三乘法公式的应用及几何背景24.(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2 25.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b226.(2022•滨州)若m+n=10,mn=5,则m2+n2的值为.27.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.28.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为.29.(2022•益阳)已知m,n同时满足2m+n=3与2m﹣n=1,则4m2﹣n2的值是.30.(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为.31.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.32.(2022•荆门)已知x+=3,求下列各式的值:(1)(x﹣)2 (2)x4+.33.(2022•河北)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.类型四整式的化简及求值考向1 整式的化简34.(2022•安顺)先化简,再求值:(x+3)2+(x+3)(x﹣3)﹣2x(x+1),考向2 整式的化简求值35.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.36.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.37.(2022•长春)先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a=﹣4.38.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.39.(2022•广西)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y=.40.(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x=﹣1.41.(2022•衡阳)先化简,再求值.(a+b)(a﹣b)+b(2a+b),其中a=1,b=﹣2.命题点3 因式分解及其应用42.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x43.(2022•柳州)把多项式a2+2a分解因式得()A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)44.(2022•广州)分解因式:3a2﹣21ab=.45.(2022•常州)分解因式:x2y+xy2=.46.(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)2 47.(2022•菏泽)分解因式:x2﹣9y2=.48.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9=.49.(2022•绵阳)因式分解:3x3﹣12xy2=.50.(2022•丹东)因式分解:2a2+4a+2=.51.(2022•巴中)因式分解:﹣a3+2a2﹣a=.【命题点4 规律套索题】类型一数式规律52.(2022•西藏)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是()A.﹣B.C.﹣D.53.(2022•新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98B.100C.102D.104 54.(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是()A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n55.(2022•徐汇区校级自主招生)设x1,x2,x3,…,x100是整数,且满足下列条件:①﹣1≤x i≤2,i=1,2,3, (100)②x1+x2+x3+…+x100=20;③x12+x22+x32+…+x1002=100,则x13+x23+x33+…+x1003的最小值和最大值的和为.56.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为a n,且满足+=.则a4=,a2022=.57.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是.类型二图形规律58.(20224个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400 59.(2022•广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为()A.252B.253C.336D.337 60.(2022•江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12 61.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.4162.(2022•黑龙江)如图所示,以为端点画六条射线OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线上.答案与解析【命题1 列代数式及代数式求值】类型一列代数式1.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100﹣x)元C.8(100﹣x)元D.(100﹣8x)元【答案】C【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100﹣x)元.故选:C.2.(2022•杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则()A.||=320B.||=320C.|10x﹣19y|=320D.|19x﹣10y|=320【答案】C【解答】解:由题意可得:|10x﹣19y|=320.故选:C.3.(2022•舟山)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态)点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为(N)(用含n,k的代数式表示).【答案】【解答】解:如图,设装有大象的铁笼重力为aN,将弹簧秤移动到B′的位置时,弹簧秤的度数为k′,由题意可得BP•k=P A•a,B′P•k′=P A•a,∴BP•k=B′P•k′,又∵B′P=nBP,∴k′==,故答案为:.类型二列代数式求值4.(2022•北碚区自主招生)已知x﹣y=1,则代数式3x﹣3y+1的值是()A.2B.﹣2C.4D.﹣4【答案】C【解答】解:∵x﹣y=1,∴3x﹣3y+1=3(x﹣y)+1=3×1+1=4.故选:C.5.(2022•六盘水)已知(x+y)4=a1x4+a2x3y+a3x2y2+a4xy3+a5y4,则a1+a2+a3+a4+a5的值是()A.4B.8C.16D.32【答案】C【解答】解:∵(x+y)4=x4+4x3y+6x2y2+4xy3+y4,∴a1+a2+a3+a4+a5=1+4+6+4+1=16,故选:C.6.(2022•郴州)若=,则=.【答案】【解答】解:根据=得3a=5b,则=.故答案为:.7.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b ﹣1的值是.【答案】14【解答】解:∵x=2是关于x的一元一次方程ax+b=3的解,∴2a+b=3,∴b=3﹣2a,∴4a2+4ab+b2+4a+2b﹣1=4a2+4a(3﹣2a)+(3﹣2a)2+4a+2(3﹣2a)﹣1=4a2+12a﹣8a2+9﹣12a+4a2+4a+6﹣4a﹣1=14.解法二:原式=(2a+b)2+2(2a+b)﹣1=32+2×3﹣1=14,故答案为:14.8.(2022•岳阳)已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.【解答】解:a(a﹣4)+(a+1)(a﹣1)+1=a2﹣4a+a2﹣1+1=2a2﹣4a=2(a2﹣2a),∵a2﹣2a+1=0,∴a2﹣2a=﹣1,∴原式=2×(﹣1)=﹣2.9.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.【解答】解:原式=x2﹣2x+1+x2+x=2x2﹣x+1,∵3x2﹣2x﹣3=0,∴x2﹣x=1,∴原式=2(x2﹣x)+1=2×1+1=3.【命题点2 整式的有关概念及运算】类型一整式的有关概念10.(2022•攀枝花)下列各式不是单项式的为()A.3B.a C.D.x2y 【答案】C【解答】解:A、3是单项式,故本选项不符合题意;B、a是单项式,故本选项不符合题意;C、不是单项式,故本选项符合题意;D、x2y是单项式,故本选项不符合题意;故选:C.11.(2022•广东)单项式3xy的系数为.【答案】3【解答】解:单项式3xy的系数为3.故答案为:3.类型二整式的运算12.(2022•淮安)计算a2•a3的结果是()A.a2B.a3C.a5D.a6【答案】C【解答】解:a2•a3=a5.故选:C.13.(2022•镇江)下列运算中,结果正确的是()A.3a2+2a2=5a4B.a3﹣2a3=a3C.a2•a3=a5D.(a2)3=a5【答案】C【解答】解:A.3a2+2a2=5a2,故此选项不合题意;B.a3﹣2a3=﹣a3,故此选项不合题意;C.a2•a3=a5,故此选项符合题意;D.(a2)3=a6,故此选项不合题意;故选:C.14.(2022•淄博)计算(﹣2a3b)2﹣3a6b2的结果是()A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b2【答案】C【解答】解:原式=4a6b2﹣3a6b2=a6b2,故选:C.15.(2022•毕节市)计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x6【答案】D【解答】解:(2x2)3=8x6.故选:D.16.(2022•河北)计算a3÷a得a,则“?”是()A.0B.1C.2D.3【答案】C【解答】解:根据同底数幂的除法可得:a3÷a=a2,∴?=2,故选:C.17.(2022•包头)若24×22=2m,则m的值为()A.8B.6C.5D.2【答案】B【解答】解:∵24×22=24+2=26=2m,∴m=6,故选:B.18.(2022•黔西南州)计算(﹣3x)2•2x正确的是()A.6x3B.12x3C.18x3D.﹣12x3【答案】C【解答】解:(﹣3x)2•2x=9x2•2x=18x3.故选:C.19.(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【答案】B【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B20.(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣4【答案】B【解答】解:方法1、∵m2+n2=2+mn,∴(2m﹣3n)2+(m+2n)(m﹣2n)=4m2+9n2﹣12mn+m2﹣4n2=5m2+5n2﹣12mn=5(mn+2)﹣12mn=10﹣7mn,∵m2+n2=2+mn,∴(m+n)2=2+3mn≥0(当m+n=0时,取等号),∴mn≥﹣,∴(m﹣n)2=2﹣mn≥0(当m﹣n=0时,取等号),∴mn≤2,∴﹣≤mn≤2,∴﹣14≤﹣7mn≤,∴﹣4≤10﹣7mn≤,即(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为,故选:B.方法2、设m+n=k,则m2+2mn+n2=k2,∴mn+2+2mn=k2,∴mn=k2﹣,∴原式=10﹣7mn=﹣k2+≤,故选:B.21.(2022•甘肃)计算:3a3•a2=.【答案】3a5【解答】解:原式=3a3+2=3a5.故答案为:3a5.22.(2022•常州)计算:m4÷m2=.【答案】m2【解答】解:m4÷m2=m4﹣2=m2.故答案为:m223.(2022•包头)若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为.【答案】y2﹣xy+3【解答】解:由题意得,这个多项式为:(2xy+3y2﹣5)﹣(3xy+2y2﹣8)=2xy+3y2﹣5﹣3xy﹣2y2+8=y2﹣xy+3.故答案为:y2﹣xy+3.类型三乘法公式的应用及几何背景24.(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2【答案】A【解答】解:(x+2y)2=x2+4xy+4y2.故选:A.25.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b2【答案】A【解答】解:根据题意,大正方形的边长为a+b,面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,所以(a+b)2=a2+2ab+b2.故选:A.26.(2022•滨州)若m+n=10,mn=5,则m2+n2的值为.【答案】90【解答】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2﹣2mn=102﹣2×5=100﹣10=90.故答案为:90.27.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.【答案】4【解答】解:∵(x+y)2=x2+y2+2xy=25,(x﹣y)2=x2+y2﹣2xy=9,∴两式相减得:4xy=16,则xy=4.故答案为:428.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为.【答案】或﹣.【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t=或t=.故答案为:或﹣.29.(2022•益阳)已知m,n同时满足2m+n=3与2m﹣n=1,则4m2﹣n2的值是.【答案】3【解答】解:∵2m+n=3,2m﹣n=1,∴4m2﹣n2=(2m+n)(2m﹣n)=3×1=3.故答案为:3.30.(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为.【答案】8【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.31.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.【解答】解:(1)A中能使用的面积=大正方形的面积﹣不能使用的面积,即a2﹣M,故答案为:a2﹣M;(2)A比B多出的使用面积为:(a2﹣M)﹣(b2﹣M)=a2﹣b2=(a+b)(a﹣b)=10×5=50,答:A比B多出的使用面积为50.32.(2022•荆门)已知x+=3,求下列各式的值:(1)(x﹣)2;(2)x4+.【解答】解:(1)∵=,∴===﹣4x•=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.33.(2022•河北)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.【解答】解:验证:10的一半为5,5=1+4=12+22,探究:两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.理由如下:(m+n)2+(m﹣n)2=m2+2mn+n2+m2﹣2mn+n2=2(m2+n2),故两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.类型四整式的化简及求值考向1 整式的化简34.(2022•安顺)先化简,再求值:(x+3)2+(x+3)(x﹣3)﹣2x(x+1),【解答】解:(x+3)2+(x+3)(x﹣3)﹣2x(x+1)=x2+6x+9+x2﹣9﹣2x2﹣2x=4x,考向2 整式的化简求值35.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.36.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.37.(2022•长春)先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a=﹣4.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.38.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.39.(2022•广西)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y=.【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y=时,原式=12﹣2×=0.40.(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x=﹣1.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x=﹣1时,原式=(﹣1)2﹣4=﹣2.41.(2022•衡阳)先化简,再求值.(a+b)(a﹣b)+b(2a+b),其中a=1,b=﹣2.【解答】解:(a+b)(a﹣b)+b(2a+b)=a2﹣b2+2ab+b2=a2+2ab,将a=1,b=﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.命题点3 因式分解及其应用42.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x【答案】C【解答】解:A选项不是因式分解,故不符合题意;B选项计算错误,故不符合题意;C选项是因式分解,故符合题意;D选项不是因式分解,故不符合题意;故选:C.43.(2022•柳州)把多项式a2+2a分解因式得()A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)【答案】A【解答】解:a2+2a=a(a+2).故选:A.44.(2022•广州)分解因式:3a2﹣21ab=.【答案】3a(a﹣7b)【解答】解:3a2﹣21ab=3a(a﹣7b).故答案为:3a(a﹣7b).45.(2022•常州)分解因式:x2y+xy2=.【答案】xy(x+y)【解答】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).46.(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2x﹣2)C.(x+2)2D.(x﹣2)2【答案】D【解答】解:原式=(x﹣2)2.故选:D.47.(2022•菏泽)分解因式:x2﹣9y2=.【答案】(x﹣3y)(x+3y)【解答】解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).48.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9=.【答案】(m+n﹣3)2【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.49.(2022•绵阳)因式分解:3x3﹣12xy2=.【答案】3x(x+2y)(x﹣2y)【解答】解:原式=3x(x2﹣4y2)=3x(x+2y)(x﹣2y).故答案为:3x(x+2y)(x﹣2y).50.(2022•丹东)因式分解:2a2+4a+2=.【答案】2(a+1)2【解答】解:原式=2(a2+2a+1)=2(a+1)2.故答案为:2(a+1)2.51.(2022•巴中)因式分解:﹣a3+2a2﹣a=.【答案】﹣a(a﹣1)2【解答】解:原式=﹣a(a2﹣2a+1)=﹣a(a﹣1)2.故答案为:﹣a(a﹣1)2.【命题点4 规律套索题】类型一数式规律52.(2022•西藏)按一定规律排列的一组数据:,﹣,,﹣,,﹣,….则按此规律排列的第10个数是()A.﹣B.C.﹣D.【答案】A【解答】解:原数据可转化为:,﹣,,﹣,,﹣,…,∴=(﹣1)1+1×,﹣=(﹣1)2+1×,=(﹣1)3+1×,...∴第n个数为:(﹣1)n+1,∴第10个数为:(﹣1)10+1×=﹣.故选:A.53.(2022•新疆)将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是()A.98B.100C.102D.104【答案】B【解答】解:由三角形的数阵知,第n行有n个偶数,则得出前9行有1+2+3+4+5+6+7+8+9=45个偶数,∴第9行最后一个数为90,∴第10行第5个数是90+2×5=100,故选:B.54.(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是()A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n【答案】A【解答】解:∵单项式:x,3x2,5x3,7x4,9x5,…,∴第n个单项式为(2n﹣1)x n,故选:A.55.(2022•徐汇区校级自主招生)设x1,x2,x3,…,x100是整数,且满足下列条件:①﹣1≤x i≤2,i=1,2,3, (100)②x1+x2+x3+…+x100=20;③x12+x22+x32+…+x1002=100,则x13+x23+x33+…+x1003的最小值和最大值的和为.【答案】160【解答】解:由题意可设x1,x2,x3,…,x100中有a个﹣1,b个0,c个1,d个2,则a+b+c+d=100,﹣a+c+2d=20,a+c+4d=100,可得a=40﹣d,b=3d,c=60﹣3d,∴x13+x23+x33+…+x1003=﹣a+c+8d=20+6d,由,解得:0≤d≤20,∴当d=0时,x13+x23+x33+…+x1003的最小值为20,当d=20时,x13+x23+x33+…+x1003的最大值为140.∴x13+x23+x33+…+x1003的最小值和最大值的和为160.故答案为:160.56.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为a n,且满足+=.则a4=,a2022=.【答案】【解答】解:由题意可得:a1=2=,a2==,a3=,∵+=,∴2+=7,∴a4==,∵=,∴a5=,同理可求a6==,•∴a n=,∴a2022=,故答案为:,.57.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是.【答案】(10,18)【解答】解:∵第n行的最后一个数是n2,第n行有(2n﹣1)个数,∴99=102﹣1在第10行倒数第二个,第10行有:2×10﹣1=19个数,∴99的有序数对是(10,18).故答案为:(10,18).类型二图形规律58.(2022•济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.400【答案】B【解答】解:观察图形可知:摆第1个图案需要4个圆点,即4+3×0;摆第2个图案需要7个圆点,即4+3=4+3×1;摆第3个图案需要10个圆点,即4+3+3=4+3×2;摆第4个图案需要13个圆点,即4+3+3+3=4+3×3;…第n个图摆放圆点的个数为:4+3(n﹣1)=3n+1,∴第100个图放圆点的个数为:3×100+1=301.故选:B59.(2022•广州)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为()A.252B.253C.336D.337【答案】B【解答】解:由题意知,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,第n个图形需要6n+2(n﹣1)=(8n﹣2)根小木棒,当8n﹣2=2022时,解得n=253,故选:B.60.(2022•江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【解答】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.61.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.62.(2022•黑龙江)如图所示,以O为端点画六条射线OA,OB,OC,OD,OE,OF,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线上.【答案】OC【解答】解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.。
2021中考数学复习 考点提分训练——专题三十三:勾股定理一、选择题1.在中,若斜边,则等于 A. 6 B. 9 C. 12 D. 182.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是A. 6B. 8C. 10D. 123.已知一轮船以18 n mile/h 的速度从港口A 出发向西南方向航行,另一轮船以24 n mile/h 的速度同时从港口A 出发向东南方向航行,离开港口1.5 h 后,两轮船相距( )A .30 n mileB .35 n mileC .40 n mileD .45 n mile4.如果梯子的底端离建筑物底部8米,则17米长的梯子可以达到建筑物的高度是( )A .12米B .13米C .14米D .15米5.如果下列各组是三角形的三边,那么不能组成直角三角形的一组数是A. 9,40,41B. 5,12,13C. ,,D. 8,24,256. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )A. ab=h 2B. a 2+b 2=2h 2C. a 1+b 1=h 1D. 21a +21b =21h 7. 如图,是一段楼梯,高是,斜边是,如果在楼梯上铺地毯,那么至少需要地毯( )A. B. C. D.8.如图,△ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D ,则BD的长为()A.B.C.D.9.如图,有一个圆锥,高为8cm,底面直径为12cm.在圆锥的底边B点处有一只蚂蚁,它想吃掉圆锥顶部A处的食物,则它需要爬行的最短路程是( )A.8cmB.9cmC. 10cmD. 11cm10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°,②∠ADE=∠CDE,③AE=2BE,④若AB=2CD,则AD2=BC2+CD2,其中正确结论的个数是()A.1 B.2 C.3 D.411.今年9月22日是第三个中国农民丰收节,小彬用3D打印机制作了一个底面周长为20cm,高为10cm的圆柱粮仓模型,如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为()A.20πcm B.40πcm C.10cm D.20cm12.如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的值不可能为()A.5 B.8 C.D.13.如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树断裂之前的高度为()A.10米B.16米C.15米D.14米14.已如长方体的长2cm、宽为1cm、高为4cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是()A.cm B.5cm C.cm D.4.5cm15.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是A. 5米B. 6米C. 7米D. 8米二.填空题1.在中,a::3,,则______.2.直角三角形一直角边的长是3,斜边长是5,则此直角三角形的面积为.3.如果一个直角三角形的三边为三个连续偶数,那么它的三边长为 . 4.如图是一个长方体,则AB=____,阴影部分的面积为____.5.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为 .6. 如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是______.ABDCE7.如图,长方体的长为15cm,宽为10cm,高为20cm,点B距离C点5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则蚂蚁爬行的最短距离是______cm.8.如图,在△ACB中,∠C=90°,AB的垂直平分线分别交BC、AB于点M、N,BC=8,AC =4,则MC的长度为.9.如图,在△ABC中,AB=5,BC=12,AC=13,三条角平分线相交于点P,则点P到AB的距离为.10.如图,Rt△ABC中,∠ACB=90°,BC=3,AC=4.以AB为边在点C同侧作正方形ABDE,则图中阴影部分的面积为.11.如图,在5×5的方格中,有一个正方形ABCD,假设每一个小方格的边长为1个单位长度,则正方形ABCD的边长为.12.如图,在△ABC中,∠BAC=90°,AB=AC,△ABC的三个顶点在互相平行的三条直线l1,l2,l3上,且l1,l2之间的距离是1,l2,l3之间的距离是2,则BC的长度为.三、解答题1.设一个直角三角形的两条直角边长为a、b,斜边上的高为h,斜边长为c,试判断以c+h,a+b,h为边的三角形的形状2.如图,四边形ABCD中,AB⊥AD,已知AD=6cm,AB=8cm,CD=26cm,BC=24cm,求四边形ABCD的面积.3.已知:如图,四边形ABCD,,,,,且求四边形ABCD的面积.4.如图所示,将穿好彩旗的旗杆垂直插在操场上,旗杆的高度为320 cm,在无风的天气里,彩旗自然下垂,如图所示.求彩旗下垂时最低处离地面的最小高度h.彩旗完全展平时的尺寸如左图的长方形所示(单位:cm).5.如图,在△ABC中,AB=17cm,AC=8cm,BC=15cm,将AC沿AE折叠,使得点C与AB上的点D重合.(1)证明:△ABC是直角三角形;(2)求△AEB的面积.6.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB =0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?。
专题3全等的简单证明(二)四边形背景1.(2019武汉四调)如图,正方形ABCD的对角线交于点O,点E在边BC上,AE交OB于点F,过点B作AE的垂线BG交OC于点G.求证:OF=OG.2.如图,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G,求线段CE的长.3.如图,E,F分别是菱形ABCD的边AD,CD上的一点,AE,BF与AC边分别相交于点G,H,∠ABG= ∠CBH.求证:AG=CH;4.如图,在△ABC中,∠ABC=90°,D为AB上一点,E为直线BC上一点,以CD,CE为边作□CEFD,若AD=BC,BD=CE,求证:AEEF.OGFEDCBAGFEDCBAHGFE DCBAFEDCBA5.如图,在正方形ABCD 中,E 为CD 上一动点,(点E 不与C ,D 重合)且CD =nDE ,F ,G 分别为AD ,BC 上一动点,且AE ⊥FG 于点H ,求证:AE =FG .ABCD E FGH微专题3全等的简单证明(二)四边形背景—2019年四调热点(第23题第(1)问)考点精练1.(2019武汉四调)如图,正方形ABCD的对角线交于点O,点E在边BC上,AE交OB于点F,过点B作AE的垂线BG交OC于点G.求证:OF=OG.证明:证△AOF≌△BOG即可.2.如图,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G,求线段CE的长.解;∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10,.DE=EF,设EC=x,则DE=EF=8-x,在Rt△ABF中,BF=6,∴CF=BC-BF=10-6=4,在Rt△EFC中,则有:(8-x)2=x2+42,∴x=3,∴BC=3.3.如图,E,F分别是菱形ABCD的边AD,CD上的一点,AE,BF与AC边分别相交于点G,H,∠ABG= ∠CBH.求证:AG=CH;证明:易证△ABG≌△CBH,∴AG=CH.4.如图,在△ABC中,∠ABC=90°,D为AB上一点,E为直线BC上一点,以CD,CE为边作□CEFD,若AD=BC,BD=CE,求证:AEEF.OGFEDCBAGFEDCBAHGFE DCBAA BCDEF证明:连接AF .易证△ADP ≌△CBD ,∴AF =CD ,∠CDB =∠DFA ,∵四边形CDFE 为平行四边形,∴EF =CD ,∠BCD =∠DFE ,∴AF =EF ,∠DFE +∠DFA =∠BCD +∠CDB =90°,∴∠AFE =90°,∵AF =FE ,∴AE.5.如图,在正方形ABCD 中,E 为CD 上一动点,(点E 不与C ,D 重合)且CD =nDE ,F ,G 分别为AD ,BC 上一动点,且AE ⊥FG 于点H ,求证:AE =FG .证明:过点G 作GK ⊥AD 于点K ,∵四边形ABCD 是正方形,∴∠DAB =∠B =∠GEA =90°,AB =AD .,∴四边形ABGK 是矩形,∴AB =GK =AD ,FG ⊥AE ,∴∠AHF =90,∴∠DAE +∠AFH =90°,∠AFH +∠FGK =90°,∴∠DAE =∠FGK ,∵∠D =∠GKF =90°,∴△ADE ≌△GKF (ASA ),∴AE =FG .K HG F E D CBA。
中考数学一轮复习专题突破练习—一元二次方程及其应用一、单选题1.(2022·全国九年级课时练习)下列方程是一元二次方程的是( ) A .20ax bx c ++=B .()223232x x x -=-C .213x x-=D .242x x x -= 【答案】D 【分析】根据一元二次方程的概念判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程. 【详解】解:A 、20ax bx c ++=,a ≠0时,是一元二次方程,故此选项错误;B 、()223232x x x -=-,整理得:-2x +6=0,是一元一次方程,故此选项错误;C 、213x x-=,是分式方程,故此选项错误; D 、242x x x -=,是一元二次方程,故此选项正确; 故选:D .2.(2022·全国九年级课时练习)下列各数是方程212x x -=的根的是( ) A .3x = B .4x =C .5x =D .10x =【答案】B 【分析】分别将3x =,4x =,5x =,10x =代入方程中,如果方程左右两边相等,那么此时的值即为方程的解. 【详解】解:将3x =,4x =,5x =,10x =代入方程中, 可得当4x =时,左边=右边, 故4x =是方程212x x -=的根, 故选B .3.(2022·全国九年级课时练习)已知方程2(3)210k x x -++=有两个实数根,则k 的取值范围是( ) A .4k < B .4k ≤C .4k <且3k ≠D .4k ≤且3k ≠【答案】D 【分析】若一元二次方程有两个实数根,则根的判别式△=b 2-4ac ≥0,建立关于k 的不等式,求出k 的取值范围.还要注意二次项系数不为0. 【详解】解:∵方程有两个实数根,∴30k -≠且22Δ4241(3)0b ac k =-=-⨯⨯-≥, 解得4k ≤且3k ≠, 故选D .4.(2022·全国九年级课时练习)一元二次方程24410x x -+=的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根D .有两个不相等的实数根【分析】根据一元二次方程根的判别式可直接进行求解. 【详解】解:∵2Δ(4)4410=--⨯⨯=,∴一元二次方程24410x x -+=有两个相等的实数根. 故选C .5.(2022·全国九年级课时练习)用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 【答案】B 【分析】根据配方的步骤计算即可解题. 【详解】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确, 故选:B6.(2022·珠海市九洲中学九年级一模)已知关于x 的一元二次方程2210-+=ax x 有两个不相等的实数根,则实数a 的取值范围是( ) A .1a = B .1a >且0a ≠ C .1a <且0a ≠ D .1a ≤或0a ≠【答案】C由关于x 的一元二次方程2210-+=ax x 有两个不相等的实数根,即可得判别式△0>以及0a ≠,由此即可求得a 的范围.【详解】解:关于x 的一元二次方程2210-+=ax x 有两个不相等的实数根,∴△224(2)41440b ac a a =-=--⨯⨯=->,解得:1a <,方程2210-+=ax x 是一元二次方程,0a ∴≠,a ∴的范围是:1a <且0a ≠.故选:C .7.(2022·全国九年级课时练习)已知一个三角形的一边长为5,其他两边的长是方程(2)(4)0x x --=的根,则这个三角形的周长是( ) A .9 B .11C .11或13D .9或11【答案】C 【分析】首先解一元二次方程,再根据三角形三边关系的性质,分三种情况分析,通过计算即可得到答案. 【详解】∵(2)(4)0x x --=, ∴12x =,24x =当三角形的三边长分别为2,4,5时,其周长为11;当三角形的三边长分别为4,4,5时,其周长为13; 当三角形的三边长分别为2,2,5时,无法构成三角形; ∴这个三角形的周长是11或13. 故选:C .8.(2022·全国九年级课时练习)宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( ) A .180(20)501089010x x -⎛⎫--= ⎪⎝⎭B .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭ C .(18020)501089010x x ⎛⎫+--= ⎪⎝⎭D .(180)5050201089010x x ⎛⎫+--⨯= ⎪⎝⎭【答案】A 【分析】设房价定为x 元,根据利润=房价的净利润×入住的房间数可得. 【详解】解:设房价定为x 元, 根据题意,得()18020501089010x x -⎛⎫--= ⎪⎝⎭故选A .9.(2022·全国九年级课时练习)如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为( )A .1B .1.5C .2D .2.5【答案】A 【分析】剩余部分可合成长为(30-x )m ,宽为(20-x )m 的矩形,利用矩形的面积公式结合草地面积为551m 2,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论. 【详解】解:根据题意,得(30)(20)551x x --=, 整理,得250490x x -+=, 解得121,49x x ==,∵当249x =时,20290x -=-<, ∴249x =舍去, ∴小路宽x 的值为1. 故选A .10.(2022·全国九年级课时练习)某市2012年有人口100万,2013年人口增长率为5%,“单独二胎”政策开放后,2014年人口增长率约为7%,若2013年、2014年人口年平均增长率为x ,则( ) A .6%x = B .6%x >C .6%x <D .不能确定【答案】C【分析】根据题意可得等量关系为:2012年的人口数×(1+增长率)2=2014年的人口数,把相关数值代入即可列出方程.【详解】依题意列方程为2x+=++,100(1)100(15%)(17%)整理得2x+=++=,(1)(15%)(17%) 1.1235++=>,∵(16%)(16%) 1.1236 1.1235∴6%x<.故选:C二、填空题11.(2022·沭阳县怀文中学九年级月考)国家统计局统计数据显示,我国快递业务收入逐年增加.2018年至2020年我国快递业务收入由5000亿元增加到7500亿元.设我国2018年至2020年快递业务收入的年平均增长率为x.则可列方程为________________.【答案】()2+=x500017500【分析】根据题意可得等量关系:2018年的快递业务量×(1+增长率)2=2020年的快递业务量,根据等量关系列出方程即可.【详解】解:设我国2018年至2020年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故答案为:5000(1+x)2=7500.12.(2020·沭阳县怀文中学九年级月考)已知关于x的方程x2﹣14=0有两个不相等的实数根,则k的取值范围是_______.【答案】k≥0【分析】根据一元二次方程根的判别式列出不等式,解不等式即可.【详解】解:∵关于x的方程x2﹣14=0有两个不相等的实数根,∴2﹣4×1×(﹣14)>0且k≥0,k+1>0且k≥0,解得k≥0,故答案为:k≥0.13.(2020·沭阳县怀文中学九年级月考)九年级(1)班部分学生去秋游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去秋游的人数是____人.【答案】9【分析】设同去春游的人数是x人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x人,依题意,得:12x (x ﹣1)=36, 解得:x 1=9,x 2=﹣8(舍去). 故答案是:9.14.(2020·沭阳县怀文中学九年级月考)关于x 的一元二次方程(m ﹣2)x 2+3x +m 2﹣4=0有一个解是0,则m 的值为_____. 【答案】﹣2 【分析】把x =0代入方程(m ﹣2)x 2+3x +m 2﹣4=0中,解关于m 的一元二次方程,注意m 的取值不能使原方程对二次项系数为0. 【详解】解:把x =0代入方程(m ﹣2)x 2+3x +m 2﹣4=0中,得 m 2﹣4=0, 解得m =﹣2或2,当m =2时,原方程二次项系数m ﹣2=0,舍去, 故答案是:﹣2.15.(2022·全国九年级课时练习)认真观察下列方程,指出使用何种方法求解比较适当.(1)245x =,应选用________法; (2)2165x x +=,应选用_______法;(3)2(2)(1)(2)(4)x x x x +-=++,应选用__________法; (4)22330x x --=,应选用__________法.【答案】直接开平方 配方 因式分解 公式【分析】(1)将方程的二次项系数化为1得到254x =,用直接开平方法求解;(2)根据配方法在方程两边同时加上一次项系数一半的平方,左边得到完全平方式,右边为常数,选用配方法;(3)先移项,然后提出公因式(2)x +,用因式分解法;(4)二次项系数不为1,不易用配方法和因式分解法,选公式法. 【详解】解:(1)可直接开平方,故选择直接开平方法;(2)2165x x +=的两边都加上64,易配方得2(8)69x +=,故选配方法; (3)方程2(2)(1)(2)(4)x x x x +-=++,移项得2(2)(1)(2)(4)0x x x x +--++=,直接提公因式(2)x +求解即可,故选因式分解法;(4)22330x x --=,二次项系数不为1,不易用配方法和因式分解法,故应选用公式法求解.故答案为:直接开平方;配方;因式分解;公式 三、解答题16.(2022·福建省福州杨桥中学九年级开学考试)解方程:230x x +-=.【答案】12x x ==【分析】根据公式法解一元二次方程即可. 【详解】解:1,1,3a b c ===-2411213b ac ∴∆=-=+=x ∴==12x x ∴=. 17.(2020·沭阳县怀文中学九年级月考)解方程:(1)3x 2﹣4x =1;(2)(3y ﹣2)2=(2y ﹣3)2.【答案】(1)x 1x 2(2)y 1=1,y 2=﹣1 【分析】(1)由题意先把方程化为一般式,然后利用求根公式解方程;(2)根据题意先移项得到(3y ﹣2)2﹣(2y ﹣3)2=0,然后利用因式分解法解方程.【详解】解:(1)3x 2﹣4x ﹣1=0,∵Δ=(﹣4)2﹣4×3×(﹣1)=28>0,∴x 273,∴x 1x 2 (2)(3y ﹣2)2﹣(2y ﹣3)2=0,(3y ﹣2+2y ﹣3)(3y ﹣2﹣2y +3)=0,3y ﹣2+2y ﹣3=0或3y ﹣2﹣2y +3=0,解得y 1=1,y 2=﹣1.18.(2022·贵阳市第十九中学九年级月考)随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,某省2018年公共充电桩的数量为2万个,2020年公共充电桩的数量为2.88万个.(1)求2018年至2020年该省公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计2022年该省将新增多少万个公共充电桩?【答案】(1)2018年至2020年该省公共充电桩数量的年平均增长率为20%.(2)预计2022年该省将新增0.576万个公共充电桩.【分析】(1)设2018年至2020年该省公共充电桩数量的年平均增长率为x,根据该省2018年及2020年公共充电桩,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据该省2022年公共充电桩数量=该省2020年公共充电桩数量×增长率,即可求出结论.【详解】解:(1)设2018年至2020年该省公共充电桩数量的年平均增长率为x,依题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).答:2018年至2020年该省公共充电桩数量的年平均增长率为20%.(2)2.88×20%=0.576(万个).答:预计2022年该省将新增0.576万个公共充电桩.19.(2022·重庆市育才中学九年级开学考试)中秋来临之际,重百超市看准商机,连续两周进行节日大促销活动,该超市从厂家购进A,B两种月饼进行销售,每周都用25000元购进250盒A种月饼和150盒B种月饼.重百超市在第一周销售时,每盒A 种月饼的售价比每盒B 种月饼的售价的2倍少10元,且两种月饼在一周之内全部售完,总盈利为5000元.(1)求重百超市在第一周销售B 种月饼每盒多少元?(2)重百超市在第二周销售时,受到各种因素的影响,每盒A 种月饼的售价比第一周A 种月饼的售价每盒增加了53%m ,但A 种月饼的销售盒数比第一周A 种月饼的销售盒数下降了%m ;每盒B 种月饼的售价比第一周B 种月饼的售价每盒下降了%m ,但B 种月饼的销售盒数与第一周B 种月饼的销售盒数相同,结果第二周的总销售额为30000元,求m 的值.【答案】(1)重百超市在第一周销售B 种月饼每盒50元,则销售A 种月饼每盒为90元;(2)m =20【分析】(1)设重百超市在第一周销售B 种月饼每盒x 元,则销售A 种月饼每盒为(2x -10)元,然后根据题意可列方程求解;(2)由(1)及题意可知第二周A 种月饼销售价为%59013m ⎛⎫+ ⎪⎝⎭元,销量为()2501m -%盒,而B 种月饼销售额为()150501m ⨯-%元,进而根据题意可列方程求解.【详解】解:(1)设重百超市在第一周销售B 种月饼每盒x 元,则销售A 种月饼每盒为(2x -10)元,由题意得:()250210150250005000x x -+-=,解得:50x =,∴销售A 种月饼每盒为2×50-10=90(元);答:重百超市在第一周销售B 种月饼每盒50元,则销售A 种月饼每盒为90元;(2)由(1)及题意得:()()5901250115050130000%3m m m ⎛⎫+⨯-+⨯-= ⎪⎝⎭%%, 化简得:2200m m -=,解得:1220,0m m ==(不符合题意,舍去),∴m =20.20.(2022·西安高新一中实验中学九年级开学考试)解方程:(1)24142x x x x +=-+ (2)22530x x +-=(3)2(2)36x x +=+【答案】(1)原方程无解;(2)112x =,23x =-;(3)12x =-,21x =.【分析】(1) 方程两边都乘以公分母得()2424x x x x +-=-,解方程得2x =-检验分母为零即可;(2)因式分解得()()2310x x +-=分别解每一个一元一次方程即可;(3)先因式分解()()210x x +-=在分别解每一个一元一次方程即可.【详解】解:(1)24142x x x x +=-+ , 方程两边都乘以()()22x x +-得()2424x x x x +-=-,整理得24x =-,解得2x =-,当2x =-时,()()()()2222220x x +-=-+--=,∴2x =-时原方程的增根,∴原方程无解;(2)22530x x +-=,因式分解得()()2130x x -+=,当210x -=,解得112x =,当30x +=,解得23x =-;∴方程的解为112x =,23x =-;(3)2(2)36x x +=+,()2(2)320x x -++=, ()()2230x x ++-=,()()210x x +-=,当20x +=,解得12x =-,当10x -=,解得21x =.∴方程的解为12x =-,21x =.21.(2022·广州市黄埔华南师范大学附属初级中学)已知:关于x 的方程()228440--+=x m x m 有两个不相等的实数根1x ,2x .(1)求实数m 的取值范围.(2)若方程的两个实数根1x ,2x 满足1212x x x x +=,求出符合条件的m 的值.【答案】(1)1m <;(2)2m =-【分析】(1)根据根的判别式大于零求解即可;(2)根据根与系数的关系及根的定义得出关于m 的方程求解即可;【详解】解:(1)由题意知,22(84)440m m ∆=--⨯>即64640m ->∴1m <;(2)由根与系数关系得:1284x x m +=-,2124x x m =,∵1212x x x x +=∴2844m m -=,∴220m m +-=,解得,12m =- ,21m =∵1m <,∴2m =-.22.(2022·陕西九年级月考)用一块长8dm ,宽6dm 的矩形薄钢片制作成一个无盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).(1)若要做成的盒子的底面积为15dm 2时,求截去的小正方形的边长;(2)当这个无盖的长方体盒子的侧面积与底面积之比为5:6时,求截去的小正方形的边长.【答案】(1)32dm;(2)1dm.【分析】(1)设截去的小正方形的边长为x dm,则做成的盒子的底面为长(8﹣2x)dm,宽(6﹣2x)dm的长方形,根据做成的盒子的底面积为215dm,即可得出关于x 的一元二次方程,解之取其符合题意的值,即可得出截去的小正方形的边长;(2)设截去的小正方形的边长为y dm,则做成的盒子的底面为长(8﹣2y)dm,宽(6﹣2y)dm的长方形,根据这个无盖的长方体盒子的侧面积与底面积之比为5:6,即可得出关于y的一元二次方程,解之取其符合题意的值,即可得出截去的小正方形的边长.【详解】解:(1)设截去的小正方形的边长为x dm,则做成的盒子的底面为长(8﹣2x)dm,宽(6﹣2x)dm的长方形,依题意得:(8﹣2x)(6﹣2x)=15,整理得:4x2﹣28x+33=0,解得:x1=32,x2=112,当x=32时,6﹣2x=6﹣2×32=3,符合题意,当x=112时,6﹣2x=6﹣2×112=﹣5,不合题意,舍去,答:截去的小正方形的边长为32 dm.(2)设截去的小正方形的边长为y dm,则做成的盒子的底面为长(8﹣2y)dm,宽(6﹣2y)dm的长方形,依题意得:2×[(8﹣2y)y+(6﹣2y)y]:(8﹣2y)(6﹣2y)=5:6,整理得:17y2﹣77y+60=0,解得:y1=6017,y2=1,当y=6017时,6﹣2y=6﹣2×6017=﹣1817,不合题意,舍去,当y=1时,6﹣2y=6﹣2×1=4,符合题意,答:截去的小正方形的边长为1dm.23.(2022·宁波市海曙外国语学校九年级开学考试)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量与销售单价基本满足一次函数关系,并且当销售单价为26元时,每天销售量28台;当销售单价为32元时,每天销售量16台,设台灯的销售单价为x(元),每天的销售量为y(台).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(3)若该商场每天想获得150元的利润,在保证销售量尽可能大的前提下,应将销售单价定为多少元?【答案】(1)y=-2x+80;(2)单价定为30元时,每天的利润最大,最大利润是200元;(3)25元【分析】(1)设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;(2)根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案;(3)根据题意结合销量×每本的利润=150,进而求出答案.【详解】解:(1)设y=kx+b,由题意2628 3216k bk b+=⎧⎨+=⎩,解得:280kb=-⎧⎨=⎩,∴y=-2x+80.(2)设每天的利润为W,W=(x-20)(-2x+80)=-2x2+120x-1600=-2(x-30)2+200,此时当x=30时,w最大=200,答:当销售单价定为30元时,每天的利润最大,最大利润是200元.(3)根据题意得(x-20)(-2x+80)=150,整理得:x2-60x+875=0,(x-25)(x-35)=0,解得:x1=25,x2=35,∵销售量尽可能大,∴x=25答:每本纪念册的销售单价是25元.。
考点07.一元二次方程(精讲)【命题趋势】一元二次方程以考查一元二次方程的相关概念、解一元二次方程、根的判别式、韦达定理(根与系数的关系)、一元二次方程的应用题为主,既有单独考查,也有和二次函数结合考察最值问题,年年考查,分值为15分左右。
预计2024年各地中考还将继续考查,复习过程中要多注意各基础考点的巩固,特别是解法中公式法的公式,不要和后续二次函数顶点坐标的纵坐标公式记混了。
【知识清单】1:一元二次方程的相关概念(☆☆)1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。
2)一般形式:2(0)0ax bx c a ++=≠,其中:a 是二次项系数,b 是一次项系数,c 是常数项。
3)一元二次方程的解:使一元二次方程左右两边相等的未知数的值,就是该一元二次方程的解。
2:一元二次方程的解法(☆☆☆)1)直接开平方法:适合于2()()0x a b b ±=≥或22()()ax b cx d ±=±形式的方程。
2)配方法:(1)化二次项系数为1;(2)移项,使方程左边只含有二次项和一次项,右边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)把方程整理成2()()0x a b b ±=≥的形式;(5)运用直接开平方法解方程。
3)因式分解法:基本思想是把方程化成()()0ax b cx d ++=的形式,可得0ax b +=或0cx d +=。
4)公式法:(1)把方程化为一般形式,即20ax bx c ++=;(2)确定,,a b c 的值;(3)求出24b ac -的值;(4)将,,a b c 的值代入2b x a-±=即可。
5)根的判别式:一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式。
6)一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根。
中考一轮专题训练——一元一次不等式(基础测试)
(一)填空题(每空2分,共32分)
1.已知a <b <0,用不等号连结下列各题中的两式:
(1)a -5_____b -5; (2)-
23a _____-2
3b ; (3)b -a _____0; (4)|a |_____|b |; (5)a 3_____b 3; (6)a 1_____b
1. 2.x 的23与5的差不小于-4的相反数,用不等式表示为_____. 3.若x <a <0,则把x 2 ,a 2 ,ax 从小到大排列是_______.
4.已知不等式mx -n >0,当m ____时,不等式的解集是x <
m n ;当m ____时,不等式的解集是x >m
n . 5.当x ____时,代数式
432-x 的值是负数;当x _____时,代数式753x -的值是非负数. 6.不等式4 x -3≤7的正整数解是_______. 7.不等式组⎪⎩⎪⎨⎧<->+2
33152x x 的整数解的和是_______,积是_______. 8.不等式-1<2
13-x ≤4的解集是_______. (二)选择题(每小题3分,共24分)
9.下列各式中一定成立的是…………………………………………( )
(A )a >-a (B )-4a <-a (C )a -3<a +3 (D )a 2>-a 2
10.由m >n ,得am ≤an 的条件是…………………………………( )
(A )a >0 (B )a <0 (C )a ≥0 (D )a ≤0
11.若|2 x -5|=5-2 x ,则x 的取值是…… ……………………( )
(A )x >25 (B )x ≥25 (C )x <25 (D )x ≤2
5 12.若方程5 x -2a =8的解是非负数,则a 的取值是…………………( )
(A )a >-4 (B )a <-4 (C )a ≥-4 (D )a ≤-4
13.若a <b ,则不等式组⎩⎨⎧><b
x a x …………………………………( )
(A )解集是x <a (B )解集是x >b (C )解集是b <x <a (D )无解
14.使不等式x +1>4 x +5成立的最大整数是………………………( )
(A )1 (B )0 (C )-1 (D )-2
15.不等式组⎪⎩
⎪⎨⎧<->+x x x 4103160103的最小整数解是…………………………( ) (A )-4 (B )-3 (C )-2 (D )7
16.若不等式组⎩
⎨⎧>≤<k x x 21有解,则k 的取值范围是……………………( ) (A )k <2 (B )k ≥2 (C )k <1 (D )1≤k <2
(三)解下列不等式或不等式组(每小题4分,共20分)
17.5-
3x ≥321-412+x . 18.313+y -1<537-y +15
)2(2-y .
19.⎪⎪⎩⎪⎪⎨⎧-<-+<-.3212112)2(31x x x x 20.⎪⎪⎩⎪⎪⎨⎧-≥-+-+≤--).4(2)4(53
54543327x x x x x
21.⎪⎩
⎪⎨⎧-<-<--<-.12413)2(1432x x x x
(四)解答题(每小题8分,共24分)
22.当2(k -3)<
310k -时,求关于x 的不等式4)5(-x k >x -k 的解集.
23.求满足321-814+y ≤5-3
y 且小于-7的整数y .
24.已知满足不等式3(x -2)+5<4(x -1)+6的最小整数是方程2 x -ax =3的解,
求代数式4a -
a
14的值.
参考答案
(一)填空题(每空2分,共32分)
1.已知a <b <0,用不等号连结下列各题中的两式:
(1)a -5_____b -5; (2)-
23a _____-2
3b ; (3)b -a _____0; (4)|a |_____|b |; (5)a 3_____b 3; (6)a 1_____b 1. 【提示】根据不等式的基本性质及式子的意义判断.
【答案】(1)<;(2)>;(3)>;(4)>;(5)<;(6)>.
2.x 的
23与5的差不小于-4的相反数,用不等式表示为_____. 【提示】“不小于”就是“大于或等于”.【答案】23x -5≥4. 3.若x <a <0,则把x 2 ,a 2 ,ax 从小到大排列是_______.【答案】a 2<ax <x 2.
4.已知不等式mx -n >0,当m ____时,不等式的解集是x <
m n ;当m ____时,不等式的解集是x >m
n .【答案】m <0;m >0. 5.当x ____时,代数式432-x 的值是负数;当x _____时,代数式7
53x -的值是非负数. 【答案】x <23;x ≤5
3. 6.不等式4 x -3≤7的正整数解是_______.【答案】2,1.
7.不等式组⎪⎩⎪⎨⎧<->+2
33152x x 的整数解的和是_______,积是_______.【答案】7,0. 8.不等式-1<2
13-x ≤4的解集是_______.【答案】-31<x ≤3. (二)选择题(每小题3分,共24分)
9.【提示】(D )中当a =0时,不等式不成立.换言之,此不等式仅当a ≠0时才成立.【答案】C . 10.【答案】D .
11. 【提示】根据绝对值的意义,得5-2 x ≥0.【答案】D .
12.【提示】根据题意,得
5
82+a ≥0.【答案】C . 13.【答案】D . 14.【提示】根据题意,得582+a ≥0.【答案】D . 15.【提示】先解不等式组,再找出解集中的最小整数.【答案】B .
16.【答案】A .
(三)解下列不等式或不等式组(每小题4分,共20分)
17.5-
3x ≥321-412+x .【答案】x ≥-102
1. 18.313+y -1<537-y +15)2(2-y .【答案】y >8
3. 19.⎪⎪⎩⎪⎪⎨⎧-<-+<-.3212112)2(31x x x x 【答案】-1<x <75.
20.⎪⎪⎩⎪⎪⎨⎧-≥-+-+≤--).4(2)4(53
54543327x x x x x 【答案】3≤x ≤9. 21.⎪⎩
⎪⎨⎧-<-<--<-.12413)2(1432x x x x 【答案】31<x <321. (四)解答题(每小题8分,共24分)
22.当2(k -3)<310k -时,求关于x 的不等式4
)5(-x k >x -k 的解集. 【提示】先解关于k 的不等式,求出k 的取值,再根据k 的取值,解关于x 的不等式.
【答案】解2(k -3)<
310k -,得k <4,所以x <4
-k k . 23.求满足321-814+y ≤5-3
y 且小于-7的整数y . 【提示】即求不等式组⎪⎩⎪⎨⎧-<-≤+-735814213y y y 的整数解.
【答案】-94
3≤y <-7,所以 y =-8,-9. 24.已知满足不等式3(x -2)+5<4(x -1)+6的最小整数是方程2 x -ax =3的解,求代数式4a -
a 14的值. 【提示】先求不等式解集中的最小整数,再代入方程求出a 的值.
【答案】x >-3,最小整数x =-2,a =
2
7,10.。