第四章---树的遍历
- 格式:ppt
- 大小:250.00 KB
- 文档页数:28
数据结构》课程教案课程类别:专业基础课适用专业:计算机应用技术授课学时:32学时课程学分:4学分一、课程性质、任务课程性质:《数据结构》是计算机应用技术专业的必修课程,也是研究如何对数据进行组织和设计、如何编制高效率的处理程序的一门基础学科。
课程任务:1、学习计算机程序编写中的数据组织和设计;2、数据的物理结构和逻辑结构;3、经典算法的设计和算法效率的分析。
二、课程培养目标:(一)知识目标通过理论学习和程序的编写,使学生系统地掌握程序中数据的组织、数据的物理结构和逻辑结构,在重要算法的实现上逐步提高编程能力。
(二)技能目标通过课程的学习,让学生掌握重要的数据结构,对数据的逻辑结构和物理结构有深入的理解,同时能编写出使用重要算法知识的程序,并运用所学知识编写程序解决实际中的问题。
(三)素质目标通过课程的学习,让学习学会自学,培养学生的自学能力、克服学习困难的能力,同时让学生掌握计算机编程中数据结构的学习方法,并养成严谨、认真、仔细、踏实、上进的好习惯。
三、选用教材与参考资料教材版本信息《数据结构与算法简明教程(Java语言版)》清华大学出版社叶小平陈瑛主编教材使用评价本教材经过两年的使用,得到了读者一致认可,同时也在不断改进,适合高职高专教学使用,内容基础、重难点突出,符合高职高专“理论够用、注重实践”的要求。
选用的参考资料严蔚敏•吴伟民《数据结构(C语言版)》•清华大学出版社.2009年版殷人昆.《数据结构》•清华大学出版社.1999年版《C语言程序设计》•石油大学出版社《C语言程序设计》•中国石油大学出版社.2006年版四、本课程与其他课程的联系与分工先修课程《离散数学》、《程序设计基础》后续课程《面向对象技术》、《操作系统》与其他课程配合与取舍情况《数据结构》与《离散数学》知识点结合较多,《离散数学》讲求逻辑思维能力的培养和训练,《数据结构》中逻辑结构的学习也需要逻辑思维能力做铺垫。
同时《程序设计基础》课程也为学习《数据结构》打下了基础,对于本课程的教材,我们采用C语言来描述数据结构,因此程序设计基础也是以C语言作为的对象。
内蒙古科技大学本科生课程设计说明书题目:数据结构课程设计——二叉树的遍历和应用学生姓名:学号:专业:班级:指导教师:2013年5月29日内蒙古科技大学课程设计说明书内蒙古科技大学课程设计任务书I内蒙古科技大学课程设计说明书目录内蒙古科技大学课程设计任务书..............................................................错误!未定义书签。
目录 (II)第一章需求分析 (3)1.1课程设计目的 (3)1.2任务概述 (3)1.3课程设计内容 (3)第二章概要设计 (5)2.1设计思想 (5)2.2二叉树的遍历 (5)2.3运行界面设计 (6)第三章详细设计 (7)3.1二叉树的生成 (7)3.2二叉树的先序遍历 (7)3.3 二叉树的中序遍历 (8)3.4二叉树的后续遍历 (8)3.5主程序的设计 (8)第四章测试分析 (11)4.1二叉树的建立 (11)4.2二叉树的先序、中序、后序遍历 (11)第五章课程设计总结 (12)附录:程序代码 (13)致谢 ···········································································································错误!未定义书签。
⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
树的遍历实验报告简介树是一种重要的数据结构,广泛应用于计算机科学和其他领域。
在树的结构中,每个节点可以有零个或多个子节点。
树可以是空的(零个节点),也可以由一个称为根的节点以及零个或多个附加节点组成。
树的遍历是指按照某种方式访问树的所有节点。
本实验旨在实现树的遍历算法,并通过编写代码进行验证和测试。
实验目的1. 理解树的基本结构和遍历方式;2. 掌握树的深度优先遍历和广度优先遍历算法;3. 使用编程语言实现树的遍历算法,并验证算法的正确性。
实验过程树的深度优先遍历(DFS)深度优先遍历是一种递归算法,通过从根节点开始,依次访问每一个子节点,再递归地访问每个子节点的子节点,直到遍历到树的末端节点。
接下来我们以二叉树为例,进行深度优先遍历的实验。
1. 定义树节点类首先,我们定义一个树节点类,用于表示树的节点。
每个节点具有一个值和左右子节点。
pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None2. 构建二叉树接下来,我们构建一棵二叉树,用于测试深度优先遍历算法。
python构建二叉树root = Node(1)root.left = Node(2)root.right = Node(3)root.left.left = Node(4)root.left.right = Node(5)我们构建的二叉树如下所示:1/ \2 3/ \4 53. 实现深度优先遍历算法最后,我们实现深度优先遍历算法,并打印遍历结果。
pythondef dfs(root):if root is None:returnprint(root.value, end=' ')dfs(root.left)dfs(root.right)4. 运行结果运行深度优先遍历算法,并打印结果。
pythonprint("深度优先遍历结果:")dfs(root)输出结果如下:深度优先遍历结果:1 2 4 5 3树的广度优先遍历(BFS)广度优先遍历是一种逐层遍历的算法,通过从根节点开始,逐层遍历每个节点的子节点,直到遍历到树的末端节点。
树的遍历(先序、中序、后序详解) 树的遍历主要有三种
1、先序遍历:先遍历根节点,再遍历左节点,最后遍历右节点;
2、中序遍历:先遍历左节点,再遍历根节点,最后遍历右节点;
3、后序遍历:先遍历左节点,再遍历右节点,最后遍历根节点;
总结:先、中、后就表⽰根节点的遍历处于哪个位置,⽰总是先左节点后右节点。
例如先序遍历,“先”表⽰根节点最先遍历,再左节点,
最后右节点。
依此类推中序遍历,后序遍历。
接下来看⽰个题⽰,看⽰下你们是怎么做的。
我们以中序遍历为例来讲(每次以三个节点为⽰个整体):
⽰先从树的根节点开始即C F E
我们再依次来看,先看C,则以C为根节点的三个节点(即A C D)按中序遍历则为A C D。
故A放在C之前,把D放在C之后。
故A C D F E
再看A,由于以A为根节点的三个节点中其他两个没有,故看下⽰个D 同理可得B D
故把B放在D之前,即A C B D F E
类似可得中序遍历为A C B D F H E M G
这样是不是再也不怕树的遍历了。
树的遍历的三种方法树是一种非线性的数据结构,由节点和边组成的集合,节点代表实体,边代表节点之间的连接关系。
在树的操作中,遍历是一种重要的基本操作,它用于按照一定的顺序访问树中的所有节点。
树的遍历方法主要有三种:前序遍历、中序遍历和后序遍历。
下面将对这三种遍历方法进行详细的介绍。
一、前序遍历(Preorder Traversal)前序遍历是从根节点开始,按照根节点-左子树-右子树的顺序访问所有节点。
具体步骤如下:1.若树为空,则直接返回。
2.访问当前节点。
3.递归地前序遍历左子树。
4.递归地前序遍历右子树。
前序遍历的代码示例:```pythondef preorder(root):if root is None:returnprint(root.val)preorder(root.left)preorder(root.right)```二、中序遍历(Inorder Traversal)中序遍历是从左子树开始,按照左子树-根节点-右子树的顺序访问所有节点。
具体步骤如下:1.若树为空,则直接返回。
2.递归地中序遍历左子树。
3.访问当前节点。
4.递归地中序遍历右子树。
中序遍历的代码示例:```pythondef inorder(root):if root is None:returninorder(root.left)print(root.val)inorder(root.right)```三、后序遍历(Postorder Traversal)后序遍历是从左子树开始,按照左子树-右子树-根节点的顺序访问所有节点。
具体步骤如下:1.若树为空,则直接返回。
2.递归地后序遍历左子树。
3.递归地后序遍历右子树。
4.访问当前节点。
后序遍历的代码示例:```pythondef postorder(root):if root is None:returnpostorder(root.left)postorder(root.right)print(root.val)```以上是树的三种遍历方法的详细介绍及示例代码。
数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。