Globalstar Satellite Phased Array Antennas
- 格式:pdf
- 大小:424.33 KB
- 文档页数:4
45°准同轴微波多层过孔TDR仿真技术杨涛;宋庆辉;杜江坤【摘要】Quasi⁃coaxial structure is one of the frequently used connecting methods in microwave multilayer printed circuits,but its character may bring significant effects on system specifications when complex connections are employed.Study methods of quasi⁃coax⁃ial structure are limited to theoretical derivation and frequency⁃domain simulations at present. In the paper, modeling, simulation and analysis of 45°quasi⁃coaxial microwave multilayer via are made employing TDR simulation method,while dimensions of the via are also optimized.The structure obtains 50 Ω impedance characteristic and good microwave performance in wide frequency band,which verify the effectiveness of TDR simulation method when used for analysis of quasi⁃coaxial microwave multilayer via.%准同轴微波多层过孔是微波多层印制技术中常用的跨层互连形式,当互连结构较为复杂时,其微波性能会对系统指标构成较大影响,目前研究微波过孔的手段还主要局限于理论推导和频域仿真。
doi:10.3969/j.issn.1003-3114.2023.05.006引用格式:方一鸣,赵祥天,赵亚飞,等.低轨卫星信号捕获与跟踪技术综述[J].无线电通信技术,2023,49(5):816-825.[FANG Yiming,ZHAO Xiangtian,ZHAO Yafei,et al.A Survey on Low Earth Orbit Satellite Signal Acquisition and Tracking Technology [J].Radio Communications Technology,2023,49(5):816-825.]低轨卫星信号捕获与跟踪技术综述方一鸣,赵祥天,赵亚飞,孙耀华,彭木根(北京邮电大学信息与通信工程学院网络与交换技术国家重点实验室,北京100876)摘㊀要:低轨(Low Earth Orbit,LEO)卫星互联网相较于地面网络有更大的网络覆盖范围与更强的网络稳定性,有利于实现全球立体无缝网络覆盖,是未来6G 网络重要的发展趋势㊂低轨卫星相较于中高轨卫星具有更高的运行速度,因此,低轨卫星信号具有更大的多普勒频移和动态特性,而低轨卫星信号的高精度捕获与跟踪是低轨卫星通信的基础㊂随着相控阵天线在低轨卫星和卫星终端上的推广应用,多波束和跳波束技术也为信号的捕获与跟踪带来挑战㊂从低轨卫星信号互联网的信号特点出发,提出了信号捕获与跟踪过程中的技术挑战,重点阐述了现有捕获与跟踪方法的基本原理与适用范围,探讨了低轨卫星网络中信号捕获与跟踪技术的未来发展方向㊂关键词:低轨卫星互联网;信号捕获;信号跟踪;波束控制中图分类号:TN927.2㊀㊀㊀文献标志码:A㊀㊀㊀开放科学(资源服务)标识码(OSID):文章编号:1003-3114(2023)05-0816-10A Survey on Low Earth Orbit Satellite Signal Acquisition andTracking TechnologyFANG Yiming,ZHAO Xiangtian,ZHAO Yafei,SUN Yaohua,PENG Mugen(State Key Laboratory of Networking and Switching Technology,School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)Abstract :Compared with terrestrial networks,Low Earth Orbit (LEO)has larger network coverage and stronger network stability,which is beneficial to the realization of global three-dimensional seamless network coverage,and is an important direction trend of the fu-ture 6G network.LEO satellites have higher operating speeds compared to medium and high Earth orbit satellites.Therefore,LEO satel-lite signals have larger Doppler frequency shifts and dynamic characteristics.The high-precision acquisition and tracking of LEO satellite signals is the foundation of integrated satellite-terrestrial communication.With the promotion and application of phased array antennas in LEO satellites and satellite terminals,multi-beam and hopping beam technologies also pose challenges for signal acquisition and track-ing.This paper presents technical challenges in signal acquisition and tracking in view of signal characteristics of LEO satellite signal,focuses on basic principles and scope of application of existing acquisition and tracking methods,and finally discusses future develop-ment direction of signal acquisition and tracking technology in LEO satellite network.Keywords :LEO satellite internet;signal acquisition;signal tracking;beam control收稿日期:2023-06-03基金项目:中国博士后科学基金(2023M730337)FoundationItem :ChinaPostdoctoralScience Foundation(2023M730337)0 引言通信技术的价值在于为尽可能多的用户提供广泛㊁便捷㊁快速㊁稳定的网络覆盖㊂现有通信系统可以通过以光纤为代表的有线服务和以WiFi 为代表的无线服务来为用户提供低时延㊁大容量和高可靠的通信服务,但在较为偏远,且不适宜构建地面通信系统的地区存在覆盖不全面的问题,例如偏远山区㊁沙漠和海洋,无法提供有效的通信服务;另外由于地面设施相对固定,在发生自然灾害时,地面通信系统会受到影响而无法工作,这些问题导致现有地面系统无法完全满足全部通信要求㊂而处于高空的卫星已经在遥感㊁导航与检测领域证明其广覆盖㊁高可靠的特性,因此采用低轨(Low Earth Orbit,LEO)卫星网络进行通信可以实现通信的高质量与广泛覆盖,这也是通信网络发展的必然趋势[1-5]㊂在低轨卫星通信场景下,由于卫星载体的运动,会导致传输过程中接收机接收信号有较大的多普勒频移和多普勒频率变化率,这种高动态特性会导致接收机无法正常对信号进行接收,需要采取高性能的信号捕获与跟踪技术,实现信号同步,才能实现星间以及星地的信号正常传输,进而实现低轨卫星通信[6]㊂本文从低轨卫星互联网实际应用场景出发,探讨信号特点与挑战,重点分析阐述信号同步过程中信号捕获㊁跟踪与波束控制技术的特点与基本原理,最后展望未来低轨卫星通信场景下信号捕获与跟踪技术可能的发展趋势㊂1㊀低轨卫星互联网应用低轨卫星网络由于其距地面较近且覆盖范围大,因此有利于为较大范围内用户提供低时延㊁强稳定㊁高通信质量㊁高公平且资源利用率高的通信服务[5,7]㊂低轨卫星通信主要应用场景包括手机直连㊁边远地区覆盖㊁应急情况保障和通导遥一体等[8]㊂1.1㊀手机直连手机直连卫星实现通信是低轨卫星网络最核心也是最基础的应用,通过手机直连,用户可以在任何区域内获得网络连接㊂基于移动性管理,用户可以同时与多颗卫星及地面基站通信,实现真正的 无缝切换 ;基于频谱管理,精确化管理小区覆盖,提供更可靠更稳定的信息传输,同时降低地面通信系统负载㊂1.2㊀边远地区通信覆盖由于环境以及成本限制,传统地面通信系统无法完全覆盖所有地区㊂而卫星具有高覆盖与无视地理环境等传输特性,因此采用低轨卫星进行通信可以破除地理环境限制,低成本地为所有用户提供通信与数据服务,实现全球通信覆盖㊂1.3㊀应急通信保障由于地面通信系统基于地面固定设备实现通信,因此当遇到地震㊁洪水等地质灾害时,会由于设备受损与停电而中止地区通信服务㊂因此采用低轨卫星进行通信可以在出现应急状况时,全面接管通信传输任务,保障基础服务,进而提高救灾恢复效率,提高通信系统的抗毁性㊂1.4㊀通导遥一体低轨卫星互联网可以将太空低轨通信卫星㊁导航卫星㊁遥感卫星融合,实现通导遥一体,在这种情况下,可以根据任务由卫星互联网传递遥感㊁导航需求与指令,并快速传输具体的导航与遥感数据,让地面能够及时㊁准确地获得特定导航与遥感信息[9-10]㊂2㊀低轨卫星信号特点2.1㊀低轨卫星链路构成与分析在低轨卫星网络中主要有星间链路㊁馈电链路㊁用户链路和测控链路,具体构成如图1所示㊂其中星间链路指的是卫星之间的通信链路,馈电链路指的是卫星与信关站之间的通信链路,而用户链路则指的是卫星与移动终端之间的通信链路㊂卫星测控链路则是卫星与地面测控站之间的通信控制链路,用于实现对卫星的控制与遥测㊂卫星测控链路中指令的准确传输直接关系到卫星的安全运行,因此卫星测控链路着重于信息传输的准确性与可靠性,通常采用抗干扰性能强的扩频通信体制进行通信㊂而星间链路㊁用户链路和馈电链路则由于效率等方面原因较少采用扩频体制,通常基于3GPP的5G体制进行设计,如AST和Lynk等,只有Globalstar与苹果手机直连中由于Globalstar采用的私有通信协议而导致用户链路使用扩频体制,以及应用场景出于保密与抗干扰需求才会选择扩频体制㊂图1㊀低轨卫星网络链路构成Fig.1㊀LEO satellite network link architecture本文主要介绍具有普适性且适用于各种终端的信号捕获与跟踪技术,另外考虑到卫星网络中存在扩频体制以及捕获与跟踪技术的多样性,因此也列举了一些主要针对扩频体制的信号捕获与跟踪技术㊂2.2㊀信号特性分析低轨卫星通信系统中卫星主要运行在500~ 1500km的低空轨道中,由于其轨道高度低,因此具有传输损耗低和低时延的特性,是最有可能实现卫星互联网的卫星通信系统㊂但由于卫星本身体积与宇宙空间环境限制,卫星发射功率有限,同时也因为距离以及干扰等因素导致接收机所收信号信噪比较低㊂另外,卫星较快的运动速度会给信号带来多达几百kHz的多普勒频移,如此大的频谱偏移会给接收机设计带来挑战,迫使接收机放大前端带宽,进而导致带外噪声引入,使得接收信噪比降低,同时如此大的频谱偏移还会导致同步中频率搜索区间过大,给信号同步带来更大挑战,影响信号接收㊂由于卫星信号具有信噪比低且多普勒频移大的动态特性,因此如何在这种环境下,实现稳定可靠接收成为了实现低轨卫星通信的关键点㊂2.3㊀低轨卫星波束特点2.3.1卫星多波束特点及挑战多波束技术可以通过数字波束合成(Digital Beam Forming,DBF)来指向低轨卫星信号接收方向,提高接收信号信噪比[11-12]㊂多波束技术在接收时需要分析波束指向来达到最佳接受性能㊂遍历所有情况找出最大接收功率显然效率较低,因此如何迅速根据接收信号分配权值合成最佳接收波束成为实现波束捕获的主要挑战㊂2.3.2卫星跳波束特点及挑战跳波束技术基于相控阵技术实现,通过改变相位来快速调整波束方向,实现信号发送与接收[13]㊂跳波束技术使低轨卫星频谱资源能够被灵活调配,在功率有限情况下,产生更高质量的信号,有效提高低轨卫星系统频谱效率;同时跳波束技术可以让低轨卫星通信系统灵活适应不同吞吐率,根据需求求解出时隙切换表,进行波束的周期性调整[14-15]㊂由于低轨卫星通信中的跳波束技术在不断变换波束,而只有成功捕获波束才能正常接收信号,因此如何在短时间内跟踪到波束指向并进行跟踪控制成为了跳波束应用的主要挑战㊂3㊀关键技术信号接收过程中,首先需要进行的是波束捕获与跟踪控制㊂波束捕获的目的是在接收到信号后能迅速锁定到接收信号对应的波束,从而进行跟踪控制,实现波束对准㊂波束跟踪控制针对多波束技术而言,通过分析找出实现波束对准所需权值,通过设置相控阵权值来对准波束,完成接收㊂通过波束捕获与跟踪控制,完成波束对准,实现信号的准确接收,然后需要获取接收信号的多普勒频移和码相位偏移来实现同步㊂其中对信号的同步具体包含捕获过程和跟踪过程㊂首先是进行捕获,通过信号捕获技术获取较为粗略的码相位信息与多普勒频移信息,这些低分辨率的信息有助于之后的信号跟踪;之后进行跟踪,通过信号跟踪技术利用捕获得到的信息精确估计码相位信息与载波频率,解调出导航数据㊂3.1㊀波束捕获与跟踪控制3.1.1波束捕获低轨卫星通信网络中通常采用跳波束技术来提高频谱利用效率,会存在波束的频繁切换,需要波束捕获技术来及时跟踪捕获波束变化,实现准确接收㊂低延迟快速捕获(Low Delay Fast Acquisition, LDFA)是一种用于在卫星通信系统中快速捕获和跟踪通信波束的算法㊂LDFA算法的目标是最小化与卫星建立可靠通信链路所需的时间,这对于延迟敏感的应用(如实时语音和视频通信)来说非常重要㊂为了与卫星建立通信链路,地面站必须首先确定其当前所在的波束,然后将其接收器调谐到适当的频率,这个过程被称为波束采集㊂LDFA算法旨在通过结合使用快速信号处理技术和智能搜索策略,将执行波束捕获所需的时间降至最低㊂低延迟快速捕获算法通常涉及以下步骤:①使用宽带接收机搜索卫星㊂②一旦检测到卫星,将接收机调谐到卫星信号的频率,并对信号进行解调,以提取关于波束结构和可用波束的信息㊂③确定地面站当前所处波束,并将接收机调谐到该波束的适当频率㊂④在波束移动时跟踪波束,根据需要调整接收机频率,以保持可靠的通信链路㊂3.1.2波束跟踪控制在卫星通信中应用多波束技术可以方便快捷地针对信号来源处产生对应波束,以较高信噪比接收信号㊂传统波束跟踪过程中采用机械电机结构来实现波束对准,其中天线方向决定波束方向,通过不断转动实现接收信噪比最大化㊂但这种方式需要精密的机械结构㊁高昂的制造成本以及较慢的对准过程,因此使用效果并不能满足低轨卫星互联网通信需求㊂而采用数字波束合成的多波束技术可以通过数字方式简单㊁方便地控制波束方向,快速追踪波束㊂波束跟踪控制主要有两种方法:波束自适应控制和波束切换控制㊂波束自适应控制方法根据输入信号情况自适应调整阵列权值,从而在无需估计输入信号方向情况下给出最优波束控制方向㊂但自适应控制每次都需要重新估计,导致计算复杂度过高,因此实时性较差,且需要较多的硬件资源,在实际情况下应用较少㊂波束切换控制方法会在设备中预存有对应方向的波束权值,过程中需要确定输入信号方向,通过比较各个指向上的功率,来判断信号指向,再通过查询权值表获得波束指向的正确权值㊂这种方式可以预先求解出各个波束指向的权值,进而在实际控制过程中直接查表获取权值,相比较于自适应控制方法更简单㊁高效㊂在实际情况中,可以借助先验信息(例如星历㊁轨道信息)来缩小搜索范围,加快波束切换控制方法的搜索㊂波束捕获流程图如图2所示㊂图2㊀波束捕获流程图Fig.2㊀Flowchart of beam acquisition3.2㊀信号捕获技术传统的捕获方法中,常常通过相关运算和能量检测来观察较高的能量峰,以此来找到码相位,但实际情况下会由于多普勒频移导致载波不能完全消除进而导致能量峰急剧下降,从而难以找到正确的码相位㊂因此,十分有必要得到准确的载波信息,将其对相关峰的影响完全消除,进而得到较为准确的码相位,实现捕获㊂信号捕获的目标是将相位差别控制在半个码元宽度内㊂本节介绍的滑动相关捕获算法㊁并行捕获算法和序列估计捕获算法主要用于测控链路中扩频信号的捕获,而匹配滤波器算法㊁FFT 捕获算法和PMF-FFT 捕获算法则可以用于馈电链路㊁星间链路㊁用户链路和测控链路㊂3.2.1滑动相关捕获算法滑动相关算法是最常见的信号捕获方法,通常用于扩频体制下的信号捕获,在低轨卫星网络中可以用于测控链路,其本质是一种二维搜索法,同时搜索载波频率与相位㊂其为伪码生成器设置与接收信号不同的速率,进而实现二者相对滑动,在一个相关周期内一般伪码会滑动半个码片,滑动会一直持续到两个码序列相位对齐时,此时便得到所接收伪码的相位㊂另外对于载波频率的搜索可以通过改变本地载波来实现,当本地载波频率与伪码载波频率接近时,可以输出相关峰,因此可以通过对相关峰的检测来得到伪码载波频率㊂滑动相关算法结构如图3所示,其将对伪码载波频率与相位的搜索分别转化成对本地载波频率和本地伪码发生器时钟的控制,当相位一致且出现足够的相关峰时,便搜索得到伪码的载波频率与相位,从而实现捕获[16]㊂图3㊀滑动相关法伪码捕获的结构框图Fig.3㊀Block diagram of the structure of pseudocodeacquisition by slide correlationmethod3.2.2并行捕获算法并行捕获算法与滑动相关算法类似,均针对测控链路中的扩频体制实现捕获,不同的是其在通过本地载波解调进行载波剥离后,会并行使用2N 个支路的伪码序列相关解扩器分别处理,之后使用最大值选择器选择各并行支路的最大值,由于输出最大值的相位与接收信号相位误差最低,因此其相位可以作为捕获得到的伪码相位,进而实现信号捕获[16]㊂并行捕获算法原理如图4所示㊂图4㊀并行捕获算法Fig.4㊀Parallel acquisition method㊀㊀并行捕获算法是2N 个支路同时进行,所需时间短㊁效率高,但也由于要使用2N 个支路以及2N 个解扩单元,因此设备复杂度较高㊂3.2.3序列估计算法序列估计算法也是针对测控链路中的扩频体制实现信号捕获,其从接收信号中提取到PN 码,利用提取到的PN 码来设置本地PN 码序列发生器,将该发生器所产生的PN 码序列与接收信号进行相关,当出现相关峰时完成捕获,此时相位便是接收信号的相位㊂序列估计算法原理如图5所示㊂序列估计算法通过提取接收信号PN 码来进行相位估计,但很多情况下PN 码并不方便提取,这就导致序列估计法可能无法实现㊂另一方面,序列估计算法对于干扰和噪声十分敏感,当信噪比较低时实际捕获效果不好,因此在低轨卫星场景下适用性有限㊂图5㊀序列估计算法原理图Fig.5㊀Schematic diagram of sequence estimation method3.2.4匹配滤波器算法匹配滤波器算法可以通过改变系统传递函数快速捕获相位,因此可以灵活应用在星间链路㊁馈电链路㊁用户链路和测控链路等场景㊂匹配滤波器根据输入信号改变系统传递函数,使得输出是输入信号的自相关函数,基于这一特点,采用匹配滤波器捕获相位,可以大大缩短捕获时间㊂具体来说,匹配滤波器算法基于接收信号设置本地码序列,之后采用移位寄存器依次对接收信号延迟码元宽度以获得不同相位时的相关,通过包络检测找到具有最大相关峰时的相位实现相位捕获㊂匹配滤波器算法原理如图6所示㊂图6㊀DMF 原理框图Fig.6㊀Block diagram of DMF㊀㊀匹配滤波器算法在一个码周期内就可以捕获到码相位,实现快速捕获㊂但是包络检测判决输出会随着多普勒频移的增加而迅速衰减,不利于信号检测,因此匹配滤波器算法并不适用于高动态场景[16]㊂3.2.5快速傅里叶变换捕获算法快速傅里叶变换(Fast Fourier Transformation,FFT)算法,可以从信号的时域表示中获取到信号的频域表示,其可以将时域中卷积运算简化为频域中乘法运算,也可以将捕获中的时域相关运算转化成频域相乘运算㊂FFT 捕获算法可以通过FFT 算法简化捕获过程,主要有并行频率搜索和并行码相位搜索两种,可以灵活应用在星间链路㊁馈电链路㊁用户链路和测控链路等场景㊂并行频率搜索法原理如图7所示,其首先将接收信号与本地载波混频,去除载波,然后与本地码发生器相关,并对相关结果使用傅里叶变换,使得时域的相关转换为频域相乘,通过取模观察频谱峰值,根据频谱峰值得到多普勒频移,并不断调整本地码相位使得频谱峰值超过门限,从而得到码相位偏移[17-20]㊂图7㊀并行频率搜索原理框图Fig.7㊀Block diagram of parallel frequency search㊀㊀并行码相位搜索法原理如图8所示,其与并行频率搜索均在一开始利用混频器对接收信号去除载波影响,不同的是并行码相位搜索在此之后对该信号与本地码发生器所产生的本地码提前进行傅里叶变换,二者分别进行傅里叶变换之后共轭相乘,通过频域相乘完成与时域相关一样的效果,之后通过傅里叶反变换获得时域结果,根据取模后峰值得到码相位偏移,通过不断调整载波频率,使峰值超过门限值,此时的频率即为多普勒频移㊂可以看到,无论是哪种方法,都可以将二维的对载波频率和码相位的捕获变成一维捕获,大大降低算法复杂度,实现快速捕获㊂采用FFT 进行捕获虽然可以大幅度提高捕获效率,但会由于傅里叶变换需要大量运算而导致实际实现复杂度高以及信号处理延时较大,因此也不适合实时信号处理㊂图8㊀并行码相位搜索结构图Fig.8㊀Structure of phase search for parallel codes3.2.6部分匹配滤波器和快速傅里叶变换捕获算法部分匹配滤波器和快速傅里叶变换(PartialMatched Filter FFT,PMF-FFT)捕获算法的实现流程如图9所示[21-23]㊂其与匹配滤波器算法和FFT 算法一致,均可以应用在星间链路㊁馈电链路㊁用户链路和测控链路等场景㊂图9㊀基于PMF-FFT 的捕获算法Fig.9㊀Acquisition algorithm based on PMF-FFT㊀㊀PMF-FFT 捕获算法通过将匹配滤波与频域并行捕获方法有效结合,在利用二者优势的情况下,补偿各自弊端,在卫星通信接收机中得到了大规模的使用[24]㊂PMF-FFT 捕获算法首先通过混频器剥离载波,在此之后使用多个匹配滤波器代替传统相关器进行相关,并将I㊁Q 路产生的多个输出结果合成为复数信号,对其进行FFT 运算,检测FFT 的峰值结果,如果大于门限,则峰值频率对应为多普勒频移量,相位对应为码相位㊂其使用多个匹配滤波器,相比相关器大幅减少运算时间,并通过整体FFT 变换,快速完成所有频率的搜索,再经由滤波器拆分,减少FFT 运算点数,大大降低复杂度,因此最为适宜低轨卫星网络场景下的信号捕获㊂PMF-FFT捕获算法包含以下几个步骤:①将输入信号送入多个匹配滤波器;②将匹配滤波的结果补零加窗并进行FFT;③取FFT运算结果的最大相关值进行输出㊂3.3㊀信号跟踪技术捕获过程是粗略估计接收信号的多普勒频移和码相位偏移,分辨率稍低,又称为粗同步㊂跟踪阶段,从捕获算法得到的信号多普勒频移和码相位的粗略估计值出发,精确估计两个参量的值,使得本地复制信号与接收信号一致,解调出导航数据,以便于下一个阶段解算[25]㊂本节介绍的锁相环(Phase-Locked Loop,PLL)㊁科斯塔斯(Costas)环和基于卡尔曼滤波的跟踪方法均可以用于星间链路㊁馈电链路㊁用户链路和测控链路等场景下的信号跟踪㊂3.3.1锁相环锁相环用来实现对输入信号的跟踪并给出精确的载波相位测量值㊂锁相环由三部分构成,分别为:鉴相器(PD)㊁压控振荡器(VCO)和环路滤波器(LF)㊂锁相环能产生与输入信号在频率和相位上同步的输出信号㊂当锁相环处于锁定状态下,其处于同步状态,输出信号与输入信号频率一致,相位误差固定为某一常数;而当锁相环处于失锁状态下,锁相环中的VCO会根据误差产生相应控制信号来纠正输出信号频率与相位,从而回到锁定状态,使得输出信号与输入信号完全一致㊂不过锁相环在高动态场景下由于多普勒频移和多普勒频率变化率较大,因此难以稳定跟踪输入信号,并不能直接用于低轨卫星场景㊂3.3.2Costas环由于BPSK扩频后的信号频谱不会在载波频率处出现峰值,因此采用锁相环无法提取出载波频率,除此之外,锁相环对180ʎ的相位翻转敏感,无法正常读取BPSK数据㊂Costas环可以解决以上两点问题,有助于在星间链路㊁馈电链路㊁用户链路和测控链路等场景下对PSK信号进行跟踪㊂在Costas环中,VCO产生的载波信号分两路与接收信号相乘进行载波剥离,其中一路载波信号先进行90ʎ相移再相乘,这样的两路信号分别经过低通滤波器之后相乘,抵消PSK的调制效果,获得精确的多普勒频移与伪码相位㊂Costas环原理如图10所示㊂图10㊀Costas环解调器Fig.10㊀Costas ring demodulator Costas环虽然非常适用于PSK调制,但其对信号的灵敏度不如纯锁相环,因此也不能直接用于低轨卫星场景下的信号跟踪过程㊂3.3.3基于卡尔曼滤波的跟踪方法锁相环在高动态场景下难以稳定跟踪信号,可以引入卡尔曼滤波来对高动态信号进行持续跟踪㊂卡尔曼滤波是控制领域常用的估计方法,其核心原理是根据测量数据与估计数据的相对关系,在二者间取某一中间值,这个中间值相对于测量与估计结果均更加准确,且由于卡尔曼滤波具有收敛速度快㊁仅需上一时刻结果和计算复杂度低等优点被广泛使用㊂卡尔曼滤波具体流程如图11所示,总结如下㊂图11㊀卡尔曼滤波基本流程Fig.11㊀Kalman filtering basicflow。
在60亿公里处回望地球————一粒悬浮在阳光中的微尘2.2展开全文2019-02-05高山流水设彩铃关键词: 暗淡蓝点/卡尔·萨根/旅行者1号/地球之声地球一微尘人类尘中尘蜗牛角上争何事石光火中寄此生人生若蜉蝣 [1]古今多少事都付笑谈中'我们人类之间必须友善相处,珍惜和保护这个暗淡的蓝点。
它是我们迄今所知的唯一的家。
'(一) 回眸'暗淡蓝点”(Pale Blue Dot)——旅行者1号拍摄的地球照片[2]1990年的情人节,在天文学家卡尔· 萨根(Carl Sagan) 的建议下,旅行者1号,首个飞离地球最远的太空探测器,在距离地球60亿公里处,回头拍摄了这张著名的照片。
在这张照片所显示的浩瀚宇宙中,地球看起来就像是一个点,一个微小、暗淡的点。
据萨根的夫人安·德鲁扬 (Ann Druyan) 回忆: '他 (萨根) 犹如《圣经》中的先知,向国家航空航天局(NASA)恳请: 回首一顾兮,回眸一盼——再回过头来,看一看这颗小小的行星,看一看它如今的模样。
它现在不复是'阿波罗号'(从月球处)看上去那样充满着整个镜头……而只是小小的一个点……'。
(注: 同样是由萨根建议,1972年12月7日,美国阿波罗17号在飞向月球的过程中拍下了地球的照片。
)'暗淡蓝点”,一个萨根首创的名词,指的是从太空中遥望的地球。
也正因为这张照片,让我们有幸能在萨根的著作《暗淡蓝点探寻人类的太空家园》[3]一书中,读到这样一段深邃而又美丽的文字:'Look again at that dot. That's here.看看那个光点,它就在这里。
That's home. That's us.那是我们的家园,我们的一切。
On it everyone you love, everyone youknow, everyone you ever heard of, everyhuman being who ever was, lived outtheir lives.在它上面, 有你爱的每个人、你认识的每个人、你听说过的每个人,历史上的每一个人,都在它上面度过了自己的一生。
全球星卫星通信系统标准
全球星系统(Globalstar)是一种卫星通信系统,用于提供移动通信、数据传输和定位服务。
以下是全球星系统的一些常见标准:
1.频率范围:全球星系统使用L频段(1610-1670 MHz)和S频段(2483.5-2500 MHz)进行信号传输。
2.信号调制:全球星系统采用GMSK(Gaussian Minimum Shift Keying)调制技术,以提高信号传输的可靠性和抗干扰能力。
3.卫星轨道:全球星系统的卫星轨道高度约为1410公里,轨道倾角约为52度。
4.卫星数量:全球星系统共有48颗卫星,分布在三个轨道平面上,以保证全球覆盖和连续通信。
5.通信速率:全球星系统提供多种通信速率,最高可达到4800 bps,以满足不同应用的需求。
6.定位精度:全球星系统可以提供精度约为100米的定位服务,适用于许多应用场景,如航海、野外探险等。
7.通信协议:全球星系统采用标准的TCP/IP协议,支持多种通信应用,如语音通话、短信、数据传输等。
以上是全球星系统的一些常见标准,具体标准可能会因不同应用场景而有所不同。
国外遥感卫星发展现状概述遥感卫星是指通过卫星传感器获取地球表面信息的一种技术手段。
随着科技的不断进步,国外各国在遥感卫星领域展开了广泛的研究和开发工作,取得了许多重大的成果。
本文将对国外遥感卫星发展现状进行概述。
一、美国遥感卫星发展美国是全球遥感卫星领域的领军国家,已经发射了多颗卫星以获取地球的遥感数据。
其中,最早的一颗遥感卫星是在1972年发射的LANDSAT-1,成为了美国遥感卫星的代表。
此后,美国陆续发射了多颗LANDSAT卫星,目前已经发射至LANDSAT-8此外,美国还发射了SPOT卫星,这是由法国、比利时和瑞典共同研制的一种遥感卫星系统。
SPOT卫星具有较高的分辨率和较大的覆盖范围,可以提供高质量的遥感数据。
美国的遥感卫星不仅在地球观测方面具有重要意义,还广泛应用于气象预报、环境监测、农业和林业等领域。
美国还建立了全球地球观测系统(GEOSS),整合了多个卫星数据源,提供全球范围内的遥感数据。
二、欧洲遥感卫星发展欧洲也在遥感卫星领域取得了重要进展。
欧洲空间局(ESA)是欧洲遥感卫星的主要研发机构,其最重要的遥感卫星是欧空局地球观测卫星(ERS)和欧洲高分辨率卫星(ERS)。
欧空局地球观测卫星是一颗多用途的遥感卫星,可以获取包括海洋、大气、陆地和冰层在内的地球各部分的遥感数据。
这些数据对于气象预报、气候变化研究和环境监测等方面都有重要意义。
欧洲高分辨率卫星是欧洲自主研制的一种高分辨率合成孔径雷达(SAR)系统,可以获得具有高分辨率和更强的穿透能力的遥感影像。
该卫星已经成功应用于数字地形模型制作、城市规划和土地利用研究等领域。
三、其他国家遥感卫星发展除了美国和欧洲,其他国家也在遥感卫星领域投入了大量的研究和开发工作。
俄罗斯自上世纪60年代起就开始发射静止遥感卫星,用于监测天气和资源等方面。
中国也在遥感卫星领域实现了重大突破。
中国的遥感卫星包括环境一号卫星、资源一号卫星和天鹰一号卫星等。
这些卫星在环境监测、农业、林业和城市规划等方面发挥了重要作用。
低轨卫星测控技术分析之一:Globalstar卫星轨道现状和控制历程Globalstar低轨移动卫星通信系统提供了全球无缝话音、信息和IoT服务,虽然该系统服役超过了20年,但在低轨移动卫星系统中,仍然一枝独秀,过去5年公司收入连续以7%速率增长,IoT业务年增长率更是超过14%。
Globalstar初始设计工作卫星数量48颗、分布在8个轨道面。
但从2013年2月6日最后一次发射到现在,只有35个卫星处于工作状态,没有公开资料能看出它现在的运行情况和服务能力。
我们对它的轨道现状和覆盖能力情况进行了分析,并通过真实数据分析了它的星座保持策略和实际控制效果。
结果表明Globalstar 系统现有的35个工作卫星基本均匀对地覆盖,尽管离设计的48颗有差距,但仍然可以为高纬度地面用户提供仰角大于10°、平均通话时间大于14m的全球无缝覆盖。
一、基本情况Globalstar从1998年02月14日一箭4星发射以来,共发射16次,将两代共84颗Globalstar卫星送入轨道,一代卫星和二代卫星的外形如图1所示,卫星采用弯管式转发器设计,馈线链路使用C频段、用户链路使用L和S频段。
截止2021年4月25日,有34个卫星处于工作状态、1个处于半工作状态,具体情况如下:(1)一代卫星1998年02月14~2007年10月20日,共发射12次、60颗一代卫星,每颗星重450公斤,设计寿命7.5年;(2)二代卫星2010年10月19日~2013年2月6日最后一次发射,共发射4次、24颗二代卫星,卫星重700公斤,设计寿命15年。
(a)一代 (b) 二代图1 Globalstar卫星外形二、轨道现状截止2021年4月,这35个卫星分布在8个轨道面,图2是它们在空间的分布情况,图3(a)是星下点分布图,可以看出35颗卫星分布比较均匀,图3(b)是它们天线对地覆盖情况,可以看出除了南北极外,基本覆盖全球。
图2 2021年4月35颗卫星空间分布(a) 实时星下 (b) 天线覆盖图3 2021年4月25日35颗卫星分布三、覆盖能力地面用户可见卫星的仰角越高,通信质量越好,但也意味着需要更多的卫星。
“激光通信光学有效载荷”计划-美国星地激光通信演示验证朱贵伟【摘要】2014年6月5日,美国航空航天局(NASA)利用新型激光通信设备成功地从“国际空间站”(ISS)向地球传送了一段高清视频,此举将有助于极大提升未来深空任务的通信传输速率。
回顾21世纪以来空间激光通信领域整体发展情况,欧洲和日本频繁开展多项演示和试验计划,俄罗斯也在2012年首次实现了“国际空间站”到地面的星地激光通信试验,而美国在演示试验方面稍显沉寂。
自2013年底开始,美国开展多次星地激光通信试验,最长通信距离近3.8×105km,展现出其在激光通信领域的强大实力。
【期刊名称】《国际太空》【年(卷),期】2015(000)001【总页数】5页(P58-62)【作者】朱贵伟【作者单位】北京空间科技信息研究所【正文语种】中文2014年6月5日,美国航空航天局(NASA)利用新型激光通信设备成功地从“国际空间站”(ISS)向地球传送了一段高清视频,此举将有助于极大提升未来深空任务的通信传输速率。
回顾21世纪以来空间激光通信领域整体发展情况,欧洲和日本频繁开展多项演示和试验计划,俄罗斯也在2012年首次实现了“国际空间站”到地面的星地激光通信试验,而美国在演示试验方面稍显沉寂。
自2013年底开始,美国开展多次星地激光通信试验,最长通信距离近3.8×105km,展现出其在激光通信领域的强大实力。
“激光通信光学有效载荷”(OPALS)计划是喷气推进实验室(JPL)在“辉腾”(Pheaton)计划下开展的一个项目,以“国际空间站”为试验平台开展星地激光通信试验,主要目的是快速培训刚入职的专业人员,使其在高级管理人员和工程师的指导下,获得研制小型、正样载荷的实践经验。
“激光通信光学有效载荷”计划的试验方案、硬件设备和软件均由喷气推进实验室设计和研制,从项目启动到在轨演示试验历时近5年时间。
2009年10月通过任务方案评审,2010年2月通过系统需求评审,2011年8月完成设计评审,2013年7月空间段有效载荷交付,2014年4月搭载太空探索技术(SpaceX)公司“龙”(Dragon)飞船发射升空。
星链卫星技术参数1. 引言星链卫星是中国自主研发的一种低轨道通信卫星系统,旨在为全球范围内的数据通信提供高效、可靠的解决方案。
本文将全面探讨星链卫星的技术参数及其在卫星通信领域的应用。
2. 星链卫星的基本参数星链卫星的基本参数包括卫星数量、轨道高度、通信频段等方面。
具体的技术参数如下所示:2.1 卫星数量星链卫星是由多颗卫星组成的卫星网络,目前的计划包括100颗卫星,未来可能进一步扩展。
2.2 轨道高度星链卫星的轨道高度为低地球轨道(LEO),预计在500公里至1500公里之间。
2.3 通信频段星链卫星采用Ka波段作为主要的通信频段,频段范围为26.5GHz至40GHz。
2.4 卫星设计寿命星链卫星的设计寿命为5年,具备一定的维修和保养能力,延长卫星的使用寿命。
3. 星链卫星的通信能力星链卫星具有强大的通信能力,可以提供全球范围内的数据通信服务。
3.1 高速通信星链卫星可以提供高速的数据通信服务,最高数据传输速率可达多Gbps,满足不同用户的需求。
3.2 低延迟通信由于星链卫星处于低轨道,信号传输的延迟相对较低,通信时延可控制在几十毫秒以内,适用于对通信时延要求较高的应用场景。
3.3 大容量通信星链卫星网络中的每颗卫星都可以提供大容量的通信服务,卫星之间可实现互联互通,形成一个高容量的通信网络。
3.4 宽覆盖范围星链卫星网络的覆盖范围包括整个地球,无论用户所在位置,都可以通过星链卫星进行通信。
4. 星链卫星的应用场景星链卫星在卫星通信领域具有广泛的应用场景,下面将列举几个典型的应用场景。
4.1 天基互联网星链卫星可以为地面用户提供高速、低延迟的互联网接入服务,解决地面网络覆盖不完全的问题,特别适用于农村地区和偏远地区。
4.2 航空航天通信星链卫星可以为飞机和航天器提供通信支持,保障飞行器与地面的即时通信,提高空中交通安全和飞行效率。
4.3 海洋监测与通信星链卫星的全球覆盖特性可以用于海洋监测和通信,包括海洋资源勘探、渔业监测、海洋灾害预警等方面。
排序因该是平行宇宙-我们的宇宙--宇宙大黑洞-河外星系-银河系-太阳系-地球另外再给LZ 介绍一下宇宙的定义和含义整体宇宙既没有诞生,也没有死亡。
有生灭的是宇宙中的生命个体。
十二星座:Twelve ConstellationsAries 白羊Mar. 21 - April 19 Taurus 金牛April 20 - May 20Gemini 双子May 21 - June 21 Cancer 巨蟹June 22 - July 22Leo 狮子July 23 - Aug. 22 Virgo 处女Aug. 23 - Sept. 22Libra 天秤Sept. 23 - Oct. 23 . Scorpio 天蝎Oct. 24 - Nov. 21Sagittarius 射手Nov. 22 - Dec. 21 Capricorn 摩羯Dec. 22 - Jan. 19Aquarius 水瓶Jan. 20 - Feb. 18 Pisces 双鱼Feb. 19 - Mar. 20太阳系八大行星Eight major planets of the solar system水星Mercury 金星Venus地球Earth 火星Mars木星Jupiter 土星Saturn天王星Uranus 海王星Neptune88星座Constellation1 Andromeda 仙女座2 Antlia 唧筒座3 Apus 天燕座4 Aquila 天鹰座5 Aquarius 宝瓶座6 Ara 天坛座7 Aries 白羊座8 Auriga 御夫座9 Bootes 牧夫座10 Caelum 雕具座11 Camelopardalis 鹿豹座12 Capricornus 摩羯座13 Carina 船底座14 Cassiopeia 仙后座15 Centaurus 半人马座16 Cepheus 仙王座17 Cetus 鲸鱼座18 Chamaeleon 堰蜓座19 Circinus 圆规座20 Canis Major 大犬座21 Canis Minor 小犬座22 Cancer 巨蟹座23 Columba 天鸽座24 Coma Berenices 后发座25 Corona Australis 南冕座26 Corona Borealis 北冕座27 Crater 巨爵座28 Crux 南十字座29 Corvus 乌鸦座30 Canes Venatici 猎犬座31 Cygnus 天鹅座32 Delphinus 海豚座33 Dorado 剑鱼座34 Draco 天龙座35 Equuleus 小马座36 Eridanus 波江座37 Fornax 天炉座38 Gemini 双子座39 Grus 天鹤座40 Hercules 武仙座41 Horologium 时钟座42 Hydra 长蛇座43 Hydrus 水蛇座44 Indus 印地安座45 Lacerta 蝎虎座46 Leo 狮子座47 Lepus 天兔座48 Libra 天秤座49 Leo Minor 小狮座50 Lupus 豺狼座51 Lynx 天猫座52 Lyra 天琴座53 Mensa 山案座54 Microscopium 显微镜座55 Monocers 麒麟座56 Musca 苍蝇座57 Norma 矩尺座58 Octans 南极座59 Ophiuchus 蛇夫座60 Orion 猎户座61 Pavo 孔雀座62 Pegasus 飞马座63 Perseus 英仙座64 Phoenix 凤凰座65 Pictor 绘架座66 Piscis Australis 南鱼座67 Pisces 双鱼座68 Puppis 船舻座69 Pyxis 罗盘座70 Reticulum 网罟座71 Sculptor 玉夫座72 Scorpius 天蝎座73 Scutum 盾牌座74 Serpens 巨蛇座75 Sextans 六分仪座76 Sagitta 天箭座77 Sagittarius 人马座78 Taurus 金牛座79 Telescopium 望远镜座80 Triangulum Australe 南三角座81 Triangulum 三角座82 Tucana 杜鹃座83 Ursa Major 大熊座84 Ursa Minor 小熊座85 Vela 船帆座86 Virgo 处女座87 Volans 飞鱼座88 Vulpecula 狐狸座其他词汇望远镜telescope [? telisk ?up ] 双筒望远镜binoculars [bai ?n ? kjul ?z] 反射式望远镜reflecting telescope [ri'flekti?] 折射式望远镜牛顿式反射望远镜Newtonian reflector 天区Sky coverage星系galaxy [? g? l? k?si] 恒星star [stɑ:]行星planet [? pl? nit ]卫星satellite [? s? t? l ait ]星云nebula [? nebjul ?] 银河the Milky Way类木行星:四大行星之一:木星、土星、天王星、海王星:Jovian planet :Any of the four largest planets: Jupiter , Saturn, Uranus, and Neptune. 星云、星团新总表(简称NGC)New General Catalogue (NGC)太阳活动solar activity 太阳风solar wind太阳活动周solar cycle 太阳耀斑solar flare白矮星White dwarf 红巨星red giant主星系dominant galaxy 球状星系spherical galaxy旋涡星系spiral galaxy 椭圆星系elliptical galaxy不规则星系irregular galaxy 河外星系Extragalactic开普勒定律Kepler's laws 光年light year近地小行星earth-approaching asteroid近地天体earth-approaching object太阳系外行星extrasolar planet太阳系外行星系extrasolar planetary system地外智慧生物extraterrestrial intelligence不明飞行物(UFO) Unidentified Flying Object哈勃空间望远镜HST, Hubble Space Telescope国际空间站International Space Station美国航天局NASA(National Aeronautics and Space Administration )中国航天局CNSA(China National Space Administration )狭义相对论special theory of relativity木星环Jovian ring 海王星环Nepturian ring天王星环Uranian ring 疏散星团open cluster星际尘埃interstellar dust 星际气体interstellar gas大气视宁度atmospheric seeing 光污染light pollution近地小行星near-earth asteroi 近地小行星带near-earth asteroid belt 小行星asteroid (minor planet) 小行星带asteroid belt近地彗星near-earth comet 近地天体NEO, near-earth object环食带path of annularity 光感light sensation全食total eclipse 偏食partial eclipse近日点perihelion 近地点perigee远日点aphelion 远地点apogee残月waning crescent 亏凸月waning gibbous娥眉月waxing crescent 盈凸月waxing gibbous满月full moon 月相phases (of the Moon)轨道orbit 新星novaastronaut 航天员capsule 太空舱carrier rocket 运载火箭artificial satellite 人造卫星launch a satellite 发射卫星low Earth orbit 近地轨道manned space 载人航天计划manned space flight 载人航天manned spaceship/ spacecraft 载人飞船orbit the earth 绕地球飞行outer space; deep space 外太空space shuttle 航天飞机unmanned spaceship / spacecraft 无人飞船weather satellite 气象卫星black holes 黑洞pulsar 脉冲星绝对星等absolute magnitude 极限星等limiting magnitude流星Meteor 流星雨meteor shower反物质antimatter 天文学astronomy极光aurora 天体物理学astrophysics宇宙大爆炸Big Bang 双星binary star天极celestial poles 天球celestial sphere目镜eyepiece 物镜objective len /objective glass(1) 行星(2) 恒星和星云(3) 银河系及河外星系4) 星系团超星系团大尺度结构。
哈勃太空望远镜哈勃空间望远镜(英语:Hubble Space Telescope,缩写:HST)是以美国天文学家爱德温·哈勃为名,于1990年4月24日成功发射,位于地球的大气层之上的光学望远镜。
哈勃望远镜由美国宇航局研制而成,其主镜长2.4米,以2.8万公里/小时的速度围绕地球运行。
截至2015年,虽然哈勃望远镜的费用累积已达100亿美元,但它带来的成就也远远超出了预期。
它在服役期间,不但帮助天文学家解决了一些长期困惑的问题,还引导天文学界用新的理论来解释一些现象,推动了天文科学的进步,从根本上改变了人类对宇宙天体的认识。
项目简介哈勃空间望远镜(英语:Hubble Space Telescope,HST),是以天文学家爱德温·哈勃为名,在地球轨道的望远镜。
哈勃望远镜接收地面控制中心(美国马里兰州的霍普金斯大学内)的指令并将各种观测数据通过无线电传输回地球。
由于它位于地球大气层之上,因此获得了地基望远镜所没有的好处:影像不受大气湍流的扰动、视相度绝佳,且无大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线。
于1990年发射之后,已经成为天文史上最重要的仪器。
它成功弥补了地面观测的不足,帮助天文学家解决了许多天文学上的基本问题,使得人类对天文物理有更多的认识。
此外,哈勃的超深空视场则是天文学家目前能获得的最深入、也是最敏锐的太空光学影像。
哈勃空间望远镜和康普顿γ射线天文台、钱德拉X光天文台、斯皮策空间望远镜都是美国国家航空航天局大型轨道天文台计划的一部分。
哈勃空间望远镜由NASA和ESA合作共同管理。
发射历程1990年4月24日,在美国肯尼迪航天中心由“发现者”号航天飞机成功发射,哈勃太空望远镜的主要任务是:探测宇宙深空,解开宇宙起源之谜,了解太阳系、银河系和其他星系的演变过程。
早在1986年,就已经计划在当年10月份发射哈勃空间望远镜。
但是挑战者号的事故使美国的太空计划停滞不前,航天飞机的暂停升空,迫使哈勃空间望远镜的发射延迟了数年。