遥感技术在地质灾害调查中的应用及前景
- 格式:doc
- 大小:33.00 KB
- 文档页数:4
遥感技术在地质灾害识别中的应用随着人类活动的不断扩大,地质灾害的频率和规模也在增加,给人们的生命财产造成严重威胁。
其中,地质灾害的预警、及时处理和防范是非常重要的,而遥感技术正是一种能够对地质灾害进行监测、预警的、高效的技术手段。
在这篇文章中,我们将介绍如何使用遥感技术对地质灾害进行识别并探讨其应用。
一、遥感技术概述遥感技术指的是通过对地球表面、海洋表面以及其他外空间特定环境特征的信息进行采集和处理,以获取目标区域的数据、通讯、图像和情报。
遥感技术的主要应用包括地球科学、石油勘探、环境监测、航空航天等领域。
而在地质灾害识别和预警方面,遥感技术具有独特的优势和应用前景。
二、地质灾害识别遥感技术在地质灾害识别中的作用十分明显。
地质灾害包括山体滑坡、泥石流、地震等等,而这些灾害的特点恰恰符合遥感技术所能够提供的信息。
遥感技术可以获取的数据如植被指数、地形地貌、地下水位、地表污染物等多种指标,这些指标对于地质灾害的识别具有十分重要的作用。
比如,植被指数可以通过卫星图像监测,并且与大自然的地貌、地形特点相结合,利用遥感技术就可以清晰地识别出潜在地质灾害地区,为接下来的预警、防范工作提供需要的指导性信息。
三、灾害预警利用遥感技术可以对整个区域进行实时监测,同时,监测到的数据可以实时发送到控制中心,进行数据分析和处理,进而进行地质灾害的预警。
遥感技术可以对地下水位进行实时监测,掌握地下水位的变化情况,从而预判潜在的泥石流等灾害是否会发生,并将提前预警推送至各级应急部门进行相应的处理。
四、应用前景遥感技术在地质灾害识别和预警方面具有重要的应用前景。
通过遥感技术可以提高地质灾害的识别和预警的准确率,可通过数据分析精细到亚米级别的扫描,显著提升对灾害发生的预警及及时性。
可以为灾害预防和灾害后救援等方面提供有效信息,提高救援效率,也减少人员和财产的损失。
而遥感技术的快速发展和普及,更是为遥感技术在地质灾害领域的应用提供了不可或缺的条件。
遥感技术在地质灾害调查中的应用及前景地质灾害遥感调查正由示范性实验阶段步入全面推广的实用性阶段。
地质灾害的日益严重和对突发性地质灾害抢灾救灾工作的时效性要求,应用遥感技术开展地质灾害调查是极其必要的,是当代高新技术发展的必然趋势。
遥感技术特点及其它相关高新技术的高速发展,已使地质灾害遥感调查成为可能。
遥感技术可以贯穿于地质灾害调查、监测、预警、评估的全过程。
应用遥感技术开展地质灾害调查具有广阔的前景。
全面推广地质灾害遥感调查,有待于遥感工作者和地质灾害工作者的共同努力。
一、地质灾害遥感调查的历史回顾近20年来,随着航空航天对地观测技术、计算机技术和电磁波信息传输技术等的深入研究,遥感技术得到了迅猛的发展,在实用化方向上迈出了重要的一步,并被广泛应用于各种国土资源调查与环境评价及灾害监测中。
遥感技术应用于地质灾害调查,可追溯到上世纪70年代末期。
在国外,开展得较好的有日本、美国、欧共体等。
日本利用遥感图像编制了全国1/5万地质灾害分布图;欧共体各国在大量滑坡、泥石流遥感调查基础上,对遥感技术方法进行了系统总结,指出了识别不同规模、不同亮度或对比度的滑坡和泥石流所需的遥感图像的空间分辨率,遥感技术结合地面调查的分类方法,可以用GPS测量及雷达数据,监测滑坡活动可能达到的程度。
我国利用遥感技术开展地质灾害调查起步较晚,但进展较快。
我国地质灾害遥感调查是在为山区大型工程建设或为大江大河洪涝灾害防治服务中逐渐发展起来的。
80年代初,湖南省率先利用遥感技术在洞庭湖地区开展了水利工程的地质环境及地质灾害调查工作。
有关单位先后在雅砻江二滩电站、红水河龙滩电站、长江三峡工程、黄河龙羊峡电站、金沙江下游落渡、白鹤滩及乌东清电站库区开展了大规模的区域性滑坡、泥石流遥感调查;从80年代中期起,又分别在宝成、宝天、成昆铁路等沿线进行了大规模的航空摄影,为调查地质灾害分布及其危害提供了信息源。
90年代起,在主干公路及铁路选线,如京九铁路沿线等也使用了地质灾害遥感调查技术。
高精度卫星遥感技术在地质灾害调查与评价中的应用一、本文概述随着科技的飞速发展,高精度卫星遥感技术已逐渐成为地质灾害调查与评价的重要工具。
该技术通过高分辨率的卫星图像和先进的数据处理方法,为我们提供了一种全面、快速、高效的监测地质灾害的手段。
本文旨在深入探讨高精度卫星遥感技术在地质灾害调查与评价中的应用,包括其技术原理、应用方法、案例分析以及未来发展趋势等方面。
通过本文的阐述,我们期望能够为地质灾害防治工作提供更为科学、准确的决策依据,为保障人民生命财产安全做出积极贡献。
二、高精度卫星遥感技术概述高精度卫星遥感技术是当代地球观测领域的重要突破,它利用搭载在人造卫星上的高分辨率传感器,对地球表面进行非接触、连续、大范围的观测,并获取高清晰度的图像数据。
这种技术不仅提高了空间分辨率,还增强了光谱分辨率和时间分辨率,使得我们能够更精确地识别和解析地表的各种特征。
高精度卫星遥感技术的核心在于其高分辨率成像能力。
与传统的低分辨率卫星遥感相比,高精度卫星能够提供亚米级甚至更高的空间分辨率,这意味着在卫星图像上,地表的细节特征如道路、房屋、植被甚至某些地质灾害的微小形变都能被清晰地捕捉和识别。
多光谱和高光谱成像技术的发展,使得卫星能够获取更多波段的光谱信息,从而实现对地表物质类型的精确区分。
在时间分辨率方面,高精度卫星遥感技术也展现出其独特的优势。
通过合理的轨道设计和卫星编队,可以实现对同一地区的高频次观测,及时发现和监测地质灾害的动态变化。
这种能力对于地质灾害的调查与评价至关重要,因为它能够帮助我们捕捉到灾害发生前的微小形变和异常现象,为灾害预警和防治提供有力的数据支持。
高精度卫星遥感技术以其高分辨率、多光谱和高时间分辨率的特点,为地质灾害调查与评价提供了新的手段和方法。
这种技术的应用不仅提高了我们对地质灾害的认知和理解,还为灾害预警和防治提供了更加科学和可靠的技术支撑。
随着技术的不断进步和应用领域的不断拓展,高精度卫星遥感技术将在未来地质灾害调查与评价中发挥更加重要的作用。
遥感技术在地质灾害中的应用【摘要】遥感技术在地质灾害中起到了重要的作用,通过监测、预警、评估、救援和防治等方面的应用,可以及时有效地应对各类地质灾害。
遥感技术可以提供高分辨率的影像数据,帮助识别地质灾害隐患点和变化趋势,提高监测效率和准确性。
遥感技术还可以通过数据分析和模型预测,实现地质灾害的预警和预测,提前采取有效的措施降低灾害风险。
在灾害发生后,遥感技术可以提供快速准确的灾情评估和影响分析,指导救援工作和资源调配。
遥感技术还可以为地质灾害的防治提供科学依据和技术支持,有助于制定相关政策和规划,减少灾害发生的可能性。
遥感技术在地质灾害中的应用具有重要意义,有着广阔的发展前景。
【关键词】地质灾害、遥感技术、监测、预警、评估、救援、防治、重要性、发展前景1. 引言1.1 地质灾害简介地质灾害是由地质作用和自然因素造成的对人类生活和财产安全构成威胁的突发事件。
常见的地质灾害包括地震、泥石流、山体滑坡、地面塌陷等。
这些灾害往往具有突发性、破坏性和难以预测性,给社会带来了巨大的损失。
地质灾害的发生一般是在地质构造、地形地貌、气候等多种因素的影响下,形成了一定规模和危险性的灾害。
地质灾害对于人类的生产生活具有严重的影响,因此对地质灾害的监测、预警、评估、救援和防治显得至关重要。
在这个过程中,遥感技术的应用起着关键性作用,通过遥感技术可以实时监测地质灾害的动态信息,提前预警可能发生的灾害,评估灾害风险和损失,指导灾害救援和防治工作。
遥感技术在地质灾害中的应用已经成为应对地质灾害的重要手段之一。
1.2 遥感技术概述遥感技术是指利用卫星、飞机、无人机等遥感平台获取地球表面特征信息的技术。
通过遥感技术可以获取大范围、高分辨率、多频谱、多时相的影像数据,实现对地质灾害的监测、预警、评估、救援和防治工作。
遥感技术不受地理条件限制,可以获取到人类难以到达或无法观测到的地区的信息,为地质灾害研究和防范提供了新的手段和途径。
遥感技术在地质灾害监测中的应用地质灾害是指由于自然因素或人类活动引起的地球表层或地下产生的灾害性事件,如地震、滑坡、泥石流等。
在过去,人们在面对这些灾害时往往无法及时获取准确的信息,导致损失巨大。
然而,随着遥感技术的发展和应用,越来越多的地质灾害可以得到有效监测和预警,从而降低了灾害带来的损失。
一、遥感技术概述遥感技术是指利用航空器、卫星、无人机等远距离获取地球表面信息的技术。
它可以通过接收和记录地球表面反射、辐射、散射和发射的电磁波,来获得地球表面的各种信息,包括地貌、地质、水文和植被等。
这些信息可以通过图像和数值数据的形式呈现,为地质灾害监测和预警提供了强大的支持。
二、遥感技术在地震监测中的应用地震是地质灾害中最为破坏性的一种,而遥感技术在地震监测中发挥着重要的作用。
利用遥感技术,科学家可以实时监测地震震源的活动情况,判断地震的震级和震中位置。
同时,遥感技术还可以通过观测地表的形变和地面建筑物的变化,提供地震发生后的影响评估和灾情监测。
这对于救援和灾后重建都具有重要意义。
三、遥感技术在滑坡监测中的应用滑坡是地质灾害中常见的一种,它给人们的生命和财产安全带来了巨大威胁。
而利用遥感技术,可以提前监测出滑坡发生的预警信号,从而采取相应的应对措施。
遥感技术可以通过获取地表的形态和土地利用情况,识别出潜在的滑坡危险区域,并定量评估滑坡的规模和潜在危害。
这为滑坡灾害的预防和监测提供了重要的依据。
四、遥感技术在泥石流监测中的应用泥石流是另一种地质灾害,由于其突发性和破坏性,给周边地区带来了严重的危害。
通过利用遥感技术,可以监测出潜在的泥石流危险区域,并实时观测泥石流的运动轨迹和范围。
遥感技术还可以通过监测土壤含水量和裸露程度,判断泥石流发生的可能性和危害程度。
这为泥石流的预防和应对提供了重要的参考依据。
五、遥感技术的挑战与展望尽管遥感技术在地质灾害监测中的应用已经取得了显著的成果,然而仍面临一些挑战。
首先,由于地质灾害的复杂性和多样性,遥感技术需要不断发展和改进,以适应各种复杂的地质条件和环境变化。
遥感技术在地质灾害监测中的应用研究在当今社会,随着科技的飞速发展,遥感技术已经成为地质灾害监测领域中一项极为重要的手段。
地质灾害的发生往往具有突发性和破坏性,给人们的生命财产安全带来了巨大威胁。
因此,如何有效地监测和预防地质灾害,成为了科学界和社会各界关注的焦点。
遥感技术凭借其独特的优势,为地质灾害监测提供了强有力的支持。
遥感技术,简单来说,就是通过不直接接触目标物体,利用传感器接收来自目标物体的电磁波信息,从而获取有关目标物体的特征和状态的技术。
它就像是一双“千里眼”,能够从遥远的地方收集到大量的地表信息。
在地质灾害监测中,遥感技术有着广泛的应用。
首先,对于滑坡这种常见的地质灾害,遥感技术能够发挥重要作用。
通过对滑坡区域的遥感影像进行分析,可以清晰地看到地形的变化、植被的破坏以及地表裂缝的分布等情况。
比如,利用高分辨率的卫星影像,可以精确地测量滑坡体的位移和变形情况。
而且,多时相的遥感数据对比,能够帮助我们发现滑坡的发展趋势,提前做出预警。
其次,在泥石流监测方面,遥感技术也大显身手。
泥石流通常发生在山区沟谷,具有强大的破坏力。
遥感影像可以提供泥石流形成区的地形地貌、松散物质堆积情况以及水源条件等信息。
通过对这些信息的分析,可以评估泥石流发生的可能性和危险程度。
此外,在泥石流发生后,遥感技术还能快速获取受灾范围和损失情况,为救援和灾后重建提供重要依据。
崩塌是另一种常见的地质灾害,遥感技术同样能够对其进行有效的监测。
通过遥感影像,可以观察到崩塌体的形态、结构以及与周边地形的关系。
结合地形数据和地质资料,能够分析崩塌发生的潜在风险。
除了上述几种常见的地质灾害,遥感技术在地面沉降、地裂缝等地质灾害的监测中也有着不可替代的作用。
在地面沉降监测中,合成孔径雷达干涉测量(InSAR)技术能够精确测量地表的微小变形,为研究地面沉降的机制和发展趋势提供关键数据。
而对于地裂缝,遥感影像可以清晰地显示其分布和走向,帮助我们了解地裂缝的形成原因和演化规律。
遥感技术在地质灾害监测中的应用研究一、引言地质灾害是自然界中对人类生命财产安全构成严重威胁的现象,如滑坡、泥石流、崩塌等。
为了有效预防和减轻地质灾害带来的损失,及时准确的监测手段至关重要。
遥感技术作为一种先进的空间观测技术,凭借其大面积、快速、动态、多源等特点,在地质灾害监测中发挥着越来越重要的作用。
二、遥感技术概述遥感技术是指从远距离、高空或外层空间的平台上,利用可见光、红外、微波等电磁波探测仪器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术。
遥感技术主要由遥感平台、传感器、信息传输与接收装置、图像处理与分析系统等部分组成。
按照不同的分类标准,遥感技术可以分为多种类型。
例如,根据遥感平台的高度,可分为地面遥感、航空遥感和航天遥感;根据所利用的电磁波谱段,可分为可见光遥感、红外遥感、微波遥感等。
三、地质灾害的类型与特点(一)滑坡滑坡是指斜坡上的土体或者岩体,在重力作用下,沿着一定的软弱面或者软弱带,整体地或者分散地顺坡向下滑动的自然现象。
滑坡通常具有突然性、破坏性强的特点,其发生往往与地形地貌、岩土体性质、水文地质条件以及人类活动等因素密切相关。
(二)泥石流泥石流是山区沟谷中,由暴雨、冰雪融水等水源激发的,含有大量泥沙石块的特殊洪流。
泥石流具有暴发突然、来势凶猛、破坏力大等特点,往往会造成严重的人员伤亡和财产损失。
(三)崩塌崩塌是指陡坡上的岩土体在重力作用下突然脱离母体,翻滚、坠落的现象。
崩塌的发生通常与岩石的结构、构造、风化程度以及地形条件等因素有关,具有速度快、规模大小不一的特点。
四、遥感技术在地质灾害监测中的应用原理遥感技术在地质灾害监测中的应用主要基于其对地表信息的获取和分析能力。
通过不同类型的传感器,可以获取到地表的地形、地貌、植被覆盖、土壤湿度等信息。
在滑坡监测中,遥感技术可以通过对滑坡体的形态、位移、植被变化等特征的监测,分析滑坡的稳定性和发展趋势。
地质勘查中的新兴技术与应用研究在当今科技飞速发展的时代,地质勘查领域也不断涌现出一系列新兴技术,为资源勘探、地质灾害预防、环境保护等方面带来了前所未有的机遇和突破。
这些新兴技术的应用,不仅提高了地质勘查的效率和精度,还为解决一系列地质问题提供了更有力的手段。
一、遥感技术在地质勘查中的应用遥感技术是一种通过非接触方式获取目标物体信息的技术手段。
在地质勘查中,它能够从宏观角度对大面积区域进行快速扫描和监测。
通过多光谱、高光谱遥感图像,地质工作者可以识别出不同的岩石类型、地层结构以及地质构造。
例如,不同的岩石在光谱特征上存在差异,通过对遥感图像的分析,可以区分出花岗岩、石灰岩等。
此外,遥感技术还能用于监测地质灾害。
它可以及时发现山体滑坡、地面沉降等灾害的前兆迹象,为灾害预警和防范提供重要依据。
比如,通过对同一地区不同时期的遥感图像进行对比分析,能够监测到地表的微小变形,从而提前预测可能发生的地质灾害。
二、地球物理勘探技术的新发展地球物理勘探技术在地质勘查中一直发挥着重要作用,近年来更是不断创新和完善。
其中,高精度重力勘探技术能够探测到地下微小的密度差异,从而发现深部的隐伏矿体和地质构造。
相比传统重力勘探,其精度更高,能够提供更详细的地下地质信息。
另外,电磁法勘探技术也取得了显著进展。
例如,可控源音频大地电磁法(CSAMT)可以穿透高阻层,对深部地质结构进行有效探测。
在寻找深部金属矿、油气藏等方面具有广阔的应用前景。
三、地质大数据与人工智能的融合随着信息技术的发展,地质勘查领域积累了海量的数据。
如何有效地处理和分析这些数据成为了一个关键问题,而人工智能技术的引入为解决这一问题提供了新的思路。
通过建立地质数据模型,利用机器学习算法对大量的地质数据进行挖掘和分析,可以发现隐藏在数据中的规律和关系。
例如,预测矿产资源的分布、评估地质灾害的风险等。
同时,人工智能还可以辅助地质图像的解译。
传统的地质图像解译依赖于人工经验,效率低下且容易出现误差。
卫星遥感技术在地质灾害监测中的应用随着科技的不断进步,卫星遥感技术在各个领域的应用也日益广泛。
在地质灾害监测方面,卫星遥感技术的应用正逐渐展现出其巨大的潜力。
本文将重点探讨卫星遥感技术在地质灾害监测中的应用,并分析其优势和挑战。
一、卫星遥感技术的介绍卫星遥感技术是通过搭载在卫星上的遥感仪器,获取地球表面信息的一种技术手段。
利用卫星搭载的传感器,可以获取地球表面的可见光、红外线、微波等多种信息,并将这些信息转化为数字信号进行处理。
卫星遥感技术的优势在于它可以获取大范围、高分辨率、实时的地面信息,同时具有快速、准确、经济的特点。
二、卫星遥感技术在地质灾害监测中的应用1. 地质灾害预警利用卫星遥感技术,可以实时监测地表的形变和地壳运动情况,从而及时发现地震、滑坡等地质灾害的潜在风险。
通过遥感图像的分析和比对,可以发现地表形变的异常情况,进而预测和预警可能的地质灾害。
2. 灾害评估和损失评估在地质灾害发生后,利用卫星遥感技术可以获取受灾区域的高分辨率图像,通过对比事前与事后的卫星遥感图像,可以直观地了解灾害的规模和范围,并进一步评估灾情的严重程度。
此外,卫星遥感技术还可以通过对受灾区域进行高精度的数值计算,快速、准确地评估灾害带来的损失和影响。
3. 灾后重建规划卫星遥感技术在地质灾害监测中的应用还包括灾后重建规划。
通过卫星遥感图像的分析,可以获知受灾区域的地貌、植被、水系等信息,从而帮助确定合理的重建方案。
此外,卫星遥感技术还可以监测灾后土地的稳定性,保证灾后重建的可持续性。
三、卫星遥感技术应用的优势1. 范围广且实时性强:卫星遥感技术可以同时获取大范围的地质灾害信息,并以实时的方式提供给相关部门,为其决策提供及时依据。
2. 高分辨率且全面性强:卫星遥感技术可以获取高分辨率的地表图像,能够提供详细的地质灾害信息,帮助相关部门全面了解灾情。
3. 高效准确且经济节省:卫星遥感技术具有高效准确的特点,可以在较短的时间内获取大量信息,并避免了人力物力上的浪费。
无人机遥感技术在地质灾害预警中的应用地质灾害是人类社会发展过程中不可避免的自然灾害,给人们的生命财产安全带来严重威胁。
因此,地质灾害的预警工作变得尤为重要。
在近年来的科技发展中,无人机遥感技术作为一种新兴的技术手段,被广泛应用于地质灾害的预警工作中。
本文将介绍无人机遥感技术在地质灾害预警中的应用,并探讨其优势和未来发展前景。
地质灾害常常给人们的生命财产安全带来巨大损失,如滑坡、崩塌、泥石流等。
在过去,地质灾害的预警主要依靠人工巡查和地面观测设备,但这种方法存在许多问题,如工作效率低、工作范围受限、对地质灾害整体情况了解不全面等。
而无人机遥感技术的出现,弥补了地质灾害预警的不足之处。
首先,无人机具有灵活性和独立性,能够在复杂的地形环境中进行飞行,获取地质灾害难以到达的地方的信息。
无人机搭载的高分辨率遥感相机能够对地质灾害区域进行全方位、高清晰度的图像采集,进而提供详细的地质灾害信息。
其次,无人机的遥感技术可以实时监测地质灾害区域的变化情况。
传统的地质灾害监测设备往往需要耗费大量人力物力进行安装和维护,而无人机遥感技术可以通过搭载遥感仪器,实时获取地质灾害的信息。
这种实时监测的能力,可以使地质灾害的预警工作变得更加准确、迅速,从而降低人们的生命财产损失。
再次,无人机遥感技术具有快速响应的能力。
当地震等地质灾害发生时,无人机可以迅速启动并飞行到地震地点,进行危险区域的巡查和地质灾害的监测。
这种快速响应的能力,可以及时提供地质灾害的信息,为应急救援和人员撤离工作提供重要的支持。
此外,无人机遥感技术还可以辅助地质灾害的预测和评估。
通过搜集大量的地理信息、地形数据和遥感图像,结合地质学、地理信息系统等专业知识,可以利用数据分析和模拟技术,实现对地质灾害的预测和评估。
无人机遥感技术不仅能够扩大预测和评估的范围,提高准确性,还可以减少人力物力的投入,提高工作效率。
然而,无人机遥感技术在地质灾害预警中仍然面临一些挑战和问题。
遥感技术在地质灾害调查中的应用及前景地质灾害遥感调查正由示范性实验阶段步入全面推广的实用性阶段。
地质灾害的日益严重和对突发性地质灾害抢灾救灾工作的时效性要求,应用遥感技术开展地质灾害调查是极其必要的,是当代高新技术发展的必然趋势。
遥感技术特点及其它相关高新技术的高速发展,已使地质灾害遥感调查成为可能。
遥感技术可以贯穿于地质灾害调查、监测、预警、评估的全过程。
应用遥感技术开展地质灾害调查具有广阔的前景。
全面推广地质灾害遥感调查,有待于遥感工作者和地质灾害工作者的共同努力。
一、地质灾害遥感调查的历史回顾近20年来,随着航空航天对地观测技术、计算机技术和电磁波信息传输技术等的深入研究,遥感技术得到了迅猛的发展,在实用化方向上迈出了重要的一步,并被广泛应用于各种国土资源调查与环境评价及灾害监测中。
遥感技术应用于地质灾害调查,可追溯到上世纪70年代末期。
在国外,开展得较好的有日本、美国、欧共体等。
日本利用遥感图像编制了全国1/5万地质灾害分布图;欧共体各国在大量滑坡、泥石流遥感调查基础上,对遥感技术方法进行了系统总结,指出了识别不同规模、不同亮度或对比度的滑坡和泥石流所需的遥感图像的空间分辨率,遥感技术结合地面调查的分类方法,可以用GPS测量及雷达数据,监测滑坡活动可能达到的程度。
我国利用遥感技术开展地质灾害调查起步较晚,但进展较快。
我国地质灾害遥感调查是在为山区大型工程建设或为大江大河洪涝灾害防治服务中逐渐发展起来的。
80年代初,湖南省率先利用遥感技术在洞庭湖地区开展了水利工程的地质环境及地质灾害调查工作。
有关单位先后在雅砻江二滩电站、红水河龙滩电站、长江三峡工程、黄河龙羊峡电站、金沙江下游落渡、白鹤滩及乌东清电站库区开展了大规模的区域性滑坡、泥石流遥感调查;从80年代中期起,又分别在宝成、宝天、成昆铁路等沿线进行了大规模的航空摄影,为调查地质灾害分布及其危害提供了信息源。
90年代起,在主干公路及铁路选线,如京九铁路沿线等也使用了地质灾害遥感调查技术。
90年代末期在全国范围内开展的“省级国土资源遥感综合调查”工作中,各省(区)都设立了专门的中小比例尺“地质灾害遥感综合调查”课题,主要是识别地质灾害微地貌类型及活动性,评价地质灾害对大型工程施工及运行的影响等。
特别是近年在重大工程论证中,都开展了工程地质遥感调查工作,如杭州湾跨海大桥、向山港跨海大桥等。
近20年的实践,摸索了一套较为合理有效的滑坡、泥石流等地质灾害遥感调查方法,即利用遥感信息源,以目视解译为主,计算机图像处理为辅,将重点区遥感解译成果与现场验证相结合,并利用其它非遥感资料,综合分析,多方验证。
综上所述,地质灾害遥感调查已基本完成了示范性实验阶段,正走向全面推广的实用性阶段,在山区大型工程建设及江河湖库的防灾减灾工作中尤其具有广阔的应用前景。
遥感技术应用地质灾害调查,已取得了许多成功的经验。
但是在地质灾害监测方面,成功的实例不多。
充分利用航天遥感、差分干涉雷达和全球定位系统技术及其集成技术进行地质灾害监测,是未来遥感对地观测技术体系在地质灾害监测应用中的必然发展趋势。
二、地质灾害遥感调查的必要性1、地质灾害的日益严重要求采用当代高新技术开展调查工作人口、资源、环境与灾害是当今社会人类面临的主要问题。
人口的不断增长,导致了对资源需求的不断增加;人类活动空间和规模的迅速增大及对资源的过量开采,导致了一系列环境问题,引起了一系列自然灾害。
在各种自然灾害中,地质灾害占有重要的比重。
据不完全统计,全球发展中国家每年由地质灾害造成的经济损失,达到了国民生产总值的5%以上。
在我国灾害及其所导致的环境问题中,据估计由地质灾害造成的损失约占整个灾害损失的35%。
其中崩塌、滑坡、泥土流及人类工程活动诱发的浅表生地质灾害所造成的损失约占55%。
这些灾害的一次性规模虽小于地震、洪涝灾害等,但其发生频度和涉及范围则远远高于和广于这两种灾害,一年的总损失约200亿元。
我国从青藏高原向云贵高原和从云贵高原向长江中下游平原过渡的两个大陆坡度带范围内,仅上世纪80年代以来所发生的一次性伤亡人数在数十人以上或直接经济损失在数千万元以上的灾难性崩滑事件就达十余起,仅这些灾害所造成的人民生命损失已超过千人,直接经济损失上亿元,事后善后处理及整治费用则高达近十亿元,而由于灾害对社会所带来的影响所产生的间接损失则更是无法估量。
湖南是我国地质灾害较严重的省区。
据统计,湖南省自1949年以来,滑坡、泥石流、崩塌三类地质灾害造成的直接经济损失达数十亿元。
而1991年至2000年的10年间,直接经济损失就达9亿元以上,因灾死亡536人。
特别是2001年,湖南省共发生严重地质灾害1000余处,造成108人死亡, 38人失踪,451人受伤,损毁房屋16283间,毁坏农田64167亩,损毁公路313公里,直接经济损失81494万元。
可见,地质灾害已经严重地威胁着人民的生命财产安全,阻碍了社会经济可持续发展。
利用当代高新技术加大对地质灾害调查、监测和防治,已成为刻不容缓的任务。
2、地质灾害的突发性与救灾的迫切性要求利用遥感技术进行调查暴雨是诱发地质灾害的催化剂。
暴雨的冲刷、淋漓和渗透,一方面降低了岩土体的抗剪强度,特别是降低地质体结构面的抗滑强度,使其发展成为滑动面和崩塌界面;另一方面增加了岩土体的自重、并增大了地下水的动压力和静压力,进一步降低了斜坡的稳定性,进而诱发滑坡。
另外,崩塌体和滑坡体在高强度水流作用下形成泥石流。
由此可以看出,地质灾害多发生于暴雨天气,常具有突发性特点。
一般地,暴雨多呈面型分布,因此,由暴雨引发的地质灾害也相应地大多表现为区域性,且多形成地质灾害链。
这种在暴雨恶劣天气下突发的地质灾害,若用传统的调查方法,不仅因为大面积调查难以做到实时性,也难以保证真实性和准确性。
但是,卫星遥感中的“星载雷达技术”具有穿透云雨特点,不受天气条件影响。
利用星载雷达可以实时而准确的开展突发性地质灾害调查。
遥感对地观测技术是当代高新技术的重要组成部分,是20世纪末几年开始执行的“对地观测系统(EOS)”计划的主体。
它具有时效性好、宏观性强、信息量丰富等特点。
利用全球卫星定位系统(GPS)可以准确地监测地质灾害体的形变与蠕动情况,从卫星遥感图像上可实时或准实时地反映灾时的具体情况,监测重点灾害点的发展演化趋势,增强地质灾害发生的预见性。
因此,为了能及时地调查地质灾害状况,为抢灾与救灾工作提供准确资料,根据国民经济建设与可持续发展的需要,在地质灾害调查中采用遥感技术这一先进手段,是尤为必要的,这也是现代高新技术应用发展的必然趋势。
三、地质灾害遥感调查的可行性1、地质灾害遥感调查技术经验的积累国内外地质灾害遥感调查技术方法主要是在上世纪最后20年发展起来的,现已基本形成了规范化的技术流程,在地质灾害遥感判读、分类及制作相应的图像方面都取得了较成熟的经验。
湖南省遥感中心承担的湖北鹤峰县娄水江坪河水库的地质灾害调查,利用黑白航片解译了一系列的滑坡、崩塌、泥石流等,编制了1/5万地灾分布图。
该图较详细地表示了各种地质灾害的位置、边界、要素等时空特征及平面规模,成为水电部门规划设计甚至地灾评估的重要基础资料及基本依据之一。
近年来完成的“湖南省地质灾害遥感综合调查”项目,对全省地质灾害进行了系统的遥感解译,并进行了滑坡、泥石流、崩塌等地质灾害分区与定量的灾情等级评价,从宏观上进行了致灾成因分析和发展趋势预测。
20年的实践与摸索,已掌握了各类地质灾害的遥感影像特征,并具备了较成熟的目视解译地质灾害的方法技术,使应用遥感技术开展地质灾害调查工作成为可能。
2、遥感技术特点为有效地进行地质灾害调查提供了可能地质灾害的发生主要受制于地层岩性、构造展布、植被覆盖、地形地貌以及大气降水强度等要素。
一般情况下,岩性脆弱、构造发育、植被稀疏、地形陡峻的地段,在强降水过程中容易发生地质灾害。
遥感技术有宏观性强、时效性好、信息量丰富等特点,不仅能有效地监测预报天气状况进行地质灾害预警,研究查明不同地质地貌背景下地质灾害隐患区段,同时对突发性地质灾害也能进行实时或准实时的灾情调查、动态监测和损失评估。
因此,遥感技术在地质灾害调查中必将发挥重要的作用。
3、现代高新技术的发展是地质灾害遥感调查的强有力技术支持空间技术、信息技术和计算机技术是20世纪发展最迅速的科学技术。
就空间技术而言,光机扫描遥感仪器的实验成功(代替了摄像管技术),是空间光学-传感器技术发展的转折,它解决了从空间获取可见光和红外两个重要电磁波段数据的关键技术性问题,也为遥感技术提供了更宽波段范围内的服务。
如TM(或ETM)图像数据,虽然从技术发展来看,已达到自身的性能极限,但在众多的领域内,它正在或在相当长的一段时间内,可作为重要的信息源服务于广大用户。
另一方面,它也为进一步探索空间传感器的机理奠定了基础;对地观测的遥感器目前已涉及从紫外、可见光、红外、微波到超长波的各个波段。
其中,可见光一红外波段间的波谱分辨率已达纳米级。
目前,成像光谱仪技术已获得了重大突破,如美国在上世纪90年代发展研制的地球观测系统(EOS),为直接监测和区分地物提供了可能性。
在空间分辨率上,利用了长达20年之久的美国TM图像(30m)和法国SPOT卫星图像(10m)已被近年来发射的米级甚至分米级卫星图像所取代,美国IKONOS、Landsat—7卫星,俄罗斯的SPIN—two卫星,加拿大的Radar SAR卫星,印度的IERS卫星等空间分辨率均达米级,我国1999年成功发射的CBERS—1地球资源卫星的空间分辨率也达19.5m。
特别是,目前国内外竞相研究的小卫星群发射,将成为地质灾害调查中的主要信息源之一。
人造地球卫星的发展与计算机的发展有类似之处,即既向大型方向发展又向小型微型方向发展。
发射人造地球卫星需要雄厚的物质基础和技术基础,但是,发射小卫星具有费用低,周期短等优点。
一个省(市)区,甚至一所学校,乃至学生作的实验都可发射一颗小卫星。
如我国清华大学与英国Surrey大学协作,于1999年成功地发射了“清华一号”和“清华二号”小卫星,遥感传感器的分辨率达到1.8m;哈尔滨工业大学,中科院上海冶金研究所和空间中心也都准备发射自己的小卫星。
可以肯定,小卫星的自主研制与发射必将推动地质灾害遥感调查工作。
GPS技术大大改进了滑坡、泥石流等地质灾害调查中的定位工作。
目前,美国和俄罗斯都有全球定位系统,其提供数据的差分精度可达毫米级。
我国的基础地理框架工作也取得了长足进步,1/100万比例尺的全国数字地图已进入Internet,1/25万全国数字地图也已完成,部份重点地区的1/5万基础1/1万的数字地图制作工作也初具规模。
这些基础数据对实现地质灾害遥感调查新技术提供了有力的支撑。