立体几何中的一种重要辅助线
- 格式:pdf
- 大小:91.76 KB
- 文档页数:3
【考点1】空间角,距离的求法 【备考知识梳理】 1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,a b ,经过空间任一点O 作直线','a a b b .则把'a 与'b 所成的锐角(或直角)叫做异面直线与所成的角(或夹角).异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦. (2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0︒的角.直线与平面所成角的范围是0,2π⎡⎤⎢⎥⎣⎦.(3)二面角的平面角:如图在二面角l αβ--的棱上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则AOB ∠叫做二面角的平面角.二面角的范围是[]0,π.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB 为异面直线b a ,的公垂线段,然后求出AB 的长即可.②找或作出过且与平行的平面,则直线到平面的距离就是异面直线b a ,间的距离.③找或作出分别过b a ,且与,分别平行的平面,则这两平面间的距离就是异面直线b a ,间的距离.(2)点到平面的距离:点P到直线的距离为点P到直线的垂线段的长,常先找或作直线所在平面的垂线,得垂足为A,过A作的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离. 【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角. (1)异面直线所成的角的范围是]2,0(π.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角; ④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ. (2)直线与平面所成的角的范围是]2,0[π.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. ②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h ,然后利用斜线段长h =θsin 进行求解.③妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b. 如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c. 如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围[]0,π,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角, 自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角, 在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;DBA Cα②射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 【考点针对训练】1. .【2016高考浙江文数】如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3.(I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.2. 【2016届湖北省武汉市武昌区高三5月调研】如图,PA 垂直圆O 所在的平面,C 是圆O 上的点,Q 是PA 的中点,G 为AOC ∆的重心,AB 是圆O 的直径,且22AB AC ==.(1)求证://QG 平面PBC ; (2)求G 到平面PAC 的距离. 【考点2】立体几何综合问题 【备考知识梳理】空间线、面的平行与垂直的综合考查一直是高考必考热点.归纳起来常见的命题角度有: 以多面体为载体综合考查平行与垂直的证明. 探索性问题中的平行与垂直问题. 折叠问题中的平行与垂直问题. 【考点针对训练】1. 【2016届宁夏高三三轮冲刺】如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设,D E 分别为,PA AC 中点.(1)求证://DE 平面PBC ; (2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,,E F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.2. 【2016届四川南充高中高三4月模拟三】如图,在正方形ABCD 中,点,E F 分别是,AB BC 的中点,将,AED DCF ∆∆分别沿DE 、DF 折起, 使,A C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P BFDE -的体积. 【应试技巧点拨】 1.如何求线面角(1)利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径. (2)利用三棱锥的等体积,省去垂足在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h !利用三棱锥的等体积,只需求出h ,然后利用斜线段长h=θsin 进行求解.(3)妙用公式,直接得到线面角 课本习题出现过这个公式:21cos cos cos θθθ=,如图所示:21,,θθθ=∠=∠=∠OBC ABO ABC .其中1θ为直线AB 与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴. 2.如何求二面角(1)直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小. 用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角;②利用与二面角的棱垂直的平面确定平面角;③利用定义确定平面角;(2)射影面积法.利用射影面积公式cos θ=S S';此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等. 3.探索性问题探求某些点的具体位置,使得线面满足平行或垂直关系,是一类逆向思维的题目.一般可采用两个方法:一是先假设存在,再去推理,下结论;二是运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算.4.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.5.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直定义,判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.6.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可. 【三年高考】1. 【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )2 (B )2 (C )3(D )132. 【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______.3. 【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥(I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.4. 【2016高考天津文数】如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证://FG 平面BED ;(Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.5. 【2016高考新课标1文数】如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE6. 【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支7.【2015高考福建,文20】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若BC =E 在线段PB 上,求CE OE +的最小值.8.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEGAB FHED C G CD EAB9.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠ABC=2π,点D 、E 在线段AC 上,且AD=DE=EC=2,PD=PC=4,点F 在线段AB 上,且EF//BC. (Ⅰ)证明:AB ⊥平面PFE.(Ⅱ)若四棱锥P-DFBC 的体积为7,求线段BC 的长.题(20)图AC10. 【2014高考重庆文第20题】如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.11. 【2014高考全国1文第19题】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB求三棱柱111C B A ABC -的高.12.【2014高考江西文第19题】如图,三棱柱111C B A ABC -中,111,BB B A BC AA ⊥⊥. (1)求证:111CC C A ⊥;(2)若7,3,2===BC AC AB ,问1AA 为何值时,三棱柱111C B A ABC -体积最大,并求此最大值.【一年原创真预测】1.已知AB ⊥平面ACD ,DE ⊥平面ACD ,ACD ∆为等边三角形,22AD DE AB ===,F 为CD 的中点.(Ⅰ)求证:平面平面BCE DCE ⊥; (Ⅱ)求B CDE 点到平面的距离.2.如图,直三棱柱111ABC A B C -中,底面ABC △是等腰直角三角形,且AB CB ==,且AA 1=3,D 为11AC 的中点,F 在线段1AA 上,设11A F tAA =(102t <<),设11=B C BC M .MFDC 1B 1A 1CBA(Ⅰ)当取何值时,CF ⊥平面1B DF ;(Ⅱ)在(Ⅰ)的条件下,求四面体1F B DM -的体积.3.如图,三棱锥P ABC -中,BC ⊥平面PAB ,PA PB AB BC 6====,点M ,N 分别为PB,BC 的中点.(I )求证:AM ⊥平面PBC ; (Ⅱ)E 是线段AC 上的点,且AM 平面PNE .①确定点E 的位置;②求直线PE 与平面PAB 所成角的正切值.4.如图,在直角三角形ABC 中,∠BAC=60°,点F 在斜边AB 上,且AB=4AF ,D ,E 是平面ABC 同一侧的两点,AD ⊥平面ABC ,BE ⊥平面ABC ,AD=3,AC=BE=4.(Ⅰ)求证:CD ⊥EF ;(Ⅱ)若点M 是线段BC 的中点,求点M 到平面EFC 的距离.5. 如图所示,在边长为12的正方形11ADD A 中,点,B C 在线段AD 上,且3,4AB BC ==,作11//BB AA ,分别交111,A D AD 于点1B ,P .作11//CC AA ,分别交111,A D AD 于点1C ,Q .将该正方形沿11,BB CC 折叠,使得1DD 与1AA 重合,构成如图的三棱柱111ABC A B C -.(1)求证:AB ⊥平面11BCC B ; (2)求四棱锥A BCQP -的体积.【考点1针对训练】 1.2.【考点2针对训练】 1.又因为EF ⊄平面PBC ,BC ⊂平面PBC ,所以//EF PBC .又因为DE EF E =,所以平面//DEF 平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.2.【三年高考】 1. 【答案】A//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60 ,故,m n所成角的正弦值为2,故选A. 2.3. 【解析】(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA . (II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A .因为C P ⊥平面CD AB ,所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点,使得//PA 平面C F E .证明如下:取PB 中点,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA .又因为PA ⊄平面CF E ,所以//PA 平面C F E .4.5.6. 【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.7.解法二:(I)、(II)同解法一.8.【解析】(Ⅰ)点F ,G ,H 的位置如图所示9.【解析】如题(20)图.由,DE EC PD PC ==知,E 为等腰PDC D 中DC 边的中点,故PE AC ^,又平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,PE Ì平面PAC ,PE AC ^,所以PE ^平面ABC ,从而PE AB ^.因ABC=,,AB EF 2EF BC p衈故. 从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ^平面PFE .(2)解:设BC=x ,则在直角ABC D中,从而11S AB BC=22ABC D =?由EFBC ,知23AF AE AB AC ==,得AEF ABC DD ,故224()S 39AEF ABC S D D ==,即4S 9AEF ABC S D D =.FCDEAB GHO由1AD=2AE ,11421S S =S S 22999AFB AFE ABC ABC D D D D =?=从而四边形DFBC 的面积为DFBC11S S -=29ABC ADF S D D =718=(1)知,PE PE ^平面ABC ,所以PE 为四棱锥P-DFBC 的高.在直角PEC D 中,=体积DFBC 117S 73318P DFBC V PE -=鬃=?,故得42362430x x -+=,解得2297x x ==或,由于0x >,可得3x x ==或.所以3BC =或BC =10.11.12.【解析】(1)证明:由1AA BC ⊥知1BB BC ⊥,又11BB A B ⊥,故1BB ⊥平面1,BCA 即11BB AC ⊥,又11//BB CC ,所以11.AC CC ⊥(2)设1,AA x =在11Rt A BB ∆中1BA同理1AC 在1A BC ∆中,2222111111cos 2A B AC BC BAC BAC A B AC +-∠==∠=⋅11111sin 2A BCS A B A C BA C ∆=⋅∠=从而三棱柱111ABC A B C -的体积为11133A BC V BB S ∆=⨯⨯=因=故当x =时,即1AA =时,体积V取到最大值【一年原创真预测】1.【解析】(Ⅰ)DE ⊥平面ACD ,F A ⊂平面CD A ∴DE AF ⊥,又等边三角形ACD 中AF CD ⊥, D CD D E =,D E ⊂平面CD E ,CD ⊂平面CD E ,∴平面AF ECD ⊥,取CE 的中点M ,连接BM,MF ,则MF 为△CDE 的中位线,故1////,2MF DE AB MF DE AB ==,所以四边形ABMF 为平行四边形,即MB//AF,MB⊂平面C B E ,F A ⊄平面C B E ,//BCE 平面AF ∴,平面平面BCE DCE ∴⊥.(Ⅱ)因为AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB //DE ,故AB //平面DCE ,B CDE 点到平面的距离h 等于A CDE 点到平面的距离d ,由体积相等A DCE E ACD V V --=得,1133DCE ADC S d S DE ∆∆⋅=⨯,011112222sin 6023232d ⋅⨯⨯⋅=⨯⨯⨯⨯,解得h d ==.2.(Ⅱ)由已知得111111==22F B DM M B DF C B DF B CDF V V V V ----=,因为FD FC 1=22CDF S DF FC ⋅=△,由(Ⅰ)得1B D ⊥平面DFC ,故112=21=33B CDF V -⨯⨯,故1F B DM -的体积为13.3.②作EH AB ⊥于H ,则EH //BC ,∴EH ⊥平面PAB ,∴EPH ∠是直线PE 与平面PAB 所成的角.∵1AH AB 23==,π6=3PA PAH =∠, ∴PH ==1EH BC 23==,∴EH tan EPH PH 7∠==,即直线PE 与平面PAB 所成角的正切值为7.4.5.。
1基本概念数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称。
立体几何一般作为平面几何的后续课程,暂时在人教版数学必修二中出现。
立体测绘(Stereometry)是处理不同形体的体积的测量问题。
如:圆柱,圆锥,圆台,球,棱柱,棱锥等等。
立体几何空间图形毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。
立体几何形戒指尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
2基本课题课题内容包括:各种各样的几何立体图形(10张)- 面和线的重合- 二面角和立体角- 方块, 长方体, 平行六面体- 四面体和其他棱锥- 棱柱- 八面体, 十二面体, 二十面体- 圆锥,圆柱- 球- 其他二次曲面: 回转椭球, 椭球,抛物面,双曲面公理立体几何中有4个公理公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 平行于同一条直线的两条直线平行。
各种立体图形表面积和体积一览表注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易。
学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。
三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
1,三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系.2,a与PO可以相交,也可以异面.3,三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理.关于三垂线定理的应用,关键是找出平面(基准面)的垂线.至于射影则是由垂足,斜足来确定的,因而是第二位的.从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证.即几何模型第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线.第三,证明射影线与直线a垂直,从而得出a与b垂直.注:1.定理中四条线均针对同一平面而言2.应用定理关键是找"基准面"这个参照系用向量证明三垂线定理已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b 垂直OA,求证:b垂直PA证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA)所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以b)加(向量OA 乘以b )=O,所以PA垂直b。
辅助线在高中数学几何题中的重要作用作者:黄懋卿来源:《祖国》2016年第23期摘要:在高中数学学习中,几何问题是整体数学中分数占比很大的一部分,其在高考的解答题部分,六道题中便有两道为几何题,因此学好高中数学就必须学好数学几何。
在高中数学几何解题之中画出辅助线是一种极其常见的解题方式,正确合理的画出辅助可以有效的让题目的条件更为明显化,同时也会在很大程度上降低解题的难度,故此教师在教学中帮助学生掌握高中数学几何辅助线的作法是十分必要的。
在此背景下,文章首先介绍了高中数学几何题的特点,进而具体分析了辅助线在高中数学几何题中的重要作用。
关键词:高中数学辅助线几何题作用分析几何是数学学习中极其重要的部分,其主要考察的是学生的图像判断能力以及空间想象能力。
通常来说对于高中生而言,几何题是难度较大的一类的题型,其在题目解答中所面对的陷阱是很多的。
辅助线是几何题解答中十分常见的一种解题技巧,在几何题中作出一条正确的辅助线对于降低解题难度时有着明显的效果的。
文章围绕高中几何题的辅助线为中心,分两个部分展开了细致的分析探讨,旨在提供一些高中数学几何题中正确做出辅助线的理论参考,以下是具体内容。
一、高中数学几何题的特点(一)题目的空间感很强对于高中几何题而言其主要是考察一些立体几何的题目,因此其在空间感上是很强的,然而很多学生在刚刚接触到高中数学几何时,在其思维上还是受到初中阶段的平面几何的影响,故此在其解答时是难以正确解答的。
以正方体为例,在破平面上将一个正方体表达出来其只能显示其中的三个面,但是实际上是具有六个面,因此要理解就需要学生有很强的空间思维,而学生对于一些极其复杂的空间立体图形是会感到十分迷茫的,进而在解答中极易出现错误。
(二)解题难度很大相较之初中几何高中集合其考察的是对于知识点的深度挖掘,然而对于刚进高中的学生而言,其在学习中往往还会和初中的平面几何进行对比,进而在解题中会发现题目的难度已经增加了很多。
试论高中数学几何题中辅助线的作用作者:闫岩来源:《中学课程辅导·教师通讯》2018年第10期【内容摘要】随着教育改革的脚步不停前进,人们越来越重视教育事业的发展,并在不同阶段对教育发展提出新的要求。
几何数学作为高中数学的一大重点,在新形势下,新课程标准也对其也有了新的要求。
几何知识的学习往往是高中学生学习数学中最为困难的地方,尤其在立体几何题型中由于条件不足感到手足无措,而辅助线的出现恰恰可以代替学生看不见的条件,简化了题型,为学生节省了大部分考试实践,因此能否正确制作辅助线就成为了解答立体几何题型的关键。
本文就以高中数学中的立体几何题型为切入点,对辅助线的作用进行深刻探讨。
【关键词】辅助线高中数学立体几何题型作用探讨其实辅助线的作用并不是高中学生第一次见识了,高中学生经历初中数学学习时就已经学过几何,并且也有了制作辅助线的基本经验,但是初中学习的几何仅仅属于最简单的平面几何,所做过的几何题目对学生的空间想象想象能力要求不高。
而高中数学的几何就在初中平面几何上有了扩展,就是立体几何,立体几何的学习相比平面几何就要难得多了,就像是正方形只有一个面,而正方体却又六个面,难度可想而知。
立体几何题型考验的就是学生空间思维所具有的立体感清晰度,其解题过程复杂,在无法求证时候,学生就需要在立体图形上制作正确的辅助线以化繁为简。
一、高中几何学习的困难之处1.题型考查的深度加大高中数学的学习难度相较于初中肯定有所加大,几何题型也由平面向立体扩展,对于初探高中数学的学生来说,学习难免感到吃力,而且高中数学的考试再也不会像初中考试一个题型只考察一个知识点,高中考题更注重学生的整体掌握,我们可以发现高中几何题型往往考查的不仅是几何知识,大多会涉及到函数知识以及表面积、体积的计算,因此首先在高中数学题型上就有加大难度。
2.立体几何对学生的空间想象力要求较高高中几何数学题目主要考察的就是立体几何,立体几何的学习是靠学生的空间感支撑的,对于空间感相对较弱的同学,这一部分的学习将会十分的困难,还有受到初中平面几何的影响,学生解题时第一就会感到不习惯,其次就是陌生。
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A .5B .2C .3D .22.在正方体1111ABCD A BC D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) A .5B .25C .5 D .253.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥4.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A 2B 5C 15D 10 5.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,46.设有直线m ,n ,l 和平面α,β,下列四个命题中,正确的是( ) A .若//,//m n αα,则//m n B .若//,//,//l m αβαβ,则//l m C .若,m αβα⊥⊂,则m β⊥D .若,,m m αββα⊥⊥⊄,则//m α7.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A .43B .23C .83D .438.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②D E BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④9.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323π D .该四面体内切球的表面积为2π10.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则( )A .8,14253V L ==+ B .8,1425V L ==+ C .8,16253V L ==+ D .8,1625VL ==+11.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .212.已知长方体1111ABCD A BC D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π二、填空题13.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.14.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.15.在三棱锥P ABC -中,4PA PB ==,42BC =,8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.16.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 17.如图,在三棱锥V ABC -中,22AB =,VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是_____.18.已知四面体P ﹣ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC 3=,若四面体P ﹣ABC 的体积为32,则该球的体积为_____. 19.在正方体1111ABCD A BC D -中,P 为线段1AB 上的任意一点,有下面三个命题:①//PB 平面11CC D D ;②1BD AC ⊥;③1BD PC ⊥.上述命题中正确命题的序号为__________(写出所有正确命题的序号).20.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.三、解答题21.如图,三棱柱111ABC A B C -中,1CC ⊥平面ABC ,5AB =,3AC =,14BC CC ==,M 是1CC 的中点.(Ⅰ)求证:BC AM ⊥;(Ⅱ)若N 是AB 上的点,且//CN 平面1AB M ,求BN 的长.22.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值.23.如图,四棱锥P ABCD -,底面ABCD 为矩形,PD ⊥面ABCD ,E 、F 分别为PA 、BC 的中点.(1)求证://EF 面PCD ;(2)若2AB =,1AD PD ==,求三棱锥P BEF -的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,M 是棱PD 的中点.(1)求证://PB 平面AMC ;(2)若PD ⊥平面ABCD ,2AD PD ==,3BAD π∠=,求点B 到平面AMC 的距离.25.如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,2,AB BC ==30ACB ∠=,13AA =,11BC AC ,E 为AC 的中点.(1)求证:1//AB 平面1C EB ;(2)求证:1AC ⊥平面1C EB . 26.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,226AB PD ==,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,求三棱锥B AEC -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===133xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522xAO OE -===O 是底面中心,则133xOE CE ==,2532x x-=,解得3x = 则1AO =,底面边长为23则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.D解析:D【分析】延长DA至G,使AG CE=,可证11//AG C E,得1GA F∠是异面直线1A F与1C E所成的角(或其补角).在1AGF△中,由余弦定理可得结论.【详解】延长DA至G,使AG CE=,连接1,GE GA,GF,11,AC AC,又//AG CE所以AGEC是平行四边形,//,GE AC GE AC=,又正方体中1111//,AC AC AC AC=,所以1111//,AC DE AC DE=,所以11AC EG是平行四边形,则11//AG C E,所以1GA F∠是异面直线1A F与1C E所成的角(或其补角).设正方体棱长为2,在正方体中易得15AG10GF22222112(21)3A F AA AF=+=++=,1AGF△中,2221111125cos2253AG A F GFGA FAG A F+-∠===⋅⨯⨯.故选:D.【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.3.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 4.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC //OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC //OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=1122222OD BD ==⨯= 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 5OD OED DE ∠===故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.5.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE中,利用三边关系求解即可.【详解】由题意得BC x =,则212x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴2114AE x =-212x AD +=,在ADE 中,由三边关系得:①221111224x x ++>-,②221111224x x +<-,③0x >;由①②③可得03x << 故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.6.D解析:D 【分析】在A 中,m 与n 相交、平行或异面; 在B 中,l 与m 不一定平行,有可能相交; 在C 中,m ⊥β或m ∥β或m 与β相交;在D 中,由直线与平面垂直的性质与判定定理可得m ∥α.【详解】由直线m 、n ,和平面α、β,知: 对于A ,若m ∥α,n ∥α,则m 与n 相交、平行或异面,故A 错误;对于B ,若//,//,//l m αβαβ,l 与m 不一定平行,有可能相交,故B 错误; 对于C ,若α⊥β,m ⊂α,则m ⊥β或m ∥β或m 与β相交,故C 错误;对于D ,若α⊥β,m ⊥β,m ⊄α,则由直线与平面垂直的性质与判定定理得m ∥α,故D 正确.故选:D . 【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.7.D解析:D 【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得43BCDS≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅, 所以163BC BD ⋅≤,当且仅当BC BD =时等号成立, 111634sin120322323BCDSBC BD =⋅≤⨯⨯= 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==所以1144333333A BCD BCDV S h -=⋅≤⨯⨯=, 所以四面体ABCD 体积的最大值是43, 故选:D 【点睛】关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值. 8.A解析:A 【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示; 对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以D E BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确; 对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又AC MC C ,所以BD ⊥平面ACM ,所以BD ⊥AM ,同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.9.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD,AB =2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得12OE BF AB ===所以2222,R R =+∴=,所以外接球的体积为343π⨯=,所以选项A 错误;所以外接球的表面积为2448ππ⨯=,所以选项C 错误;由题得AC AD ===所以△ACD △6=, 设内切球的半径为r ,则11111112446)243222232r ++⨯⨯+⨯⨯=⨯⨯⨯⨯所以2r,所以内切球的体积为343π⨯=,所以选项B 错误;所以内切球的表面积为242ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++就是几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .10.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A BC D -中,P ,E 分别为11,BC BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PC PB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.11.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112=221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.12.C【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.二、填空题13.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,1263DM ⨯==, 63D M DM '==, 则222222666612cos 22333332DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.14.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 11171827477tan tan()17117O HN O HO NHO ----∠=∠-∠====+ 11171827477tan tan()17117O HM O HO OHM ++++∠=∠+∠====-, 所以tan θ的取值范围是474733⎡⎢⎣⎦, 故答案为:4747-+⎣⎦.【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.15.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径解析:4 【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】解:因为BC =8AC =,AB BC ⊥,所以AB =4PA PB ==, 所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,DE =DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 4EP =, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =. 故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.16.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 解析:26 【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值.【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++= 26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.17.【分析】取的中点连接证明出可得出面角的平面角为计算出利用余弦定理求得由此可得出二面角的余弦值【详解】取的中点连接如下图所示:为的中点则且同理可得且所以二面角的平面角为由余弦定理得因此二面角的余弦值为 解析:34【分析】 取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值.【详解】取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =V AB C --的平面角为VOC ∠,由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅, 因此,二面角V AB C --的余弦值为34. 故答案为:34. 【点睛】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题. 18.【分析】根据四面体是球的内接四面体结合位置关系可得棱锥的形状以及棱长之间的关系利用体积公式即可代值计算【详解】设该球的半径为R 则AB =2R2ACAB2R ∴ACR 由于AB 是球的直径所以△ABC 在大圆所解析:43π【分析】根据四面体是球的内接四面体,结合位置关系,可得棱锥的形状,以及棱长之间的关系,利用体积公式即可代值计算.【详解】设该球的半径为R ,则AB =2R ,2AC 3=AB 3=⨯2R , ∴AC 3=R ,由于AB 是球的直径,所以△ABC 在大圆所在平面内且有AC ⊥BC ,在Rt △ABC 中,由勾股定理,得:BC 2=AB 2﹣AC 2=R 2,所以R t △ABC 面积S 12=⨯BC ×AC 3=R 2, 又PO ⊥平面ABC ,且PO =R ,四面体P ﹣ABC 的体积为32, ∴V P ﹣ABC 13=⨯R 32⨯⨯R 232=,即3R 3=9,R 3=33, 所以:球的体积V 43=⨯πR 343=⨯π×33=43π. 故答案为:43π.【点睛】本题考查三棱锥外接球体积的计算,属基础题;本题的重点是要根据球心的位置去推导四面体的几何形态,从而解决问题.19.①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错【详解】①如下图所示:因为平面平面平面所以平面故①正确;②连接如下图所示:因为平面所以又因为且所以平面又因为解析:①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错.【详解】①如下图所示:因为平面11//ABB A 平面11CC D D ,BP ⊂平面11ABB A ,所以//PB 平面11CC D D ,故①正确;②连接,AC BD ,如下图所示:因为1DD ⊥平面ABCD ,所以1DD AC ⊥,又因为AC BD ⊥且1DD BD D =,所以AC ⊥平面1DBD ,又因为1BD ⊂平面1DBD ,所以1BD AC ⊥,故②正确;③连接11,,,AC PC B C BC ,如下图所示:因为11D C ⊥平面11BCC B ,所以11D C ⊥1BC ,又因为11BC B C ⊥,且1111D C BC C ⋂=,所以1B C ⊥平面11BD C ,又1BD ⊂平面11BD C ,所以11B C BD ⊥,由②的证明可知1BD AC ⊥,且1AC BC C ⋂=,所以1BD ⊥平面1ABC ,又因为PC ⊂平面1ABC ,所以1BD PC ⊥,故③正确,故答案为:①②③.【点睛】本题考查空间线面平行、线线垂直关系的判断,涉及线面平行判定定理、线面垂直判定定理的运用,主要考查学生对空间中位置关系的逻辑推理能力,难度一般.20.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故解析:163π 【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积.【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】 本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)52. 【分析】(Ⅰ)可证BC ⊥平面11AAC C ,从而可得BC AM ⊥.(Ⅱ)可证N 为AB 的中点,从而可得BN 的长.【详解】(Ⅰ)证明:1CC ⊥平面ABC ,BC ⊂平面平面ABC ,∴1CC BC ⊥.又5AB =,3AC =,4BC =,∴222AC BC AB +=,即BC AC ⊥.又1AC CC C =,∴BC ⊥平面11AAC C ,又AM ⊂平面11AAC C ,∴BC AM ⊥. (Ⅱ)过点N 作1//NE BB 交1AB 于点E ,连ME ,由三棱柱111ABC A B C -可得11//BB CC ,∴1//NE CC 即四边形NEMC 为平面图形. 又//CN 平面1AB M ,CN ⊂平面NEMC ,且平面NEMC 平面1AB M ME =, ∴//CN ME ,∴四边形NEMC 为平行四边形,∴NE CM =,且//NE CM ,又点M 为1CC 中点,∴112CM BB =,且1//CM BB ,∴112NE BB =,且1//NE BB , ∴1522BN AB ==. 【点睛】思路点睛:线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.由线面平行得到线线平行时,注意构造过线的平面.22.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案.【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点, ,,AB DA BH AE HBA EAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥,因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =,在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅,所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为10.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算.23.(1)证明见解析;(2)112. 【分析】(1)取PD 的中点M ,连接EM 、CM ,证明四边形CMEF 为平行四边形,可得出//EF CM ,利用线面平行的判定定理可证得结论成立;(2)连接AF ,取AD 的中点N ,连接EN ,由题意可知点P 、A 到平面BEF 的距离相等,并推导出EN ⊥平面ABCD ,可得出P BEF A BEF E ABF V V V ---==,利用锥体的体积公式可求得三棱锥P BEF -的体积.【详解】(1)如下图所示,取PD 的中点M ,连接EM 、CM ,因为四边形ABCD 为矩形,则//AD BC 且AD BC =,E 、M 分别为PA 、PD 的中点,则//EM AD 且12EM AD =, F 为BC 的中点,所以,//EM CF 且EM CF =,所以,四边形CMEF 为平行四边形,所以,//EF CM ,EF ⊄平面PCD ,CM ⊂平面PCD ,//EF ∴平面PCD ;(2)如下图所示,连接AF ,取AD 的中点N ,连接EN ,E 为PA 的中点,所以,点P 、A 到平面BEF 的距离相等, 所以,P BEF A BEF E ABF V V V ---==,E 、N 分别为PA 、AD 的中点,则//EN PD 且1122EN PD ==, PD ⊥平面ABCD ,EN ∴⊥平面ABCD ,ABF 的面积为111122222ABF S AB BF =⋅=⨯⨯=△, 因此,11111332212P BEF A BEF E ABF ABF V V V S EN ---===⋅=⨯⨯=△. 【点睛】方法点睛:常见的线面平行的证明方法有:(1)通过面面平行得到线面平行;(2)通过线线平行得到线面平行,在证明线线平行中,经常用到中位线定理或平行四边形的性质.24.(1)证明见详解;(2)22. 【分析】(1)连接BD 交AC 于点O ,连接OM ,根据题中条件,推出//OM PB ,再由线面平行的判定定理,即可证明结论成立;(2)根据题中条件,求出AMC S △,ABC S ,MD ;设点B 到平面AMC 的距离为d ,由B AMC M ABC V V --=,列出等式求解, 即可得出结果.【详解】(1)连接BD 交AC 于点O ,因为底面ABCD 为菱形,所以O 为AC 中点;连接OM ,因为M 是棱PD 的中点,所以//OM PB ,因为OM ⊂平面AMC ,PB ⊄平面AMC ,所以//PB 平面AMC ;(2)因为PD ⊥平面ABCD ,所以PD AD ⊥,PD DC ⊥,因为2AD PD ==,3BAD π∠=,所以22215AM MC ==+2BD =,23ABC π∠=, 则112sin 22sin 3223ABC S AB BC ABC π=⋅⋅∠=⋅⋅⋅=22cos 236AC AO AB π==⋅⋅= 所以22532MO MC CO =--=11232622AMC S AC MO =⋅⋅=⋅=, 设点B 到平面AMC 的距离为d ,由B AMC M ABC V V --=可得1133AMC ABC S d S MD ⋅=⋅, 则3226ABC AMC S MDd S ⋅===, 即点B 到平面AMC 的距离为22. 【点睛】方法点睛: 求解空间中点P 到平面的距离的方法:(1)空间向量的方法:建立适当的空间直角坐标系,求出平面的法向量m ,以及一条斜线的方向向量PA ,根据PA md m ⋅=,即可求出点到面的距离;(2)等体积法:先设所求点到面的距离,选几何体不同的定点为顶点,表示出该几何体的体积,列出等量关系,即可求出点到面的距离.25.(1)证明见解析;(2)证明见解析.【分析】(1)连接1AB 、1BC ,设11B C BC F =,连接EF ,可知点F 为1BC 的中点,利用中位线的性质可得出1//EF AB ,再利用线面平行的判定定理可证得结论成立; (2)推导出BE ⊥平面11AAC C ,可得出1BE AC ⊥,再由11BC AC ,利用线面垂直的判定定理可证得1AC ⊥平面1C EB . 【详解】(1)如下图所示,连接1AB 、1BC ,设11B C BC F =,连接EF ,在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,因为11B C BC F =,在点F 为1BC 的中点,又因为点E 为AC 的中点,1//EF AB ∴, 1AB ⊄平面1C EB ,EF ⊂平面1C EB ,所以,1//AB 平面1C EB ;(2)AB BC =,E 为AC 的中点,BE AC ∴⊥,因为平面11A ACC ⊥平面ABC ,平面11A ACC ⋂平面ABC AC =,BE ⊂平面ABC , BE ∴⊥平面11A ACC ,1AC ⊂平面11A ACC ,1AC BE ∴⊥, 11BC AC ⊥,1BE BC B =,1AC ∴⊥平面1C EB . 【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.26.(1)证明见解析;(226.。
辅助线在高中数学几何题中的重要作用分析江苏省常州市北郊高级中学杨晓芳【内容摘要】本文从辅助线的基本含义和添加原则出发,对辅助线在高中数学几何题中的重要作用进行了分析。
【关键词】辅助线高中数学几何作用引言:立体几何是高中数学的重点和难点,其解题思路多变,解法灵活,且很多时候需要学生绘制对应的辅助线才能顺利求解。
从长期的实践教学来看,因此深入分析辅助线在教学中的作用,对于提高学生的数学思维具有重要意义。
一、辅助线的概述1.含义在几何问题中,我们经常会遇到根据已知条件无法完成证明结论的情况,而在这种条件下,我们通常会在原有图形,并且不改变前提条件设置的基础上,引入一些对帮助解题具有很大价值的线段,这些线段就是辅助线。
2.添加辅助线的一般原则在几何证明题中,只有灵活、有效地运用辅助线,才能使其最大限度地发挥作用,因此我们在添加辅助线的过程中应遵循一定的原则:一、集中原则,即在添加了辅助线之后,我们应该能够将图形中相对分散的几何因素建立联系,并集中在一起,这样才能保证我们有针对性地使用几何原理;二、简化原则,我们在证明题中,经常会遇到一些条件和证明过程都比较复杂的情况,对此,我们可以利用辅助线将其转化为相对简单的问题,例如将不规则的图形转化为规则图形,就可以帮助解题者尽快找到解题思路;三、建构原则,即在证明题目相对晦涩时,我们可以在原图的基础上,利用辅助线重新构建图形,从而使解题者能够从一个全新的角度来理解问题,如利用向量知识构建立体坐标系,解决某些几何问题等。
二、辅助线在高中数学几何题中的重要作用1.补充题目假设,推导因果关系对于有些立体几何题目而言,其在给出了条件之后,并没有将这一条件在图形中做出相应的描绘,因此我们在解题中,就应该根据题目的具体要求,利用辅助线在图形上进行补充,以保证题目内容能够完整清晰地呈现出来,从而让解题者可以在辅助线的帮助下,明确条件所指,并根据问题要求,推导出证明步骤间的因果关系。
高中数学立体几何知识点总结。
答案:空间几何体结构1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。
2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。
(图如下)底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。
底面是几边形就叫做几棱柱。
侧面:棱柱中除底面的各个面侧棱:相邻侧面的公共边叫做棱柱的侧棱顶点:侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。
如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。
(图如下)4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。
圆柱的轴:旋转轴叫做圆柱的轴圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱用表示它的轴的字母表示,如:圆柱O’O注:棱柱与圆柱统称为柱体5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。
轴:作为旋转轴的直角边叫做圆锥的轴底面:另外一条直角边旋转形成的圆面叫做圆锥的底面侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面顶点:作为旋转轴的直角边与斜边的交点母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。
圆锥可以用它的轴来表示。
如:圆锥SO注:棱锥与圆锥统称为锥体6.棱台和圆台的结构特征(1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。
下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。
高中立体几何辅助线技巧高中立体几何辅助线技巧立体几何是数学中的一个重要分支,它研究的是空间中的三维图形。
在高中数学学习过程中,立体几何是一个非常重要的部分,而辅助线技巧则是解决立体几何问题的关键。
本文将为大家介绍一些高中立体几何辅助线技巧。
一、平行四边形法平行四边形法是解决平面内两直线或两平面之间的夹角问题时经常使用的方法。
具体步骤如下:1. 画出两个相交直线或平面。
2. 在其中一个直线或平面上任选一点,连一条与另一个直线或平面相交于该点的直线。
3. 在另一个直线或平面上找到与上述直线相交于同一点的另一条直线。
4. 连接这两条相交于同一点的直线所构成的平行四边形对角线。
5. 平行四边形对角线所在的直线就是原来两个相交直线或平面之间夹角所在的位置。
二、垂足法垂足法主要用于求解空间内点到某个面或某条直线距离最短的问题。
具体步骤如下:1. 画出一个点和一个面或一条直线。
2. 连接该点到面或直线上的垂线。
3. 在垂线上找到垂足点。
4. 连接该点和垂足点,这条连线就是点到面或直线的最短距离。
三、平面几何基本定理法平面几何基本定理法主要用于解决空间内平行关系和相交关系的问题。
具体步骤如下:1. 画出两个平行或相交的直线或平面。
2. 根据平面几何基本定理,选择适当的辅助线,将图形分割成几个简单的部分。
3. 利用简单部分之间的关系,求出所需结果。
四、向量法向量法主要用于解决空间内向量运算相关问题。
具体步骤如下:1. 画出所需向量及其所在位置。
2. 根据向量运算公式,选择适当的辅助向量,并进行计算得到所需结果。
五、截距法截距法主要用于求解空间内某个图形与坐标轴之间的交点坐标。
具体步骤如下:1. 画出所需图形及其所在位置。
2. 根据图形与坐标轴的交点坐标关系,选择适当的辅助线,并进行计算得到所需结果。
综上所述,以上五种高中立体几何辅助线技巧在解决立体几何问题时非常实用。
在学习过程中,我们应该灵活运用这些技巧,提高解决问题的效率和准确性。
高中数学立体几何辅助线技巧立体几何是数学中一个重要且复杂的分支。
学习立体几何需要掌握一定的知识和技巧。
辅助线是在解决几何问题中,为了方便思考和计算而添加的直线。
在立体几何中,辅助线技巧的使用可以大大简化问题的解决过程。
本文将介绍一些常用的立体几何辅助线技巧。
1. 三个面都相切的球的直径共线在立体几何中,如果我们遇到三个面都相切的球,那么可以通过连接它们的直径来确定直径的共线。
这是由于,如果三个球的直径不共线,那么必然有两个球的球心不在同一平面上,就无法同时与第三个球相切。
2. 三角锥的几何中心在一个三角锥中,我们可以通过连接中心点和顶点的直线,将三角形分成三个小三角形。
这三个小三角形的重心将是整个三角锥的几何中心。
这是因为,重心是三角形上任何一条中线的交点,所以我们只需要找到三个顶点到对面中线的中点的连线交点,就可以确定几何中心。
3. 圆锥截面的轮廓线当我们在分析圆锥截面的形状时,我们可以通过画出截面的轮廓线来更好地理解形状。
在画轮廓线时,我们可以先将圆锥的底部画出,然后将截面的形状投射到底部上,并连接相应的点。
这样就可以得到截面的轮廓线。
4. 球的外接和内切立方体的体积关系如果一个球能够恰好被一个立方体内切,那么立方体的体积将是球体积的三倍。
如果一个球能够恰好被一个立方体外接,那么立方体的体积将是球体积的二倍。
5. 正八面体的对角线长度在一个正八面体中,通过一个顶点和对面没有共同角的点连接一条直线,这条直线就是正八面体的对角线。
对角线长度可以通过正八面体的体积和边长来计算。
在一个正方体中,对角线可以通过勾股定理计算。
假设正方体的边长为a,则对角线长度为a√3。
7. 球冠的体积当我们需要计算一个球冠的体积时,可以通过将球冠切开为一个锥形和一个球形来计算。
锥形的体积可以通过其底面积和高度来计算,而球形的体积则可以通过其半径和两个锥形的高度之和来计算。
将两个体积相加就是球冠的总体积。
辅助线技巧是解决立体几何问题的一个重要工具。