Bayes判别
- 格式:pdf
- 大小:664.36 KB
- 文档页数:61
bayes判别法Bayes判别法Bayes判别法是一种基于贝叶斯定理的分类方法,它通过计算样本在各个类别下的后验概率来进行分类。
Bayes判别法在模式识别、机器学习和统计学等领域中得到了广泛应用。
一、贝叶斯定理贝叶斯定理是概率论中的一个重要定理,它描述了在已知某些条件下,某个事件发生的概率。
假设A和B是两个事件,P(A)和P(B)分别表示它们各自发生的概率,则有:P(A|B)=P(B|A)×P(A)/P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,称为后验概率;P(B|A)表示在事件A发生的条件下事件B发生的概率,称为似然函数;P(A)和P(B)分别表示事件A和事件B独立发生的概率。
二、Bayes判别法原理Bayes判别法是一种基于贝叶斯定理的分类方法。
假设有n个样本,每个样本可以被分为k类。
对于一个新样本x,我们需要将其归入其中一类。
Bayes判别法采用后验概率最大化准则进行分类,即将x归为后验概率最大的那一类。
具体地,对于一个新样本x,我们需要计算其在每个类别下的后验概率P(ci|x),然后将x归为后验概率最大的那一类。
其中,ci表示第i类。
根据贝叶斯定理,我们可以将P(ci|x)表示为:P(ci|x)=P(x|ci)×P(ci)/P(x)其中,P(x|ci)表示在第i类下样本x出现的概率,称为类条件概率;P(ci)表示第i类出现的概率,称为先验概率;P(x)表示样本x出现的概率。
由于对于一个新样本来说,其出现的概率是相同的,因此可以忽略分母部分。
因此,我们只需要比较每个类别下的P(x|ci)×P(ci),并选择最大值所对应的类别作为分类结果。
三、Bayes判别法实现Bayes判别法可以通过训练样本来估计先验概率和类条件概率。
具体地,在训练阶段中,我们需要统计每个类别下每个特征取值出现的次数,并计算相应的先验概率和类条件概率。
具体地:1. 先验概率先验概率指在没有任何信息或者证据的情况下,每个类别出现的概率。
例:研究某年全国各地区农民家庭收支的分布规律,根据抽样调查资料进行分类,共抽取28个省、市、自治区的六个指标数据。
先采用聚类分析,将28个省、市、自治区分为三组。
北京、上海、广州3个城市属于待判样本。
(家庭收支.sav)1.选中判别分析,2.选择Fisher 即bayes判别分析方法,易混!!!3.确定组别4. 选择保存结果5. 模型检验(即判别准确率)重要结果分类函数系数类别1 2 3食品.480 .473 .429 衣着 1.612 1.354 .933 燃料 2.421 2.189 .777 住房.555 .335 .052 用品及其它 1.032 .580 .847 文化支出 5.387 5.446 4.317(常量) -117.620 -89.052 -53.616Fisher 的线性判别式函数按照案例顺序的统计量案例数目实际组最高组第二最高组判别式得分预测组P(D>d |G=g)P(G=g| D=d)到质心的平方Mahalanobis距离组P(G=g| D=d)到质心的平方Mahalanobis距离函数1函数2 p df初始 1 1 1 .320 2 1.000 2.282 2 .000 22.754 3.163 -2.7172 1 1 .799 2 1.000 .449 2 .000 17.611 3.559 -1.6593 1 2**.095 2 .688 4.705 1 .312 6.283 2.737 1.2754 1 1 .797 2 .984 .453 2 .016 8.670 2.855 -.5695 1 1 .504 2 1.000 1.372 2 .000 20.770 4.205 -1.4616 1 1 .313 2 .996 2.321 2 .004 13.305 1.847 -2.1317 2 2 .788 2 .986 .476 1 .011 9.482 .566 .5958 2 2 .405 2 .992 1.806 1 .008 11.456 1.756 1.9139 2 2 .532 2 .987 1.263 1 .013 9.942 1.645 1.60710 2 2 .451 2 .999 1.593 1 .001 15.008 1.358 2.26911 2 2 .826 2 .984 .383 1 .015 8.758 .816 .71812 2 2 .769 2 .994 .524 1 .006 10.742 1.252 1.52313 2 2 .378 2 .861 1.945 3 .139 5.594 -.611 .53914 2 2 .219 2 .639 3.034 3 .361 4.179 -1.036 .60515 2 2 .304 2 .941 2.379 3 .059 7.903 -.943 1.59616 2 2 .935 2 .997 .134 1 .003 12.046 .874 1.48517 3 3 .387 2 .994 1.899 2 .006 12.039 -1.570 -1.44818 3 3 .801 2 1.000 .443 2 .000 19.449 -3.157 -1.07619 3 3 .413 2 .991 1.767 2 .009 11.104 -1.531 -1.30320 3 3 .570 2 .984 1.124 2 .016 9.398 -1.635 -.84721 3 3 .880 2 .997 .255 2 .003 11.791 -2.562 -.12822 3 3 .826 2 .993 .383 2 .007 10.155 -2.282 -.14023 3 3 .130 2 1.000 4.077 2 .000 29.305 -4.643 -.18324 3 3 .078 2 .995 5.095 2 .005 15.558 -3.369 1.52625 3 3 .323 2 1.000 2.260 2 .000 25.638 -3.294 -1.98926 未分组的1 .0002 1.000 20.223 2 .000 62.899 7.054 -3.27827 未分组的1 .0002 1.000 82.160 2 .000 150.236 11.796 -3.63028 未分组的1 .0052 1.000 10.431 2 .000 25.808 5.621 .759交叉验证a 1 1 1 .349 6 1.000 6.707 2 .000 27.3012 1 1 .025 6 .999 14.400 2 .001 29.4123 1 2**.087 6 1.000 11.051 1 .000 37.7404 1 1 .233 6 .900 8.064 2 .100 12.4595 1 1 .136 6 1.000 9.738 2 .000 28.7186 1 1 .182 6 .975 8.851 2 .025 16.1797 2 2 .249 6 .945 7.850 1 .043 14.0428 2 2 .734 6 .984 3.575 1 .016 11.8079 2 2 .039 6 .880 13.285 1 .120 17.26810 2 2 .078 6 .996 11.349 1 .004 22.46511 2 2 .701 6 .967 3.819 1 .031 10.68312 2 2 .461 6 .984 5.669 1 .016 13.90313 2 3**.129 6 .703 9.898 2 .297 11.62214 2 3**.444 6 .684 5.820 2 .316 7.36815 2 2 .123 6 .635 10.047 3 .365 11.15116 2 2 .000 6 .878 35.006 1 .121 38.97317 3 3 .114 6 .955 10.252 2 .044 16.40718 3 3 .925 6 1.000 1.939 2 .000 20.37119 3 3 .288 6 .959 7.373 2 .041 13.67820 3 3 .652 6 .963 4.186 2 .037 10.70721 3 3 .526 6 .991 5.139 2 .009 14.63422 3 3 .834 6 .986 2.792 2 .014 11.30223 3 3 .101 6 1.000 10.616 2 .000 39.41124 3 3 .018 6 .917 15.261 2 .083 20.05725 3 3 .268 6 1.000 7.611 2 .000 32.555对初始数据来说,平方Mahalanobis 距离基于典则函数。
实验十一Bayes判别实验目的和要求掌握Bayes判别分析的理论与方法、模型的建立与误差率估计;掌握利用判别分析的SAS过程解决有关实际问题.实验要求:编写程序,结果分析.实验内容:5.4 5.5 选一题data examp5_4。
input group $ x1-x7 @@。
cards。
G1 6.6 39 1.0 6.0 6 0.12 20G1 6.6 39 1.0 6.0 12 0.12 20G1 6.1 47 1.0 6.0 6 0.08 12G1 6.1 47 1.0 6.0 12 0.08 12G1 8.4 32 2.0 7.5 19 0.35 75G1 7.2 6 1.0 7.0 28 0.30 30G1 8.4 113 3.5 6.0 18 0.15 75G1 7.5 52 1.0 6.0 12 0.16 40G1 7.5 52 3.5 7.5 6 0.16 40G1 8.3 113 0.0 7.5 35 0.12 180G1 7.8 172 1.0 3.5 14 0.21 45G1 7.8 172 1.5 3.0 15 0.21 45G2 8.4 32 2.0 9.0 10 0.35 75 G2 8.4 32 2.5 4.0 10 0.35 75 G2 6.3 11 4.5 7.5 3 0.20 15 G2 7.0 8 4.5 4.5 9 0.25 30 G2 7.0 8 6.0 7.5 4 0.25 30 G2 7.0 8 1.5 6.0 1 0.25 30 G2 8.3 161 1.5 4.0 4 0.08 70 G2 8.3 161 0.5 2.5 1 0.08 70 G2 7.2 6 3.5 4.0 12 0.30 30 G2 7.2 6 1.0 3.0 3 0.30 30 G2 7.2 6 1.0 6.0 5 0.30 30 G2 5.5 6 2.5 3.0 7 0.18 18 G2 8.4 113 3.5 4.5 6 0.15 75 G2 8.4 113 3.5 4.5 8 0.15 75 G2 7.5 52 1.0 6.0 6 0.16 40 G2 7.5 52 1.0 7.5 8 0.16 40 G2 8.3 97 0.0 6.0 5 0.15 180 G2 8.3 97 2.5 6.0 5 0.15 180 G2 8.3 89 0.0 6.0 10 0.16 180 G2 8.3 56 1.5 6.0 13 0.25 180 G2 7.8 172 1.0 3.5 6 0.21 45run。
贝叶斯判别法的判别准则
贝叶斯判别法是一种统计学习方法,它利用贝叶斯公式计算后验概率,从而判断模式的分类。
具体而言,根据所给的数据和先验概率,利用
贝叶斯公式计算出各个类别的后验概率,从而根据最大后验概率原则
进行分类。
因为它考虑了类别之间的联合概率,因此通常具有较好的
分类精度。
贝叶斯判别法的基本思想可以表述为以下式子:
P(ωj|x) = P(x|ωj)P(ωj) / P(x)
其中,P(ωj|x) 为后验概率,即在给定观测值 x 的条件下事件ωj 发生
的概率;P(x|ωj) 为类别ωj 的条件概率密度函数;P(ωj) 为先验概率;P(x) 为边际概率密度函数。
根据这个公式可以得到贝叶斯判别法的判别准则:对于给定的观测值 x,将其划归到后验概率最大的类别中。
也就是说,找到使得P(ωj|x) 最大的类别 j,将 x 分类为该类别。
由于贝叶斯判别法需要计算类别的先验概率和条件概率密度函数,因
此它通常需要大量的样本数据进行训练,从而得到可靠的统计模型。
此外,由于实际应用中往往难以得到准确的先验概率和条件概率密度函数,因此常常需要进行模型简化或参数估计等操作,以提高模型的可信度和准确性。
总之,贝叶斯判别法是一种重要的统计学习方法,其分类准确性通常较高,但在实际应用中需要考虑多种因素的影响,并根据具体情况进行定制化和调整,以适应不同的应用场景和需求。
§5.2Bayes 判别1. Bayes 判别的基本思想假设已知对象的先验概率和“先验条件概率”, 而后得到后验概率, 由后验概率作出判别.2. 两个总体的Bayes 判别 (1) 基本推导设概率密度为1()f x 和2()f x 的p 维总体12,G G 出现的先验概率为1122(),()p P G p P G ==(121p p +=)先验概率的取法: (i) 1212p p ==, (ii) 12121212,n n p p n n n n ==++,一个判别法 = 一个划分=12(,)R R =R1212,,p R R R R =⋃=⋂=∅R距离判别中112212{|(,)(,)}{|(,)(,)}R d G d G R d G d G =≤=>x x x x x x判别R 下的误判情况讨论21(2|1,)()d R P f =⎰R x x ,或12(1|2,)()d R P f =⎰R x x代价分别记为(2|1),(1|2),(1|1)0,(2|2)0c c c c ==, 在得新x 后, 后验概率为1111122()(|)()()p f P G p f p f =+x x x x2221122()(|)()()p f P G p f p f =+x x x x(i) 当(1|2)(2|1)c c c ==时, 最优划分是112212{:(|)(|)}{:(|)(|))}R P G P G R P G P G =≥⎧⎨=<⎩x x x x x x 两个总体的Bayes 的判别准则112212,(|)(|),(|)(|)G if P G P G G if P G P G ∈≥⎧⎨∈<⎩x x x x x x 此时, 有最小的误判概率*12(2|1,)(1|2,)p p P p P =+R R .因为21*1122()d ()d R R p p f p f =+⎰⎰x x x x111122(1()d )()d R R p f p f =-+⎰⎰x x x x()112211()()d R p p f p f =+-⎰x x x只有取12211{:()()}R p f p f =≤x x x 时, 才有最小. (ii) 当(1|2)(2|1)c c ≠时对1G 的误判平均损失: (1,)(2|1)(2|1,)l c P R =R , 对2G 的误判平均损失:(2,)(1|2)(1|2,)l c P R =R , 对整个误判的平均损失:12(1,)(2,)L p l p l =+R R12(2|1)(2|1,)(1|2)(1|2,)c p P R c p P R =⋅⋅+⋅⋅可证使L 最小的最优划分是1112221122{:(2|1)()(1|2)()}{:(2|1)()(1|2)()}R c p f c p f R c p f c p f =≥⎧⎨=<⎩x x x x x x 或112212{:(2|1)(|)(1|2)(|)}{:(2|1)(|)(1|2)(|))}R c P G c P G R c P G c P G =≥⎧⎨=<⎩x x x x x x 当12p p =时, 有112212{:(2|1)()(1|2)()}{:(2|1)()(1|2)()}R c f c f R c f c f =≥⎧⎨=<⎩x x x x x x 当12p p =, 且时(1|2)(2|1)c c c ==, 有 112212{:()()}{:()()}R f f R f f =≥⎧⎨=<⎩x x x x x x相当于经典统计学中的似然比准则判别. (2) 两个正态总体的Bayes 判别 1) 12==ΣΣΣ的判别112212,()(),()()G if W W G if W W ∈≥⎧⎨∈<⎩x x x x x x 其中111222(),()T TW b W b ++x a x x a x ,及 111111111,2ln TT T b p --+-a μΣμΣμ122122221,2ln T T T b p --+-a μΣμΣμ 实用中, 用样本均值和样本协方差阵代.替.当1212p p ==时, 与距离判别等价. 如用后验概率来判别(或其估计), 则有112212,(|)(|),(|)(|)G if P G P G G if P G P G ∈≥⎧⎨∈≥⎩x x x x x x .1) 12≠ΣΣ的判别与距离判别的区别为广义平方距离函数21111111()()()ln 2ln((2|1))T d c p -=--+-x x μΣx μΣ,21222222()()()ln 2ln((1|2))T d c p -=--+-x x μΣx μΣ推导过程略.当 “三同”时, 与距离判别一样.(3) 误判概率的计算在12==ΣΣΣ下, 作简要讨论. 用广义距离2221()()d d -x x 可导出划分12{:()}{:()}R W d R W d =≥⎧⎨=≥⎩x x x x (^_^) 其中112()()()T W -=--x μμΣx μ, 21(1|2)ln (2|1)c p d c p =, 两个总体1G 与2G 的马氏平方距离可记为11212()()T λ-=--μμΣμμ经导, 对(^_^)的划分, 其误判率为*121p p p ΦΦ⎛⎫=+- ⎪⎝⎭ 随λ大而小.实用中, 用(1)(2)1(1)(2)ˆ()()T λ-=--x x S x x 代λ.当121/2p p ==时, 有*2112211ˆ2n n p n n ⎛⎫=+ ⎪⎝⎭当12,p p 按容量比例选取时, 即12121212,n n p p n n n n ==++ 有 *122112ˆn n p n n +=+ 误判率的回代估计.例5.3 预报春旱. 两个预报因子的观察值12,X X , 假设误报损失相同, 先验概率按比例. 由下表数据进行两总体的Bayes 判别.解 16/140.4286p ==, 28/140.5714p ==. 调用proc discrim 得12ln || 1.8053,ln || 3.6783S S =-=- (1)(2)25.31622.025,2.416 1.187x x ⎡⎤⎡⎤==--⎢⎥⎢⎥⎣⎦⎣⎦ 122.2130.6570.2730.063,0.6570.2690.0630.106S S --⎡⎤⎡⎤==--⎢⎥⎢⎥⎣⎦⎣⎦ 广义平方距离为(1,2j =)2()1()()()()ln 2ln j T j j j j j d p -=--+-x x xS x x S 后验概率为222ˆˆ0.5()0.5()1ˆ(|)e e j k d d j k P G --==∑x x x ,(1,2j =).回代判别结果如下略,误判率=0;若用交叉确认法, 则应按下式计算2()1()()()()()()()()ln 2ln j j j T j j x x x x j d p -=--+-x x x S x x S 逐个剔除, 交叉判别.有一错(10号被判错), 交叉确认估计*ˆ1/140.0714c p ==3. 多个总体的Bayes 判别(1) 一般讨论设概率密度为1~()k f x 的p 维总体1~k G 出现的先验概率为1~1~()k k p P G =, (11kj j p ==∑)先验概率的取法:(i) 1~1k p k =, 或(ii) 1~1~12k k k n p n n n =++,一个判别法= 一个划分=12{(,,,)}k R R R =R 判别准则 1,,kp j i j j R R R i j ==⋃=⋂=∅≠R判别R 下的误判情况讨论(|,)()d ,j i R P j i f j i =≠⎰R x x ,(1~)j k = 代价记为一个损失矩阵()(|)k k c j i ⨯(约定(|)0,1~c i i i k ==)常取(|)1,c j i i j =≠. 来自i G 判为其他总体的概率是(|,)j iP j i ≠∑R 误判的概率*1(|,)ki i j i p p P j i =≠⎛⎫= ⎪⎝⎭∑∑R 使其最小, 得最优划分.当(|)c j i 不全相等时, 将来自i G 判为其他总体的平均损失率1(|,)(|)ki j l P j i c j i ==∑R误判的平均损失率111(|,)(|)kkk i i i i i j L p l p P j i c j i ===⎛⎫== ⎪⎝⎭∑∑∑R应使其最小的划分R .进一步的讨论1) 当(|)1,c j i i j =≠时,因1(|,)1kj P j i R ==∑, 故(|,)1(|,)j iP j i P i i ≠=-∑R R从而有()()*111(|,)1()d ik ki R i i p P i i f ===-=-∑∑⎰R x x11()d iki R i f ==-∑⎰x x当1{:()max ()},1~i i i j j j kp f p f i k ≤≤===R x x x 时,12(,,,)k R R R =R 是使*p 最小的最优划分.又由Bayes 公式, 当出现样品x 时, 总体i G 的后验概率1~()(|)()i i i j jj kp f P G p f ==∑x x x故最优划分为1{:(|)max (|)}i i j j kR P G P G ≤≤==x x x , (1~i k =)当有多个时, 任选一个.2) 当(|),c j i i j ≠不全相等时,111(|,)(|)kkk i i i i i j L p l p P j i c j i ===⎛⎫== ⎪⎝⎭∑∑∑R11(|)()d jkk i i j i p c j i f ==⎛⎫= ⎪⎝⎭∑∑⎰R x x11(|)()d jkki i j i p c j i f ==⎛⎫= ⎪⎝⎭∑∑⎰R x x11()(|)()()d jkj iiki j j h x p c j i f h ==⎛⎫ ⎪⎝⎭∑∑⎰R x x x 取划分为1{:()min ()},1~j j i i i kh p f j k ≤≤===R x x x可使L 达到最小. 若记1(|)(|)(|),1~kj i i H G c j i P G j k ===∑x x(当出现x 后,被判为来自j G 后验平均损失, 则有1{:(|)min (|)},1~j j i i kH G H G j k ≤≤===R x x x若有多个, 则任判一个. (2) 多个正态总体的Bayes 判别1) 对1,(|)0,i jc j i i j ≠⎧=⎨=⎩的情况(i) 当12k ====ΣΣΣΣ时,设~(,)j p j G N μΣ(1~)j k =线性判别函数为()T j j j W b +x a x ,其中111,2ln j T T T j j jj j b p --+-a μΣμΣμ 广义平方函数21()()()2ln T j j j j d p -=---x x μΣx μ,1~j k = 后验概率22ˆˆ0.5()0.5()1(|)ee jk kd d j k P G --==∑x x x这时最优划分1{:()max ()}j j i i kR W W ≤≤==x x x1{:(|)max (|)}j i i kP G P G ≤≤==x x x (1~j k =)实用中, 用样本均值和样本协方差阵代替.(ii) 1~k Σ不全相等时, 设~(,)j p j j G N μΣ(1~)j k = 则有21()()()ln 2ln T j j j j j j d p -=--+-x x μΣx μΣ后验概率22ˆˆ0.5()0.5()1(|)ee jk kd d j k P G --==∑x x x ,(1~)j k =这时最优划分1{:(|)max (|)}j j i i kR P G P G ≤≤==x x x (1~j k =)实用中, 用2ˆ()j d x ,ˆ(|)j P G x 代替. 2) 一般损失情况 计算(|),1~i P G j k =x 及1(|)(|)(|),1~kj i i H G c j i P G j k ===∑x x最优划分为1{:(|)min (|)},1~j j i i kH G H G j k ≤≤===R x x x例5.4 某学院招生时, 有两个参考指标1X : 平均学分指数; 2X 管理能力考试成绩;申请者分为3类: 1G 录取; 2G 不录取; 3G 待定. 近期有85位记录.(部分资料)假定1) 各总体~正态分布;2) 先验概率按比例;3) 误判损失相同讨论在(i) 协方差阵相同; (ii) 协方差不全相同时; Bayes判别分析, 并给出误判率的回判法和交叉确认法估计值.若有一新申请者的资料13.12x=和2497x=, 在两种情况下各被判入哪类?解(i) 调用proc discrim过程, 得(部分)和**ˆˆ7/850.0824,8/850.094r c p p ==== 关于新样本0(3.12,497)T x =的后验概率10(|)0.2401P G x =, 20(|)0.0004,P G x =30(|)0.7578P G x =,故应该待定.(ii) 协方差不全相等时, 有和**ˆˆ3/850.03534/850.0471r c p p ==== 关于新样本0(3.12,497)T x =的后验概率 10(|)0.5983P G x =, 20(|)0.0032,P G x =30(|)0.3985P G x =,G类(录取).当属1总结前述内容均利用了所给定的全部p个指标变量, 但并非指标变量越多, 判别效果就越好, 相反, 有时可能影响判别分析效果.因此,如回归分析一样,在判别分析中仍存在指标变量的选取问题,称为逐步判别法.限于本书特点,在此不再详述.有兴趣者可参见如[3]中第6章等.另外sA5系统的Proc stepdisc过程(参见[6])可用于逐步判别分析.。