Bayes判别
- 格式:pdf
- 大小:664.36 KB
- 文档页数:61
bayes判别法Bayes判别法Bayes判别法是一种基于贝叶斯定理的分类方法,它通过计算样本在各个类别下的后验概率来进行分类。
Bayes判别法在模式识别、机器学习和统计学等领域中得到了广泛应用。
一、贝叶斯定理贝叶斯定理是概率论中的一个重要定理,它描述了在已知某些条件下,某个事件发生的概率。
假设A和B是两个事件,P(A)和P(B)分别表示它们各自发生的概率,则有:P(A|B)=P(B|A)×P(A)/P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,称为后验概率;P(B|A)表示在事件A发生的条件下事件B发生的概率,称为似然函数;P(A)和P(B)分别表示事件A和事件B独立发生的概率。
二、Bayes判别法原理Bayes判别法是一种基于贝叶斯定理的分类方法。
假设有n个样本,每个样本可以被分为k类。
对于一个新样本x,我们需要将其归入其中一类。
Bayes判别法采用后验概率最大化准则进行分类,即将x归为后验概率最大的那一类。
具体地,对于一个新样本x,我们需要计算其在每个类别下的后验概率P(ci|x),然后将x归为后验概率最大的那一类。
其中,ci表示第i类。
根据贝叶斯定理,我们可以将P(ci|x)表示为:P(ci|x)=P(x|ci)×P(ci)/P(x)其中,P(x|ci)表示在第i类下样本x出现的概率,称为类条件概率;P(ci)表示第i类出现的概率,称为先验概率;P(x)表示样本x出现的概率。
由于对于一个新样本来说,其出现的概率是相同的,因此可以忽略分母部分。
因此,我们只需要比较每个类别下的P(x|ci)×P(ci),并选择最大值所对应的类别作为分类结果。
三、Bayes判别法实现Bayes判别法可以通过训练样本来估计先验概率和类条件概率。
具体地,在训练阶段中,我们需要统计每个类别下每个特征取值出现的次数,并计算相应的先验概率和类条件概率。
具体地:1. 先验概率先验概率指在没有任何信息或者证据的情况下,每个类别出现的概率。
例:研究某年全国各地区农民家庭收支的分布规律,根据抽样调查资料进行分类,共抽取28个省、市、自治区的六个指标数据。
先采用聚类分析,将28个省、市、自治区分为三组。
北京、上海、广州3个城市属于待判样本。
(家庭收支.sav)1.选中判别分析,2.选择Fisher 即bayes判别分析方法,易混!!!3.确定组别4. 选择保存结果5. 模型检验(即判别准确率)重要结果分类函数系数类别1 2 3食品.480 .473 .429 衣着 1.612 1.354 .933 燃料 2.421 2.189 .777 住房.555 .335 .052 用品及其它 1.032 .580 .847 文化支出 5.387 5.446 4.317(常量) -117.620 -89.052 -53.616Fisher 的线性判别式函数按照案例顺序的统计量案例数目实际组最高组第二最高组判别式得分预测组P(D>d |G=g)P(G=g| D=d)到质心的平方Mahalanobis距离组P(G=g| D=d)到质心的平方Mahalanobis距离函数1函数2 p df初始 1 1 1 .320 2 1.000 2.282 2 .000 22.754 3.163 -2.7172 1 1 .799 2 1.000 .449 2 .000 17.611 3.559 -1.6593 1 2**.095 2 .688 4.705 1 .312 6.283 2.737 1.2754 1 1 .797 2 .984 .453 2 .016 8.670 2.855 -.5695 1 1 .504 2 1.000 1.372 2 .000 20.770 4.205 -1.4616 1 1 .313 2 .996 2.321 2 .004 13.305 1.847 -2.1317 2 2 .788 2 .986 .476 1 .011 9.482 .566 .5958 2 2 .405 2 .992 1.806 1 .008 11.456 1.756 1.9139 2 2 .532 2 .987 1.263 1 .013 9.942 1.645 1.60710 2 2 .451 2 .999 1.593 1 .001 15.008 1.358 2.26911 2 2 .826 2 .984 .383 1 .015 8.758 .816 .71812 2 2 .769 2 .994 .524 1 .006 10.742 1.252 1.52313 2 2 .378 2 .861 1.945 3 .139 5.594 -.611 .53914 2 2 .219 2 .639 3.034 3 .361 4.179 -1.036 .60515 2 2 .304 2 .941 2.379 3 .059 7.903 -.943 1.59616 2 2 .935 2 .997 .134 1 .003 12.046 .874 1.48517 3 3 .387 2 .994 1.899 2 .006 12.039 -1.570 -1.44818 3 3 .801 2 1.000 .443 2 .000 19.449 -3.157 -1.07619 3 3 .413 2 .991 1.767 2 .009 11.104 -1.531 -1.30320 3 3 .570 2 .984 1.124 2 .016 9.398 -1.635 -.84721 3 3 .880 2 .997 .255 2 .003 11.791 -2.562 -.12822 3 3 .826 2 .993 .383 2 .007 10.155 -2.282 -.14023 3 3 .130 2 1.000 4.077 2 .000 29.305 -4.643 -.18324 3 3 .078 2 .995 5.095 2 .005 15.558 -3.369 1.52625 3 3 .323 2 1.000 2.260 2 .000 25.638 -3.294 -1.98926 未分组的1 .0002 1.000 20.223 2 .000 62.899 7.054 -3.27827 未分组的1 .0002 1.000 82.160 2 .000 150.236 11.796 -3.63028 未分组的1 .0052 1.000 10.431 2 .000 25.808 5.621 .759交叉验证a 1 1 1 .349 6 1.000 6.707 2 .000 27.3012 1 1 .025 6 .999 14.400 2 .001 29.4123 1 2**.087 6 1.000 11.051 1 .000 37.7404 1 1 .233 6 .900 8.064 2 .100 12.4595 1 1 .136 6 1.000 9.738 2 .000 28.7186 1 1 .182 6 .975 8.851 2 .025 16.1797 2 2 .249 6 .945 7.850 1 .043 14.0428 2 2 .734 6 .984 3.575 1 .016 11.8079 2 2 .039 6 .880 13.285 1 .120 17.26810 2 2 .078 6 .996 11.349 1 .004 22.46511 2 2 .701 6 .967 3.819 1 .031 10.68312 2 2 .461 6 .984 5.669 1 .016 13.90313 2 3**.129 6 .703 9.898 2 .297 11.62214 2 3**.444 6 .684 5.820 2 .316 7.36815 2 2 .123 6 .635 10.047 3 .365 11.15116 2 2 .000 6 .878 35.006 1 .121 38.97317 3 3 .114 6 .955 10.252 2 .044 16.40718 3 3 .925 6 1.000 1.939 2 .000 20.37119 3 3 .288 6 .959 7.373 2 .041 13.67820 3 3 .652 6 .963 4.186 2 .037 10.70721 3 3 .526 6 .991 5.139 2 .009 14.63422 3 3 .834 6 .986 2.792 2 .014 11.30223 3 3 .101 6 1.000 10.616 2 .000 39.41124 3 3 .018 6 .917 15.261 2 .083 20.05725 3 3 .268 6 1.000 7.611 2 .000 32.555对初始数据来说,平方Mahalanobis 距离基于典则函数。
实验十一Bayes判别实验目的和要求掌握Bayes判别分析的理论与方法、模型的建立与误差率估计;掌握利用判别分析的SAS过程解决有关实际问题.实验要求:编写程序,结果分析.实验内容:5.4 5.5 选一题data examp5_4。
input group $ x1-x7 @@。
cards。
G1 6.6 39 1.0 6.0 6 0.12 20G1 6.6 39 1.0 6.0 12 0.12 20G1 6.1 47 1.0 6.0 6 0.08 12G1 6.1 47 1.0 6.0 12 0.08 12G1 8.4 32 2.0 7.5 19 0.35 75G1 7.2 6 1.0 7.0 28 0.30 30G1 8.4 113 3.5 6.0 18 0.15 75G1 7.5 52 1.0 6.0 12 0.16 40G1 7.5 52 3.5 7.5 6 0.16 40G1 8.3 113 0.0 7.5 35 0.12 180G1 7.8 172 1.0 3.5 14 0.21 45G1 7.8 172 1.5 3.0 15 0.21 45G2 8.4 32 2.0 9.0 10 0.35 75 G2 8.4 32 2.5 4.0 10 0.35 75 G2 6.3 11 4.5 7.5 3 0.20 15 G2 7.0 8 4.5 4.5 9 0.25 30 G2 7.0 8 6.0 7.5 4 0.25 30 G2 7.0 8 1.5 6.0 1 0.25 30 G2 8.3 161 1.5 4.0 4 0.08 70 G2 8.3 161 0.5 2.5 1 0.08 70 G2 7.2 6 3.5 4.0 12 0.30 30 G2 7.2 6 1.0 3.0 3 0.30 30 G2 7.2 6 1.0 6.0 5 0.30 30 G2 5.5 6 2.5 3.0 7 0.18 18 G2 8.4 113 3.5 4.5 6 0.15 75 G2 8.4 113 3.5 4.5 8 0.15 75 G2 7.5 52 1.0 6.0 6 0.16 40 G2 7.5 52 1.0 7.5 8 0.16 40 G2 8.3 97 0.0 6.0 5 0.15 180 G2 8.3 97 2.5 6.0 5 0.15 180 G2 8.3 89 0.0 6.0 10 0.16 180 G2 8.3 56 1.5 6.0 13 0.25 180 G2 7.8 172 1.0 3.5 6 0.21 45run。
贝叶斯判别法的判别准则
贝叶斯判别法是一种统计学习方法,它利用贝叶斯公式计算后验概率,从而判断模式的分类。
具体而言,根据所给的数据和先验概率,利用
贝叶斯公式计算出各个类别的后验概率,从而根据最大后验概率原则
进行分类。
因为它考虑了类别之间的联合概率,因此通常具有较好的
分类精度。
贝叶斯判别法的基本思想可以表述为以下式子:
P(ωj|x) = P(x|ωj)P(ωj) / P(x)
其中,P(ωj|x) 为后验概率,即在给定观测值 x 的条件下事件ωj 发生
的概率;P(x|ωj) 为类别ωj 的条件概率密度函数;P(ωj) 为先验概率;P(x) 为边际概率密度函数。
根据这个公式可以得到贝叶斯判别法的判别准则:对于给定的观测值 x,将其划归到后验概率最大的类别中。
也就是说,找到使得P(ωj|x) 最大的类别 j,将 x 分类为该类别。
由于贝叶斯判别法需要计算类别的先验概率和条件概率密度函数,因
此它通常需要大量的样本数据进行训练,从而得到可靠的统计模型。
此外,由于实际应用中往往难以得到准确的先验概率和条件概率密度函数,因此常常需要进行模型简化或参数估计等操作,以提高模型的可信度和准确性。
总之,贝叶斯判别法是一种重要的统计学习方法,其分类准确性通常较高,但在实际应用中需要考虑多种因素的影响,并根据具体情况进行定制化和调整,以适应不同的应用场景和需求。
§5.2Bayes 判别1. Bayes 判别的基本思想假设已知对象的先验概率和“先验条件概率”, 而后得到后验概率, 由后验概率作出判别.2. 两个总体的Bayes 判别 (1) 基本推导设概率密度为1()f x 和2()f x 的p 维总体12,G G 出现的先验概率为1122(),()p P G p P G ==(121p p +=)先验概率的取法: (i) 1212p p ==, (ii) 12121212,n n p p n n n n ==++,一个判别法 = 一个划分=12(,)R R =R1212,,p R R R R =⋃=⋂=∅R距离判别中112212{|(,)(,)}{|(,)(,)}R d G d G R d G d G =≤=>x x x x x x判别R 下的误判情况讨论21(2|1,)()d R P f =⎰R x x ,或12(1|2,)()d R P f =⎰R x x代价分别记为(2|1),(1|2),(1|1)0,(2|2)0c c c c ==, 在得新x 后, 后验概率为1111122()(|)()()p f P G p f p f =+x x x x2221122()(|)()()p f P G p f p f =+x x x x(i) 当(1|2)(2|1)c c c ==时, 最优划分是112212{:(|)(|)}{:(|)(|))}R P G P G R P G P G =≥⎧⎨=<⎩x x x x x x 两个总体的Bayes 的判别准则112212,(|)(|),(|)(|)G if P G P G G if P G P G ∈≥⎧⎨∈<⎩x x x x x x 此时, 有最小的误判概率*12(2|1,)(1|2,)p p P p P =+R R .因为21*1122()d ()d R R p p f p f =+⎰⎰x x x x111122(1()d )()d R R p f p f =-+⎰⎰x x x x()112211()()d R p p f p f =+-⎰x x x只有取12211{:()()}R p f p f =≤x x x 时, 才有最小. (ii) 当(1|2)(2|1)c c ≠时对1G 的误判平均损失: (1,)(2|1)(2|1,)l c P R =R , 对2G 的误判平均损失:(2,)(1|2)(1|2,)l c P R =R , 对整个误判的平均损失:12(1,)(2,)L p l p l =+R R12(2|1)(2|1,)(1|2)(1|2,)c p P R c p P R =⋅⋅+⋅⋅可证使L 最小的最优划分是1112221122{:(2|1)()(1|2)()}{:(2|1)()(1|2)()}R c p f c p f R c p f c p f =≥⎧⎨=<⎩x x x x x x 或112212{:(2|1)(|)(1|2)(|)}{:(2|1)(|)(1|2)(|))}R c P G c P G R c P G c P G =≥⎧⎨=<⎩x x x x x x 当12p p =时, 有112212{:(2|1)()(1|2)()}{:(2|1)()(1|2)()}R c f c f R c f c f =≥⎧⎨=<⎩x x x x x x 当12p p =, 且时(1|2)(2|1)c c c ==, 有 112212{:()()}{:()()}R f f R f f =≥⎧⎨=<⎩x x x x x x相当于经典统计学中的似然比准则判别. (2) 两个正态总体的Bayes 判别 1) 12==ΣΣΣ的判别112212,()(),()()G if W W G if W W ∈≥⎧⎨∈<⎩x x x x x x 其中111222(),()T TW b W b ++x a x x a x ,及 111111111,2ln TT T b p --+-a μΣμΣμ122122221,2ln T T T b p --+-a μΣμΣμ 实用中, 用样本均值和样本协方差阵代.替.当1212p p ==时, 与距离判别等价. 如用后验概率来判别(或其估计), 则有112212,(|)(|),(|)(|)G if P G P G G if P G P G ∈≥⎧⎨∈≥⎩x x x x x x .1) 12≠ΣΣ的判别与距离判别的区别为广义平方距离函数21111111()()()ln 2ln((2|1))T d c p -=--+-x x μΣx μΣ,21222222()()()ln 2ln((1|2))T d c p -=--+-x x μΣx μΣ推导过程略.当 “三同”时, 与距离判别一样.(3) 误判概率的计算在12==ΣΣΣ下, 作简要讨论. 用广义距离2221()()d d -x x 可导出划分12{:()}{:()}R W d R W d =≥⎧⎨=≥⎩x x x x (^_^) 其中112()()()T W -=--x μμΣx μ, 21(1|2)ln (2|1)c p d c p =, 两个总体1G 与2G 的马氏平方距离可记为11212()()T λ-=--μμΣμμ经导, 对(^_^)的划分, 其误判率为*121p p p ΦΦ⎛⎫=+- ⎪⎝⎭ 随λ大而小.实用中, 用(1)(2)1(1)(2)ˆ()()T λ-=--x x S x x 代λ.当121/2p p ==时, 有*2112211ˆ2n n p n n ⎛⎫=+ ⎪⎝⎭当12,p p 按容量比例选取时, 即12121212,n n p p n n n n ==++ 有 *122112ˆn n p n n +=+ 误判率的回代估计.例5.3 预报春旱. 两个预报因子的观察值12,X X , 假设误报损失相同, 先验概率按比例. 由下表数据进行两总体的Bayes 判别.解 16/140.4286p ==, 28/140.5714p ==. 调用proc discrim 得12ln || 1.8053,ln || 3.6783S S =-=- (1)(2)25.31622.025,2.416 1.187x x ⎡⎤⎡⎤==--⎢⎥⎢⎥⎣⎦⎣⎦ 122.2130.6570.2730.063,0.6570.2690.0630.106S S --⎡⎤⎡⎤==--⎢⎥⎢⎥⎣⎦⎣⎦ 广义平方距离为(1,2j =)2()1()()()()ln 2ln j T j j j j j d p -=--+-x x xS x x S 后验概率为222ˆˆ0.5()0.5()1ˆ(|)e e j k d d j k P G --==∑x x x ,(1,2j =).回代判别结果如下略,误判率=0;若用交叉确认法, 则应按下式计算2()1()()()()()()()()ln 2ln j j j T j j x x x x j d p -=--+-x x x S x x S 逐个剔除, 交叉判别.有一错(10号被判错), 交叉确认估计*ˆ1/140.0714c p ==3. 多个总体的Bayes 判别(1) 一般讨论设概率密度为1~()k f x 的p 维总体1~k G 出现的先验概率为1~1~()k k p P G =, (11kj j p ==∑)先验概率的取法:(i) 1~1k p k =, 或(ii) 1~1~12k k k n p n n n =++,一个判别法= 一个划分=12{(,,,)}k R R R =R 判别准则 1,,kp j i j j R R R i j ==⋃=⋂=∅≠R判别R 下的误判情况讨论(|,)()d ,j i R P j i f j i =≠⎰R x x ,(1~)j k = 代价记为一个损失矩阵()(|)k k c j i ⨯(约定(|)0,1~c i i i k ==)常取(|)1,c j i i j =≠. 来自i G 判为其他总体的概率是(|,)j iP j i ≠∑R 误判的概率*1(|,)ki i j i p p P j i =≠⎛⎫= ⎪⎝⎭∑∑R 使其最小, 得最优划分.当(|)c j i 不全相等时, 将来自i G 判为其他总体的平均损失率1(|,)(|)ki j l P j i c j i ==∑R误判的平均损失率111(|,)(|)kkk i i i i i j L p l p P j i c j i ===⎛⎫== ⎪⎝⎭∑∑∑R应使其最小的划分R .进一步的讨论1) 当(|)1,c j i i j =≠时,因1(|,)1kj P j i R ==∑, 故(|,)1(|,)j iP j i P i i ≠=-∑R R从而有()()*111(|,)1()d ik ki R i i p P i i f ===-=-∑∑⎰R x x11()d iki R i f ==-∑⎰x x当1{:()max ()},1~i i i j j j kp f p f i k ≤≤===R x x x 时,12(,,,)k R R R =R 是使*p 最小的最优划分.又由Bayes 公式, 当出现样品x 时, 总体i G 的后验概率1~()(|)()i i i j jj kp f P G p f ==∑x x x故最优划分为1{:(|)max (|)}i i j j kR P G P G ≤≤==x x x , (1~i k =)当有多个时, 任选一个.2) 当(|),c j i i j ≠不全相等时,111(|,)(|)kkk i i i i i j L p l p P j i c j i ===⎛⎫== ⎪⎝⎭∑∑∑R11(|)()d jkk i i j i p c j i f ==⎛⎫= ⎪⎝⎭∑∑⎰R x x11(|)()d jkki i j i p c j i f ==⎛⎫= ⎪⎝⎭∑∑⎰R x x11()(|)()()d jkj iiki j j h x p c j i f h ==⎛⎫ ⎪⎝⎭∑∑⎰R x x x 取划分为1{:()min ()},1~j j i i i kh p f j k ≤≤===R x x x可使L 达到最小. 若记1(|)(|)(|),1~kj i i H G c j i P G j k ===∑x x(当出现x 后,被判为来自j G 后验平均损失, 则有1{:(|)min (|)},1~j j i i kH G H G j k ≤≤===R x x x若有多个, 则任判一个. (2) 多个正态总体的Bayes 判别1) 对1,(|)0,i jc j i i j ≠⎧=⎨=⎩的情况(i) 当12k ====ΣΣΣΣ时,设~(,)j p j G N μΣ(1~)j k =线性判别函数为()T j j j W b +x a x ,其中111,2ln j T T T j j jj j b p --+-a μΣμΣμ 广义平方函数21()()()2ln T j j j j d p -=---x x μΣx μ,1~j k = 后验概率22ˆˆ0.5()0.5()1(|)ee jk kd d j k P G --==∑x x x这时最优划分1{:()max ()}j j i i kR W W ≤≤==x x x1{:(|)max (|)}j i i kP G P G ≤≤==x x x (1~j k =)实用中, 用样本均值和样本协方差阵代替.(ii) 1~k Σ不全相等时, 设~(,)j p j j G N μΣ(1~)j k = 则有21()()()ln 2ln T j j j j j j d p -=--+-x x μΣx μΣ后验概率22ˆˆ0.5()0.5()1(|)ee jk kd d j k P G --==∑x x x ,(1~)j k =这时最优划分1{:(|)max (|)}j j i i kR P G P G ≤≤==x x x (1~j k =)实用中, 用2ˆ()j d x ,ˆ(|)j P G x 代替. 2) 一般损失情况 计算(|),1~i P G j k =x 及1(|)(|)(|),1~kj i i H G c j i P G j k ===∑x x最优划分为1{:(|)min (|)},1~j j i i kH G H G j k ≤≤===R x x x例5.4 某学院招生时, 有两个参考指标1X : 平均学分指数; 2X 管理能力考试成绩;申请者分为3类: 1G 录取; 2G 不录取; 3G 待定. 近期有85位记录.(部分资料)假定1) 各总体~正态分布;2) 先验概率按比例;3) 误判损失相同讨论在(i) 协方差阵相同; (ii) 协方差不全相同时; Bayes判别分析, 并给出误判率的回判法和交叉确认法估计值.若有一新申请者的资料13.12x=和2497x=, 在两种情况下各被判入哪类?解(i) 调用proc discrim过程, 得(部分)和**ˆˆ7/850.0824,8/850.094r c p p ==== 关于新样本0(3.12,497)T x =的后验概率10(|)0.2401P G x =, 20(|)0.0004,P G x =30(|)0.7578P G x =,故应该待定.(ii) 协方差不全相等时, 有和**ˆˆ3/850.03534/850.0471r c p p ==== 关于新样本0(3.12,497)T x =的后验概率 10(|)0.5983P G x =, 20(|)0.0032,P G x =30(|)0.3985P G x =,G类(录取).当属1总结前述内容均利用了所给定的全部p个指标变量, 但并非指标变量越多, 判别效果就越好, 相反, 有时可能影响判别分析效果.因此,如回归分析一样,在判别分析中仍存在指标变量的选取问题,称为逐步判别法.限于本书特点,在此不再详述.有兴趣者可参见如[3]中第6章等.另外sA5系统的Proc stepdisc过程(参见[6])可用于逐步判别分析.。
11.3案例分析——证券评级案例背景在美国,标准普尔公司和穆迪投资服务公司是两家证券评级机构。
他们根据发行证券的企业在信用方面可信赖程度的评价,对证券进行评级。
通常把评为高级的证券(例如标准普尔公司对股票评级为A+、A、A-和B+)称为投资级证券,把评为低级的证券称为投机级证券(如评级为B、B-、C和D的股票)。
评定结果每年公布一次,为投资者提供投资指导。
证券评级是根据发行证券的企业的财务和信用状况评定。
假设评定股票所依据的指标主要有发行在外的股份数x1,季度盈利x2,市盈率x3,速动比率x4(=速动资产/流动负债)。
假设这两类股票的指标均服从正态分布,且有相同的协方差矩阵,已分类的股票数据如下:投资级股票投机级股票R代码实现首先调用已有Bayes判别法程序discriminant.bayes.R找到程序所在文件夹复制文件路径将路径粘贴到R中,注意将“\”改为“\\”或者“/”,并添加文件名,注意引号要为英文标点,调用程序source("C:\\Users\\fan\\Desktop\\11章判别分析\\11.3bayes判别\\discriminant.bayes.R")构建两种证券总体,每种证券有四个指标,因此有四列classX1 <- matrix(c(120.2,124.5,117,116.4,119.8,0.42,0.38,0.37,0.41,0.37,20.2,21.4,18.6,19.5,19.8,1.43,1.21,1.67,1.55,1.53),ncol=4) # 投资级classX2 <- matrix(c(10.2,8.4,9.2,9.5,9.8,0.12,-0.08,-0.05,0.04,-0.09,21.2,22.4,17.6,18.5,19.1,0.67,0.52,0.37,0.44,0.41),ncol=4) # 投机级查看结果classX1结果如下查看股份数80,季度盈利0.2,市盈率0.15,速动比率0.9的这支股票所属类别discriminant.bayes(classX1,classX2,TstX=c(80,0.2,15,0.9),var.equal = T)TstX=c(80,0.2,15,0.9)是新的股票数据,var.equal = T表示两个总体的方差一样得到判别结果认为该股票属于第一类,即投资级。
实验十一 Bayes 判别实验目的和要求掌握Bayes 判别分析的理论与方法、模型的建立与误差率估计;掌握利用判别分析的SAS 过程解决有关实际问题.实验要求:编写程序,结果分析.实验内容:1、2题必做,第2-4题可选一题1. 写出两总体Bayes 判别的划分、准则,误判率估计;两总体的Bayes 判别准则为⎩⎨⎧<=∈∈≥=∈∈)}()2|1()()1|2(:{,)}()2|1()()1|2(:{,221122221111x x x x x x x x x x f p c f p c R G f p c f p c R G 如如误判概率的频率估计---回代法和交叉确认法*p ),2|1(),1|2(21R R P p P p +=212112221212112211*ˆn n n n n n n n n n n n n n p++=⋅++⋅+=≈ 回代法估计 21*21*12*ˆn n n n pp c++=≈* 交叉确认法估计2.写出两总体正态分布的Bayes 判别准则,给出样品;两个正态总体的Bayes 判别212221212||)2()},(21exp{)}()(21exp{||)2(1)(j p j j j T j j p j G d f Σx μx Σμx Σx ππ-=---=- )}()(21||ln )2ln(2)(ln 1j j j j j p f μx Σμx Σx -----=-π =)(2x j d )()(1j j T j μx Σμx ---)|(ln 2-ln 2-||ln j i c p j j Σ+---广义平方距离2,1,)(2exp()(2exp()(21exp()|(22212=-+--=j d d d G P j j x x x x ----后验概率最优划分 ⎩⎨⎧>=≤=)}()(:{)}()(:{2221222211x x x x x x d d R d d R两正态总体一般判别准则⎩⎨⎧><∈≤≥∈)()()|()|(,)()()|()|(,22212122221211x x x x x x x x x x d d G P G P G d d G P G P G 或当或当3.书上5.4、5.5选一题 5.4 (1) 结果如下:data examp5_4;input group $ x1-x7 @@; cards ;G1 6.6 39 1.0 6.0 6 0.12 20 G1 6.6 39 1.0 6.0 12 0.12 20 G1 6.1 47 1.0 6.0 6 0.08 12 G1 6.1 47 1.0 6.0 12 0.08 12 G1 8.4 32 2.0 7.5 19 0.35 75 G1 7.2 6 1.0 7.0 28 0.30 30 G1 8.4 113 3.5 6.0 18 0.15 75 G1 7.5 52 1.0 6.0 12 0.16 40 G1 7.5 52 3.5 7.5 6 0.16 40 G1 8.3 113 0.0 7.5 35 0.12 180 G1 7.8 172 1.0 3.5 14 0.21 45 G1 7.8 172 1.5 3.0 15 0.21 45 G2 8.4 32 1.0 5.0 4 0.35 75 G2 8.4 32 2.0 9.0 10 0.35 75 G2 8.4 32 2.5 4.0 10 0.35 75 G2 6.3 11 4.5 7.5 3 0.20 15 G2 7.0 8 4.5 4.5 9 0.25 30 G2 7.0 8 6.0 7.5 4 0.25 30 G2 7.0 8 1.5 6.0 1 0.25 30 G2 8.3 161 1.5 4.0 4 0.08 70 G2 8.3 161 0.5 2.5 1 0.08 70 G2 7.2 6 3.5 4.0 12 0.30 30 G2 7.2 6 1.0 3.0 3 0.30 30 G2 7.2 6 1.0 6.0 5 0.30 30 G2 5.5 6 2.5 3.0 7 0.18 18 G2 8.4 113 3.5 4.5 6 0.15 75 G2 8.4 113 3.5 4.5 8 0.15 75 G2 7.5 52 1.0 6.0 6 0.16 40 G2 7.5 52 1.0 7.5 8 0.16 40G2 8.3 97 0.0 6.0 5 0.15 180G2 8.3 97 2.5 6.0 5 0.15 180G2 8.3 89 0.0 6.0 10 0.16 180G2 8.3 56 1.5 6.0 13 0.25 180G2 7.8 172 1.0 3.5 6 0.21 45G2 7.8 233 1.0 4.5 6 0.18 45;run;proc discrim data=examp5_4 wcov outstat=aa method=normal pool=no list crosslist;class group;priors proportional; /* 总体的先验概率与各总体的训练样本容量成比例 */ run;proc print data=aa; /* 数据集aa中有各总体的均值向量、标准差、相关系数等*/ run;结果如下:计算广义平方距离函数和后验概率2,1,))(ˆ5.0exp(/))(ˆ5.0exp()|(ˆ2122=--=∑=j d d G P k kj j x x x由此可见,误判率的回代估计为0ˆ* r p .误判率的交叉确认法估计交叉确认法的广义平方距离函数及后验概率计算公式2,1,ln 2||ln (()(~)()()1()()(2=-+--=-j p d j x j x x j x j jj S )x x )S x x x2,1,))(ˆ5.0exp(/))(ˆ5.0exp()|(ˆ2122=--=∑=j d d G P k kj j x x x交叉确认法分类小结4.针对波士顿房价问题(1) 利用Bayes 判别对住房状况做判别分析,并给出5、100、400号样品判别结果。
贝叶斯判别法一、引言贝叶斯判别法(Bayesian Discriminant Analysis)是一种基于贝叶斯定理的统计学习方法。
它的核心思想是利用样本数据来估计各个类别的先验概率和条件概率密度函数,然后根据贝叶斯定理计算后验概率,从而实现分类。
二、基本原理1. 贝叶斯定理贝叶斯定理是统计学中一个重要的公式,它描述了在已知先验概率的情况下,如何根据新的观测数据来更新对事件发生概率的估计。
具体地说,设A和B是两个事件,则:P(A|B) = P(B|A) * P(A) / P(B)其中P(A|B)表示在已知事件B发生的前提下,事件A发生的条件概率;P(B|A)表示在已知事件A发生的前提下,事件B发生的条件概率;P(A)和P(B)分别为事件A和事件B的先验概率。
2. 贝叶斯判别法贝叶斯判别法是一种基于贝叶斯定理进行分类的方法。
假设有K个类别C1,C2,...,CK,每个类别Ci对应一个条件概率密度函数f(x|Ci),其中x为样本特征向量。
给定一个新的样本x,我们需要将其归为某个类别中。
根据贝叶斯定理,可以计算出后验概率P(Ci|x),即在已知样本特征向量x的前提下,该样本属于类别Ci的概率。
具体地说:P(Ci|x) = P(x|Ci) * P(Ci) / P(x)其中P(x|Ci)表示在已知类别Ci的前提下,样本特征向量x的条件概率密度函数;P(Ci)表示类别Ci的先验概率;P(x)表示样本特征向量x的边缘概率密度函数。
根据贝叶斯判别法,将新样本x归为后验概率最大的那个类别中,即:argmax(P(Ci|x)) = argmax(P(x|Ci)*P(Ci))三、分类器构建1. 参数估计贝叶斯判别法需要估计各个类别的先验概率和条件概率密度函数。
其中先验概率可以通过训练集中各个类别出现次数占总数比例来估计。
而条件概率密度函数则需要根据训练集中各个类别对应的样本特征向量来进行估计。
常见的条件概率密度函数包括高斯分布、多项式分布和伯努利分布等。
Bayes 判别分析及应用班级:计算B101姓名:孔维文 学号201009014119指导老师:谭立云教授【摘 要】判别分析是根据所研究个体的某些指标的观测值来推断该个体所属类型的一种统计方法,在社会生产和科学研究上应用十分广泛。
在判别分析之前,我们往往已对各总体有一定了解,样品的先验概率也对其预测起到一定作用,因此进行判别时应考虑到各个总体出现的先验概率;由于在实际问题中,样品错判后会造成一定损失,故判别时还要考虑到预报的先验概率及错判造成的损失,Bayes 判别就具有这些优点;然而当样品容量大时计算较复杂,故而常借助统计软件来实现。
本文着重于Bayes 判别分析的应用以及SPSS 的实现。
【关键词 】 判别分析 Bayes 判别 Spss 实现 判别函数 判别准则Class: calculation B101 name: KongWeiWen registration number 201009014119Teacher: TanLiYun professor.【Abstract 】Discriminant analysis is based on the study of certain indicators of individual observations to infer that the individual belongs as a type of statistical methods in social production and scientific research is widely used. In discriminant analysis, we often have a certain understanding of the overall sample of the a priori probability of its prediction play a role, it should be taken into account to determine the overall emergence of various prior probability; because of practical problems, samples will result in some loss of miscarriage of justice, so identification must be considered when the prior probability and wrongly predicted loss, Bayes discriminant to have these advantages; However, when the sample is large computing capacity of more complex, often using statistical software Guer to achieve. This article focuses on the application of Bayes discriminant analysis, and implementation of SPSS.【Key words 】 Discriminant analysis; Bayes discriminant; Spss achieve; Discriminantfunction; Criteria;1.1.1 判别分析的概念在科学研究中,经常会遇到这样的问题:某研究对象以某种方式(如先前的结果或经验)已划分成若干类型,而每一种类型都是用一些指标T p X X X X ),,(21 来表征的,即不同类型的X 的观测值在某种意义上有一定的差异。
第三节Bayes判别本节内容贝叶斯公式最大后验概率准则最小平均误判代价准则Bayes判别的基本方法案例分析距离判别法的缺点第一,把总体等同看待,没有考虑到总体会以1不同的概率出现,认为判别方法与总体各自出现的概率的大小无关。
2第二,判别方法与错判之后所造成的损失无关,没有考虑误判之后所造成的损失差异。
贝叶斯(Bayes)公式贝叶斯统计的基本思想:假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识(先验概率分布),得到后验概率分布,各种统计推断都通过后验概率分布进行,将贝叶斯思想用于判别分析,就得到贝叶斯判别。
某公司新入职雇员小王,小王是好员工还是坏员工大家都在猜测。
按人们先验的主观猜测,新人是好员工或坏员工的概率均为0.5。
坏员工总是无法按时完成工作,偶尔也可以顺利完成;好员工一般都能按时完成任务,但偶尔也会出现工作失误:一般好员工按时完成工作的概率为0.9,坏员工按时完成工作的概率为0.2。
近日,小王按时完成了一项工作任务,请问小王此时是好员工的概率有多大?“先验概率”是一种权重(比例),所谓“先验”,是指我们在抽样以前,就已经知道的 ;贝叶斯判别需要研究的“后验概率”,就是当样本X 已知时,它属于G i 的概率。
()i P G ()i P G X 由此,使用“最大后验概率准则”得到的贝叶斯判别规则为:1,()max ()≤≤∈=l l i i kX G P G X P G X 如果最大后验概率准则没有涉及误判的代价,因此,在各种误判代价明显不同的场合,该准则就失效了。
设有k 个总体 ,其各自的分布密度函数 互不相同,假设k 个总体各自出现的概率分别为 (先验概率), , 。
假设若将本来属于G i 总体的样品错判到总体G j 时造成的损失为, 。
在这样的情形下,对于新的样品X 判断其来自哪个总体。
问题12,,,k G G G ⋅⋅⋅()()()12,,,k f X f X f X ⋅⋅⋅12,,,k q q q ⋅⋅⋅0≥i q 11ki i q ==∑(|)C j i , 1.2,,=⋅⋅⋅i j k显然 、,对于任意的 成立。
贝叶斯判别法简介与应用场景标题:贝叶斯判别法简介与应用场景引言:贝叶斯判别法是一种基于贝叶斯定理的分类算法,被广泛应用于机器学习、数据挖掘和模式识别等领域。
本文将对贝叶斯判别法进行深入介绍,包括其原理、应用场景以及优缺点等方面的内容。
通过阐述贝叶斯判别法的相关知识,我们将能够更好地理解该算法,并在实际应用中更加高效地利用它。
正文:一、贝叶斯判别法原理贝叶斯判别法是基于贝叶斯公式进行分类问题求解的一种方法。
它假设数据服从特定的概率分布,并通过建立分类模型来进行分类。
贝叶斯判别法中的关键是计算给定类别的后验概率,以判断新样本的类别。
该方法包括朴素贝叶斯、高斯判别分析和多项式判别分析等具体方法。
二、贝叶斯判别法应用场景1. 文本分类贝叶斯判别法在文本分类中被广泛应用。
通过对已知类别的文本样本进行学习,该方法可以对新的文本进行分类。
例如,垃圾邮件过滤器就是利用贝叶斯判别法对邮件进行分类,将垃圾邮件和正常邮件进行区分。
2. 医学诊断贝叶斯判别法在医学诊断中也有广泛的应用。
通过建立患病和健康状态之间的概率模型,医生可以根据各种特征指标来进行诊断和预测。
例如,对于一种罕见疾病,医生可以使用贝叶斯判别法来评估患者的患病风险,并提供相应的治疗建议。
3. 图像识别贝叶斯判别法在图像识别领域的应用也十分重要。
通过对训练样本集进行学习,贝叶斯判别法可以对新的图像进行分类和识别。
例如,在人脸识别系统中,贝叶斯判别法可根据训练样本集中的人脸特征,对新的图像进行人脸识别。
4. 金融风控在金融风控领域,贝叶斯判别法被广泛应用于评估客户的信用风险。
通过分析历史数据和风险指标,该方法可以对可能出现的风险进行预测,帮助金融机构做出合理的风险决策。
三、贝叶斯判别法的优缺点1. 优点- 简单且易于理解:贝叶斯判别法基于贝叶斯定理,其原理相对简单,容易理解。
- 适用范围广:贝叶斯判别法不仅适用于概率独立的数据,还可以用于处理相关数据和连续数据。