2013年福建省晋江市中考数学试题(含标准答案)(00001)
- 格式:doc
- 大小:1.40 MB
- 文档页数:12
福建省泉州市2013年中考数学试卷一、选择题(每小题3分,共21分)B4.(3分)(2013•泉州)把不等式组的解集在数轴上表示出来,正确的是( )B,7.(3分)(2013•泉州)为了更好保护水资源,造福人类,某工厂计划建一个容积V(m)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图象大致是()B(y=二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答. 8.(4分)(2013•泉州)的立方根是.的立方根是;故答案为:.= (1+x )(1﹣x ) .示为 1.1×105.11.(4分)(2013•泉州)如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=35°.AOQ=∠A0B=12.(4分)(2013•泉州)九边形的外角和为360°.13.(4分)(2013•泉州)计算:+=1.14.(4分)(2013•泉州)方程组的解是.故原方程组的解为状一定是平行四边形.AC EF=AC16.(4分)(2013•泉州)如图,菱形ABCD的周长为8,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=1:2,菱形ABCD的面积S=16.,,=16结果是12,第2次输出的结果是6,第3次输出的结果是3,依次继续下去…,第2013次输出的结果是3.代入x次输出的结果是×次输出的结果是×次输出的结果为×次输出的结果为×次输出的结果为×18.(9分)(2013•泉州)计算:(4﹣π)0+|﹣2|﹣16×4﹣1+÷.4+2÷19.(9分)(2013•泉州)先化简,再求值:(x﹣1)+x(x+2),其中x=.时,原式交AD的延长线于点F,求证:BE=CF.21.(9分)(2013•泉州)四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y=图象上的概率.的概率为;P=.(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.23.(9分)(2013•泉州)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有200名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是36度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费?动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:l=t2+t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?ttt t+4t=21t t+4t=63直线BC上的动点.(1)求∠ABC的大小;(2)求点P的坐标,使∠APO=30°;(3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.﹣中,令y=2),==2,),APO=∠∠2,0)作EF∥AB,交BO于F;(1)求EF的长;(2)过点F作直线l分别与直线AO、直线BC交于点H、G;①根据上述语句,在图1上画出图形,并证明=;②过点G作直线GD∥AB,交x轴于点D,以圆O为圆心,OH长为半径在x轴上方作半圆(包括直径两端点),使它与GD有公共点P.如图2所示,当直线l绕点F旋转时,点P也随之运动,证明:=,并通过操作、观察,直接写出BG长度的取值范围(不必说理);(3)在(2)中,若点M(2,),探索2PO+PM的最小值..所以,则问题转化为证明.根据①中的结论,易得,故问题得证.∠,即×=2由①得:.)可得:=,再认真检查一遍,估计一下你的得分情况,如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分.27.(2013•泉州)方程x+1=0的解是x=﹣1.28.(2013•泉州)如图,∠AOB=90°,∠BOC=30°,则∠AOC=60°.。
2013年福建省晋江市初中学业质量检查数学试题2013年晋江市初中学业质量检查数学试题5. 在平面直角坐标系中,若将点()3,2-P 向右平移3个单位得到点'P ,则点'P 的坐标是( ). A. ()3,1 B. ()3,5- C. ()0,2-D. ()6,2-6.下列图形中,不是..旋转对称图形的是( ). A. 正三角形 B. 正方形 C. 矩形 D. 等腰梯形7.如图,动点M 、N 分别在直线AB 与CD 上,且AB ∥CD ,BMN ∠与MND ∠的角平分线相交于 点P ,若以MN 为直径作⊙O ,则点P 与⊙O 的位置关系是( ) .A. 点P 在⊙O 外B. 点P 在⊙O 内C. 点P 在⊙O 上D. 以上都有可能二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.(第7题图)P A BD C M N15. 如图,在四边形ABCD中,P是对角线BD的中19.(9分)先化简,再求值:()()()3+aa,其a-+322-抽取一张,设记下的数字为n,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出n m >的概率.21.(9分)如图,在□ABCD 中,点E 是AD 的中点,连结CE 并延长,交BA 的延长线于点F .求证:AFAB =.(第21题图)EF DABC24.(9分)小东到学校参加毕业晚会演出,到学校时发现演出道具还放在家中,此时距毕业晚会开始还有25分钟,于是立即步行回(备用图)移动时,请直接写出EOF∠的度数.四、附加题(共10分)在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.1. 若矩形的长为cm3,则矩形的面积为5,宽为cm2_____cm.2. 一元二次方程92x的根是 .2013年晋江市初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.-+ =……………………………………………5192-………………………(8分)=…………………………………3-……………………………………………(3分)(2)(解法一)列举所有等可能结果,画出树状图如下:……………………………………………(6分)由上图可知,共有6种等可能结果,其中nm>的情况有3种.…………………………………(7分)∴AFAB=…………………………………………………(9分)22.(本小题9分)………………………………………………………(7分)(每个图形位置及标注字母正确可得3分,共6分)(2)ABC∆与222C B A∆关于点O成中心对称. ………(9分)24.(本小题9分)(1)由图象可知:父子俩从出发到相遇时花费了15分,设小明步行的速度为x米/分,则小明父亲骑车的速度为x3米/分,依题意得:()3600x,解得:+x315= x………………………………………………60=………………(3分)∴两人相遇处离学校的距离为900⨯(米)60=15∴点B的坐标为() 15,………………………………………………900………………………(4分)即小明的父亲从出发到学校花费的时间为20分,……………………………………(8分)∵2520<∴小明能在毕业晚会开始前到达学………………(6分)由(1)得:41-=a ,∴抛物线的解析式是()21444y x =--+,12时,存在点P的坐标()44-+,使得OP,24ON⊥. ……………………………………………………26.(本小题13分)解:(1)()a a E -1,,()b b F ,1-………………………………………………()()()121122-+=-++-+=b a b a b a EF同理可得:()1221222+-=-+=a a a a OE ,BE ==,∴12222+-=a a OE,15………………………………………………………………………………(5分)2.(5分) (3)………………………………(5分)。
2013年中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填入题后的括号内。
)1. 下列哪个数是最小的正整数?A. -1B. 0C. 1D. 22. 如果\( a \)和\( b \)互为相反数,那么\( a + b \)的值是多少?A. 0B. 1C. -1D. 不确定3. 已知\( x \)和\( y \)满足\( x + y = 5 \),\( x - y = 1 \),求\( x \)的值。
A. 2B. 3C. 4D. 54. 一个直角三角形的两条直角边分别是3和4,斜边的长度是多少?A. 5B. 6C. 7D. 85. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 下列哪个不是二次根式?A. \( \sqrt{4} \)B. \( \sqrt{9x} \)C. \( \sqrt{x^2} \)D. \( \sqrt{16} \)7. 如果一个数的平方等于81,这个数是多少?A. 9B. -9C. ±9D. ±38. 一个数的立方等于-27,这个数是多少?A. -1B. -3C. 3D. 19. 一个分数的分子和分母都乘以相同的数,分数的值会如何变化?A. 变大B. 变小C. 不变D. 无法确定10. 下列哪个是完全平方数?A. 20B. 21C. 22D. 23二、填空题(本大题共5小题,每小题3分,共15分。
请将答案填在题中横线上。
)11. 一个数的绝对值是5,这个数可以是______。
12. 如果\( a \)和\( b \)互为倒数,那么\( ab \)的值等于______。
13. 一个长方体的长、宽、高分别是2、3和4,它的体积是______。
14. 一个数的平方根是4,这个数是______。
15. 如果\( x \)的立方等于27,那么\( x \)的值是______。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”2013年初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.31-的倒数是( ). A. 31 B. 3- C. 31- D. 32. 32a a ⋅等于( ).A. 5a B. 6a C. 32a D. 以上都不对 3. 解集在数轴上表示为如图所示的不等式组是( ).A.⎩⎨⎧≥2x 3x >- B.⎩⎨⎧≤2x 3x <- C. ⎩⎨⎧≥2x 3x <- D. ⎩⎨⎧≤23x x >-4. 如图组合体的左视图是( ).5. 在平面直角坐标系中,若将点()3,2-P 向右平移3个单位得到点'P ,则点'P 的坐标是( ).A. ()3,1B. ()3,5-C. ()0,2-D. ()6,2- 6. 下列图形中,不是..旋转对称图形的是( ) . A.正三角形 B.正方形 C. 矩形 D.等腰梯形-3 02(第3题图)A. B. C. D.(第4题图)正面5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
2013年初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.31-的倒数是( ). A. 31 B. 3- C. 31- D. 32. 32a a ⋅等于( ).A. 5a B. 6a C. 32a D. 以上都不对 3. 解集在数轴上表示为如图所示的不等式组是( ).A.⎩⎨⎧≥2x 3x >- B.⎩⎨⎧≤2x 3x <- C. ⎩⎨⎧≥2x 3x <- D. ⎩⎨⎧≤23x x >-4. 如图组合体的左视图是( ).5. 在平面直角坐标系中,若将点()3,2-P 向右平移3个单位得到点'P ,则点'P 的坐标是( ).A. ()3,1B. ()3,5-C. ()0,2-D. ()6,2- 6. 下列图形中,不是..旋转对称图形的是( ) . A.正三角形 B.正方形 C. 矩形 D.等腰梯形 7. 已知:如图,动点M 、N 分别在直线AB 与CD 上,且AB ∥CD ,BMN ∠与MND ∠的角平分线相交于点P ,若以MN 为直径作⊙O ,则点P 与⊙O 的位置关系是( ) .A.点P 在⊙O 外B.点P 在⊙O 内C.点P 在⊙O 上D.以上都有可能二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.-3 02(第3题图)A. B. C. D.(第4题图)正面(第7题图)PA BDC MN28.比较大小:3____2-(填“>”、“<”或“=”). 9.分解因式:._________962=+-a a10.据报道,在2013年,晋江市民生投入将进一步增加到4 364 000 000元,则4 364 000 000元用科学记数法表示为___________元.11.5名初中毕业生的中考体育成绩(单位:分)分别为:260,265, 266,267, 268,则这组数据的中位数是__________(分). 12.十二边形的外角和是_______度.13.计算:._______222=---yx yy x x14.如图,将ABD Rt ∆绕着点D 沿顺时针方向旋转︒90得D B A ''∆,且点'B 在DA 的延长线上,则_______'=∠BD B 度.15.如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点8==BC AD ,6.7=EF ,则PEF ∆的周长是 .16.如图,在半径为3的⊙O 中,Q 、B 、C 是⊙O 上的三个点,若︒=∠36BQC ,则劣弧BC 的长是________.17.如图,直线()0≠+=m n mx y 经过第二象限的点()6,4-P ,并分别与x 轴的负半轴、y 轴的正半轴相交于点A 、B .(1)填空:__________=n (用含m 的代数式表示); (2)若线段AB 的长为2119m+,则_____=m . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:()1223275510--⨯--+⨯-.19.(9分)先化简,再求值:()()()3322-+-+a a a ,其中23-=a . (第17题图)xyA BPO(第16题图)OQBC(第15题图)PEF D ABC(第14题图)A'DABB'2013年初中学业质量检查数学试题 第 3 页(共14页)20.(9分)在一个不透明的盒子中,装有三张卡片,卡片上分别标有数字“1”、“2”、“3”,它们除了数字不同外,其余都相同.(1)随机地从盒中抽出一张卡片,则抽出数字为“1”的卡片的概率是多少?(2)若第一次从这三张卡片中随机抽取一张,设记下的数字为m ,此卡片不放回...盒中,第二次再从余下的两张卡片中随机抽取一张,设记下的数字为n ,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出n m >的概率.21.(9分)如图,在□ABCD 中,点E 是AD 的中点,连结CE 并延长,交BA 的延长线于点F . 求证:AF AB =.22.(9分)为了了解学生课外时间参加家务劳动的情况,某校课题研究小组从该校各班随机抽取若干人组成调查样本,根据收集整理到的数据绘制成以下不完全统计图. 根据以上信息,解答下列问题:(1)该课题研究小组所抽取的学生人数是______,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)若全校学生共有5000名,估计约有多少名学生经常..参加家务劳动? 23.(9分)已知:如图,在网格图中(小正方形的边长为1),ABC ∆的三个顶点都在格点上. (1)直接写出点C 的坐标,并把ABC ∆沿y 轴对称得111C B A ∆,再把111C B A ∆沿x 轴对称得(第21题图) E F D A B C 经常 25% 偶尔没有几乎不课外参加家务劳动人数扇形统计图课外参加家务劳动人数条形统计图 没有经常偶尔几乎不25 50 75人数(人)4O BA C(第23题图)x y 222C B A ∆,请分别作出对称后的图形..........111C B A ∆与222C B A ∆;(2)猜想: ABC ∆与222C B A ∆的位置关系,直接写出结果,不必说明理由;24.(9分)小东到学校参加毕业晚会演出,到学校时发现演出道具还放在家中,此时距毕业晚会开始还有25分钟,于是立即步行回家. 同时,他父亲从家里出发骑自行车以他3倍的速度给他送道具,两人在途中相遇,相遇后,小东立即骑父亲的自行车返回学校.下图中线段AB 、OB 分别表示父、子俩送道具、取道具过程中,离学校的路程S (米)与所用时间t (分)之间的函数关系,结合图象解答下列问题(假设题中自行车与步行的速度均保持不变). (1)求点B 的坐标和AB 所在直线的解析式; (2)小东能否在毕业晚会开始前到达学校?25. (13分)已知:如图,抛物线()442+-=x a y ()0≠a 经过原点()0,0O ,点P 是抛物线上的一个动点,OP 交其对称轴l 于点M ,且点M 、N 关于顶点Q 对称,连结PN 、ON . (1)求a 的值;t S 3600A15BO (米) (分)2013年初中学业质量检查数学试题 第 5 页(共14页)(2)当点P 在对称轴l 右侧的抛物线上运动时,试解答如下问题:①是否存在点P 的坐标,使得OP ON ⊥?若存在,试求出点P 的坐标;否则请说明理由; ②试说明:OPN ∆的内心必在对称轴l 上.26. (13分)如图1,直线1+-=x y 与x 轴交于点A ,与y 轴交于点B ,点()b a P ,为双曲线xy 21=上的一点,射线..x PM ⊥轴于点M ,交直线AB 于点E ,射线..y PN ⊥轴于点N ,交直线AB 于点F .(1)直接写出点E 与点F 的坐标(用含a 、b 的代数式表示);(2)当0>x ,且直线AB 与线段PN 、线段PM 都有交点时,设经过E 、P 、F 三点的x yNMQO PlxyQO(备用图)l6圆与线段OE 相交于点T ,连结FT ,求证:以点F 为圆心,以FT 的长为半径的⊙F 与OE 相切;(3)①当点P 在双曲线第一象限的图象上移动时,求EOF ∠的度数;②当点P 在双曲线第三象限的图象上移动时,请直接写出EOF ∠的度数.四、附加题(共10分)在答题卡上第.3.面.相应题目的答题区域内作答. 友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分. 1、若矩形的长为cm 5,宽为cm 3,则矩形的面积为2_____cm . 2、一元二次方程92=x 的根是_____.2013年初中学业质量检查 数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.xyT EF A B N M OP (备用图)yxOBAP2013年初中学业质量检查数学试题 第 7 页(共14页)一、选择题(每小题3分,共21分)1. B ;2. A ;3. D ;4.B ;5. A ;6.D ;7. C ; 二、填空题(每小题4分,共40分)8.<; 9. ()23-a ; 10. 910364.4⨯; 11. 266; 12. 360; 13.1;14. ︒45; 15. 15.6; 16.56π;17. (1) m 46+;(2) 43. 三、解答题(共89分)18.(本小题9分)解:原式1952--+=……………………………………………………………………(8分)3-= ……………………………………………………………………………(9分)19.(本小题9分)解:原式=()94422--++a a a ………………………………………………………………(4分)=94422+-++a a a ………………………………………………………………(5分)=134+a ……………………………………………………………………………(6分)当23-=a 时,原式=13234+⎪⎭⎫⎝⎛-⨯7=………………………………………………………………(9分)20.(本小题9分) 解:(1)31;……………………………………………………………………………………(3分)(2)(解法一)列举所有等可能结果,画出树状图如下:8…………………………………………………………………………………………………(6分)由上图可知,共有6种等可能结果,其中n m >的情况有3种.…………………………………(7分)∴2163)(==> n m P ………………………………………………………………………………(9分)(解法二)(1)列表如下12 31()2,1()3,12 ()1,2()3,23()1,3 ()2,3…………………………………………………………………………………………………(6分)由上图可知,共有6种等可能结果,其中n m >的情况有3种.…………………………………(7分)∴2163)(==> n m P ………………………………………………………………………………(9分)21.(本小题9分)(1)证明:∵四边形ABCD 是平行四边形, ∴CD AB =,AB ∥CD∴D FAE ∠=∠ …………………………………………(3分)第2次 1 2 32 3 1 3 1 2第一次m 值第二次n 值 结 果 第1次2 (第21题图)EF DABC2013年初中学业质量检查数学试题 第 9 页(共14页)∵点E 是AD 的中点,∴DE AE = …………………………………………………(5分) 在AEF ∆和DEC ∆中,∵D FAE ∠=∠,DE AE =,DEC AEF ∠=∠,∴AEF ∆≌DEC ∆()ASA ……………………………………(7分)∴CD AF =,又CD AB =,∴AF AB =…………………………………………………(9分)22.(本小题9分)(1)200;条形统计图如下:…………………………………………………………………………………………………(6分)(2)1250200505000=⨯(人) ∴估计约有1250名学生经常参加家务劳动.…………………………………………………………………………………………………(9分)23.(本小题9分)解:(1) ()4,3C ,…………………………………(1分)作图如下:………………………………………………………(7分)没有经常偶尔几乎不25 50 75 人数(人)(第23题图)B 2C 2A 2B 1C 1A 1OBACxy10(每个图形位置及标注字母正确可得3分,共6分)(2)ABC ∆与222C B A ∆关于点O 成中心对称. ………(9分)24.(本小题9分)(1)由图象可知:父子俩从出发到相遇时花费了15分,设小明步行的速度为x 米/分,则小明父亲骑车的速度为x 3米/分,依题意得:()3600315=+x x ,解得:60=x ………………………………………………………………(3分) ∴两人相遇处离学校的距离为9001560=⨯(米)∴点B 的坐标为()90015,………………………………………………………………………(4分)设直线AB 的解析式为:b kt S +=()0≠k ∵直线AB 经过点()3600,0A 、()90015,B∴⎩⎨⎧=+=90015,3600b k b ,解得:⎩⎨⎧=-=3600,180b k∴直线AB 的解析式为:3600180+-=t S …………………………………………………(6分)(2)解一:小明取道具后,赶往学校的时间为:5360900=⨯(分) ∴小明取道具共花费的时间为:20515=+(分)………………………………………(8分)∵2520<∴小明能在毕业晚会开始前到达学校. …………………………………………………(9分) 解二:在3600180+-=t S 中,令0=S ,即03600180=+-t ,解得:20=t ,2013年初中学业质量检查数学试题 第 11 页(共14页)即小明的父亲从出发到学校花费的时间为20分, ……………………………………(8分) ∵2520<∴小明能在毕业晚会开始前到达学校. …………………………………………………(9分)25.(本小题13分)解:(1)把点()0,0O 代入()442+-=x a y ,得:()44002+-=a ,解得:41-=a . ………………………………………………………………………………(3分) (2)若OP ON ⊥,则︒=∠90NOP ,显然点P 在第四象限,如图1所示, ∴︒=∠+∠90AON POB , 作y NA ⊥轴于点A ,y PB ⊥轴于点B ∴︒=∠=∠90PBO NAO ∴︒=∠+∠90POB OPB 又︒=∠+∠90AON POB , ∴AON OPB ∠=∠ ∴ANO ∆∽BOP ∆.∴OA BPAN OB =………………………………………………………(6分)由(1)得:41-=a ,∴抛物线的解析式是()44412+-=x y ,即x x y 2412+-=. ∵点P 是抛物线上的点,∴设点⎪⎭⎫ ⎝⎛+-0200241,x x x P 则直线OP 的解析式为:x x x x x x y ⎪⎭⎫ ⎝⎛+-=+-=24124100020.∴()8,40+-x M , ……………………………………………………………………(7分)(若由ODM ∆∽PBO ∆,也可得80-=x DM ,∴()8,40+-x M 同样可得分) 由()44412+-=x y 可得顶点()4,4Q ,又点M 、N 关于顶点Q 对称 ∴()0,4x NxyBANM QOPD(图1)∴4==OD AN ,020241x x OB -=,0x BP =,0x OA = 由OABP AN OB =,得000204241x x x x =-,即0168020=--x x ,解得:2440±=x ,又40>x∴2440+=x ∴点()4,244-+P故当点P 在对称轴l 右侧的抛物线上运动时,存在点P 的坐标()4,244-+,使得OP ON ⊥.……………………………………………………………(10分) ②作l PH ⊥于点H , 如图2,由点⎪⎭⎫⎝⎛+-0200241,x x x P 、()0,4x N ,可得:40-=x PH , 020020041241x x x x x NH -=⎪⎭⎫ ⎝⎛+--=,在PHN Rt ∆中,002004414t an x x x x NH PH PNH =--==∠,……………………………………(11分)在ODN Rt ∆中, 04tan x DN OD OND ==∠, ………………………………………………(12分)∴OND PNH ∠=∠tan tan∴OND PNH ∠=∠,即直线l 平分ONP ∠, ∴OPN ∆的内心必在对称轴l 上.…………………………………………………………………………………………………(13分)26.(本小题13分)解:(1)()a a E -1,,()b b F ,1-………………………………………………………………(4分)(图2)xyHN MQ DOP l2013年初中学业质量检查数学试题 第 13 页(共14页)(2)∵x PM ⊥轴,y PN ⊥轴, ∴四边形NOMP 是矩形, ∴︒=∠90P ,∴EF 是⊙Q 的直径.(不妨设经过E 、P 、F 三点的圆为⊙Q )∴︒=∠90FTE∴OE FT ⊥,又OE 经过半径FT 的外端T ,∴OE 是⊙F 的切线…………………………………………………………………………(7分)(3)①由直线1+-=x y 可求得:()1,0B ,()0,1A ,即ABO ∆是等腰直角三角形.如图所示,由(1)得:()a a E -1,,()b b F ,1-, 则()11-+=--=-=b a b a FN PN PF ,()11-+=--=-=b a a b EM PM PE ,在PEF Rt ∆中,由勾股定理得:()()()121122-+=-++-+=b a b a b a EF同理可得:()1221222+-=-+=a a a a OE ,()a a a BE 21122=--+=,∴12222+-=a a OE ,()a ab a a b a BE EF 2222122-+=⋅-+=⋅∵()b a P ,在反比例函数图象上 ∴ab 21=,即12=ab ∴()a a a b a BE EF 2122122-+=⋅-+=⋅ ∴2OE BE EF =⋅,即OEBE EF OE = 又BEO OEF ∠=∠ ∴OEF ∆∽BEO ∆.xyT EF A B N M OP (图1)∴︒=∠=∠45ABO EOF ………………………………(11分) EOF ∠的度数是︒45 ②EOF ∠的度数是︒135………………………………………………………………………………………………(13分)四、附加题(共10分)1.(5分)15 ………………………………………………………………………………(5分)2.(5分)3±…………………………………………………………………………………(5分)。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
2013年福建省泉州市晋江市中考数学试卷(解析版)一.选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.1.(2013晋江市)﹣2013的绝对值是()A.2013 B.﹣2013 C.D.考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2013的绝对值是2013.故选A.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2013晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=()A.40°B.50°C.100°D.130°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠1=∠2,进而得到∠2=50°.解答:解:∵a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故选:B.点评:此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.3.(2013晋江市)计算:2x3x2等于()A.2 B.x5C.2x5D.2x6考点:单项式乘单项式.分析:根据单项式乘单项式的法则进行计算即可.解答:解:2x3x2=2x5.故选C.点评:此题考查了单项式乘单项式,用到的知识点是单项式的乘法法则,是一道基础题,计算时要注意指数的变化.4.(2013晋江市)已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1 B.﹣1 C.9 D.﹣9考点:一元一次方程的解.专题:计算题.分析:将x=﹣2代入方程即可求出a的值.解答:解:将x=﹣2代入方程得:﹣4﹣a﹣5=0,解得:a=﹣9.故选D5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
福建省晋江市季延中学2012-2013学年高一上学期期中考数学试卷 120 分钟,总分150分) 一、选择题:本大题共10题,共50分,在下面各题的四个选项中,只有一个选项是符合题目要求的 函数的定义域为 下列函数中与函数相等的是 3.集合,集合之间的关系是 4.已知函数 3 5.关于函数 的性质表述正确的是 奇函数,在上单调递增 奇函数,在上单调递减 偶函数,在上单调递增 偶函数,在上单调递减 6. 已知,若,则 7.设则有 8.已知函数在区间上既没有最大值也没有最小值,则实数的取值范围是 9.函数的图象如图所示,其中为常数,则下列结论正确的是 , , , , 10.已知是上的增函数,则实数的取值范围是 二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上 11. ; 12. 根据表格中的数据,则方程的一个根所在的区间可为 ; 01230.3712.727.3920.091234513.函数是定义在R上的奇函数,当 ; 14. 已知,则= ;(试用表示) 15. 已知函数定义在上,测得的一组函数值如表: 1234561.001.541.932.212.432.63试在函数,,,,中选择一个函数来描述,则这个函数应该是; 16.奇函数满足: ①在内单调递增;②,则不等式 的解集为 . 三、解答题:本大题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤 17.(本题满分10分)设,, (1)求的值及; (2)设全集,求. 18.(本题满分10分)解方程: 19.(本题满分12分)某同学在这次学校运动会时不慎受伤,校医给他开了一些消炎药,要求他每天定时服一片。
现知该药片含药量为200,他的肾脏每天可从体内滤出这种药的,问:经过多少天,该同学所服的第一片药在他体内的残留量不超过?(参考数据:) 20. (本小题满分12分)在探究函数的最值中, (1)先探究函数在区间上的最值,列表如下: …0.10.20.50.70.911.11.21.32345……30.0015.016.134.634.0644.064.234.509.502864.75125.6…观察表中y值随值变化的趋势,知 时,有最小值为 ; (2)再依次探究函数在区间上以及区间上的最值情况(是否有最值?是最大值或最小值?),请写出你的探究结论,不必证明; (3)请证明你在(1)所得到的结论是正确的. 21.(本小题满分12分)已知函数的图象恒过定点,且点又在函数的图象. (1)求实数的值; (2)解不等式; (3)有两个不等实根时,求的取值范围. 22.(本题满分14分) 已知函数, (1)求函数的定义域; (2)判断的奇偶性; (3)方程是否有根?如果有根,请求出一个长度为的区间,使;如果没有,请说明理由?(注:区间的长度). 高一上期中考试数学试卷参考答案 选择题(60分) 12345678910ABDBAACCCA 二、填空题(16分) 11. 13 12. (1,2) 13. 14. 15. 16. 三、解答题(74分) 17.(1) …… 3分 …… 5分 (2) = …… 10分 19.解:设经过天,该同学所服的第一片药在他体内的残留量不超过……2分 则: ……6分 ……8分 ……11分 综上:经过5天后残留量不超过 ……12分 20.(12分)命题意图:考察函数的单调性,利用单调性研究函数的值域 解:(1)1,4; ………………………………………………………………………2分 (2)函数在区间上有最大值,此时.……………4分 函数在区间上即不存在最大值也不存在最小值;5分 (∵函数在区间上的值域为:) (3)由(1)表格中的数值变化猜想函数,在上单调递减,在上单调递增;故当时,函数取最小值4.……………6分 下面先证明函数在上单调递减. 设,且则 ……………7分 ………8分 ∵,且, ∴,,, 则,故.…………9分 故在区间上递减. ……………10分 同理可证明函数在上单调递增;……………11分 所以函数,在上单调递减,在上单调递增, 故当时,取到最小值.………………………………12分 21.解:(1)函数的图像恒过定点A,A点的坐标为(2,2) ……2分 又因为A点在上,则 ……4分 (2) ……6分 ……8分 (3) ……10分 所以0<2b<1 ,故b的取值范围为 ……12分 22 . 命题意图:本题主要考察对数函数,函数奇偶性及方程根的分布问题 解:(1)要使函数有意义,则,∴,故函数的定义域为……3分 (2)∵,∴为奇函数.…………6分 (3)由题意知方程等价于, 可化为 设,…………………………………………8分 则,, 所以,故方程在上必有根;…………………………11分 又因为, 所以,故方程在上必有一根. 所以满足题意的一个区间为. ……………………………………14分 高考学习网: 高考学习网:。
一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列数中,是负整数的是()A. -2.5B. -3C. 0D. 22. 若a < b,则下列不等式中正确的是()A. a + 3 < b + 3B. a - 3 > b - 3C. 3a < 3bD. 3a > 3b3. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-2,3),则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 04. 在直角坐标系中,点P(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)5. 已知等腰三角形ABC中,AB = AC,且AB = 6cm,BC = 8cm,则三角形ABC的周长是()A. 20cmB. 24cmC. 28cmD. 30cm6. 若sinα = 0.6,cosβ = 0.8,则sin(α + β)的值为()A. 0.4B. 0.5C. 0.7D. 0.97. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 4C. y = 3/xD. y = 2x^2 - 58. 已知数列{an}的前n项和为Sn,若a1 = 1,a2 = 3,且an = 2an-1 - 1,则数列{an}的通项公式是()A. an = 2^n - 1B. an = 2^n + 1C. an = 2^nD. an = 2^n - 29. 若等差数列{an}的公差为d,且a1 + a2 + a3 = 12,a4 + a5 + a6 = 36,则d的值为()A. 2B. 4C. 6D. 810. 下列命题中,正确的是()A. 所有奇数都是正数B. 所有正数都是实数C. 所有实数都是整数D. 所有整数都是自然数二、填空题(本大题共5小题,每小题4分,共20分。
二○一三年福州市初中毕业会考、高级中等学校招生考试数学试题(含答案全解全析)(满分:150分时间:120分钟)第Ⅰ卷(选择题,共40分)一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项)1.2的倒数是()A.12B.2 C.-12D.-22.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°3.2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空.7000000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×1074.下列立体图形中,俯视图是正方形的是()5.下列一元二次方程有两个相等实数根的是()A.x2+3=0B.x2+2x=0C.(x+1)2=0D.(x+3)(x-1)=06.不等式1+x<0的解集在数轴上表示正确的是()7.下列运算正确的是()A.a·a2=a3B.(a2)3=a5C.(ab )2=a2bD.a3÷a3=a8.如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A、点D在BC异侧..,连结AD,量一量线段AD的长,约为()A.2.5cmB.3.0cmC.3.5cmD.4.0cm9.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上10.A、B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0B.a<0C.b=0D.ab<0第Ⅱ卷(非选择题,共110分)二、填空题(共5小题,每题4分,满分20分)11.计算:2a -1a=.12.矩形的外角和等于度.13.某校女子排球队队员的年龄分布如下表:年龄131415人数474则该校女子排球队队员的平均年龄是岁.14.已知实数a、b满足:a+b=2,a-b=5.则(a+b)3·(a-b)3的值是.15.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是.三、解答题(满分90分.作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(每小题7分,共14分)(1)计算:(-1)0+|-4|-√12;(2)化简:(a+3)2+a(4-a).17.(每小题8分,共16分)(1)如图,AB平分∠CAD,AC=AD.求证BC=BD.(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?18.(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)组别身高A x<155B155≤x<160C160≤x<165D165≤x<170E x≥170根据图表提供的信息,回答下列问题:(1)样本中,男生身高的众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生400人、女生380人,请估计身高在160≤x<170之间的学生约有多少人.19.(12分)如图,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.20.(12分)如图,在△ABC中,以AB为直径的☉O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=√3.(1)求证BC是☉O的切线;⏜的长.(2)求BN21.(12分)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD的面积为1,设2 AB=x,AD=y.(1)求y与x的函数关系式;(2)若∠APD=45°,当y=1时,求PB·PC的值;(3)若∠APD=90°,求y的最小值.22.(14分)我们知道,经过原点的抛物线解析式可以是y=ax2+bx(a≠0).(1)对于这样的抛物线:当顶点坐标为(1,1)时,a=;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是;(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n C n D n.若这组抛物线中有一条经过点D n,求所有满足条件的正方形边长.答案全解全析:1.A ∵a的倒数是1a (a≠0),∴2的倒数是12,故选A.2.C ∵OA⊥OB,∴∠AOB=90°,∴∠2=90°-40°=50°.故选C.3.B 7 000 000=7×106.故选B.4.D 正方体的俯视图是正方形,故选D.5.C ∵(x+1)2=0,∴两根为x1=x2=-1.故选C.6.A 1+x<0的解集是x<-1,在数轴上表示正确的只有A项.故选A.7.A ∵a·a2=a1+2=a3,故选A.8.B 正确尺规作图,度量可得AD约为3.0 cm,故选B.9.D ∵取到白球可能性较大,∴白球的数目一定大于4,故选D.10.B ∵由图象可知x+a<x,∴a<0.故选B.评析本题考查一次函数的增减性和解简单的不等式,属中等难度题.建立不等式x+a<x是解题的关键.11.答案1a解析2a -1a=1a.12.答案360解析∵n边形的外角和均为360°,∴矩形的外角和是360°.13.答案14解析平均年龄是(4×13+7×14+4×15)÷(4+7+4)=14(岁).14.答案 1 000解析原式=[(a+b)(a-b)]3=(2×5)3=1 000.15.答案2√3解析如图所示,连结CD,则CD过顶点E.△DFE是等腰三角形,且∠F=∠BDF=120°,∴∠FDE=30°,∴∠BCD=90°,∵DE=√3,∴CD=2√3.连结OM、ON可得等边三角形,∴AB=2,∴S△ABC=12×2×2√3=2√3.评析此题考查正六边形转化成三角形解决问题的能力.三角形ABC的面积计算方法多样,以上只是其中一种方法.16.解析(1)原式=1+4-2√3=5-2√3.(2)原式=a 2+6a+9+4a-a 2=10a+9.评析 此题考查实数的运算和整式的混合运算,涉及的知识有:完全平方公式,去括号法则以及合并同类项法则,熟练掌握公式及法则是解决本题的关键. 17.解析 (1)证明:∵AB 平分∠CAD, ∴∠CAB=∠DAB,在△ABC 和△ABD 中,{AC =AD ,∠CAB =∠DAB ,AB =AB ,∴△ABC≌△ABD(SAS),∴BC=BD. (2)设这个班有x 名学生,依题意得 3x+20=4x-25,解得x=45. 答:这个班有45名学生. 18.解析 (1)B;C. (2)2. (3)400×10+840+380×(25%+15%)=332(人).答:估计该校身高在160≤x<170之间的学生约有332人.评析 本题考查读频数分布直方图的能力和从统计图中获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能做出正确的判断. 19.解析 (1)2;y 轴;120.(2)依题意,连结AD 交OC 于点E,如图,由旋转得OA=OD,∠AOD=120°.∵△AOC 为等边三角形, ∴∠AOC=60°,∴∠COD=∠AOD -∠AOC=60°, ∴∠COD=∠AOC,又OA=OD,∴OC⊥AD, ∴∠AEO=90°.20.解析 (1)证明:∵ME=1,AE=√3,AM=2, ∴ME 2+AE 2=AM 2, ∴∠AEM=90°.∵MN∥BC,∴∠ABC=∠AEM=90°, 即OB⊥BC,∴BC 是☉O 的切线. (2)连结ON, 在Rt△AME 中,sin A=ME AM =12,∴∠A=30°.∵AB⊥MN,∴BN ⏜=BM ⏜,EN=EM=1, ∴∠BON=2∠A=60°. 在Rt△ONE 中,sin∠EON=ENON , ∴ON=ENsin∠EON =2√33.∴BN ⏜的长=60π180×2√33=2√39π. 21.解析 (1)如图1,过点A 作AE⊥BC 于点E,图1在Rt△ABE 中,∠B=45°,AB=x, ∴AE=AB·sin B=√22x, ∵S △APD =12AD·AE=12, ∴12·y·√22x=12,∴y=√2x.(2)∵∠APC=∠APD+∠CPD=∠B+∠BAP, 又∠APD=∠B=45°,∴∠BAP=∠CPD. ∵四边形ABCD 是等腰梯形, ∴∠B=∠C,AB=DC, ∴△ABP∽△PCD, ∴AB PC =PBDC ,∴PB·PC=AB·DC, ∴PB·PC=AB 2,当y=1时,x=√2,即AB=√2, ∴PB·PC=(√2)2=2.(3)如图2,取AD 的中点F,连结PF, 过点P 作PH⊥AD 于点H,图2∴PF≥PH,当PF=PH 时,PF 有最小值.又∵∠APD=90°,∴PF=12AD=12y, ∴当PF 取最小值,即y 取最小值时,PH=12y.∵S △APD =12·AD·PH=12, ∴12·y·12y=12,y 2=2, ∵y>0,∴y=√2,即y 的最小值为√2.评析 此题涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线的性质以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解第(2)问的关键.22.解析 (1)-1;a=-1m (或am+1=0). (2)∵a≠0,∴y=ax 2+bx=a (x +b 2a )2-b 24a ,∴顶点坐标为(-b 2a ,-b 24a), ∵顶点在直线y=kx 上,∴k (-b 2a )=-b 24a ,∵b≠0,∴b=2k.(3)∵顶点A n 在直线y=x 上,∴可设A n 的坐标为(n,n),点D n 所在的抛物线顶点坐标为(t,t),由(1)(2)可得,点D n 所在的抛物线解析式为y=-1t x 2+2x,∵四边形A n B n C n D n 是正方形,∴点D n 的坐标为(2n,n),∴-1(2n)2+2×2n=n,t∴4n=3t,∵t、n是正整数,且t≤12,n≤12,∴n=3,6或9,∴满足条件的正方形边长为3,6或9.评析本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答第(3)问时,要注意n的取值范围.。
2013年初中学业质量检查 数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1. B ;2. A ;3. D ;4.B ;5. A ;6.D ;7. C ; 二、填空题(每小题4分,共40分)8.<; 9. ()23-a ; 10. 910364.4⨯; 11. 266; 12. 360; 13.1; 14. ︒45; 15. 15.6; 16.56π;17. (1) m 46+;(2)43.三、解答题(共89分)18.(本小题9分)解:原式1952--+=……………………………………………………………………(8分)3-= ……………………………………………………………………………(9分)19.(本小题9分)解:原式=()94422--++a a a ………………………………………………………………(4分)= 94422+-++a a a ………………………………………………………………(5分) =134+a ……………………………………………………………………………(6分)当23-=a 时,原式=13234+⎪⎭⎫⎝⎛-⨯7=………………………………………………………………(9分)20.(本小题9分) 解: (1)31;……………………………………………………………………………………(3分)(2)(解法一)列举所有等可能结果,画出树状图如下:…………………………………………………………………………………………………(6分)1232 3 1 3 1 2第一次m 值第二次n 值由上图可知,共有6种等可能结果,其中n m >的情况有3种.…………………………………(7分)∴2163)(==> n m P ………………………………………………………………………………(9分)(解法二)(1)列表如下12 31()2,1()3,1 2 ()1,2()3,23()1,3 ()2,3…………………………………………………………………………………………………(6分)由上图可知,共有6种等可能结果,其中n m >的情况有3种.…………………………………(7分)∴2163)(==> n m P ………………………………………………………………………………(9分)21.(本小题9分)(1)证明:∵四边形ABCD 是平行四边形,∴CD AB =,AB ∥CD∴D FAE ∠=∠ …………………………………………(3分) ∵点E 是AD 的中点,∴DE AE = …………………………………………………(5分)在AEF ∆和DEC ∆中,∵D FAE ∠=∠,DE AE =,DEC AEF ∠=∠, ∴AEF ∆≌DEC∆()ASA ……………………………………(7分)∴CD AF =,又CD AB =,∴AF AB =…………………………………………………(9分)22.(本小题9分)(1)200;条形统计图如下:…………………………………………………………………………………………………(6分)第2次结 果第1次2 (第21题图)EF DABC没有经常偶尔几乎不25 50 75 人数(人)(2)1250200505000=⨯(人)∴估计约有1250名学生经常参加家务劳动.…………………………………………………………………………………………………(9分)23.(本小题9分)解:(1) ()4,3C ,…………………………………(1分) 作图如下:………………………………………………………(7分)(每个图形位置及标注字母正确可得3分,共6分)(2)ABC ∆与222C B A ∆关于点O 成中心对称. ………(9分)24.(本小题9分)(1)由图象可知:父子俩从出发到相遇时花费了15分,设小明步行的速度为x 米/分,则小明父亲骑车的速度为x 3米/分,依题意得:()3600315=+x x ,解得:60=x ………………………………………………………………(3分) ∴两人相遇处离学校的距离为9001560=⨯(米)∴点B 的坐标为()90015,………………………………………………………………………(4分) 设直线AB 的解析式为:b kt S +=()0≠k ∵直线AB 经过点()3600,0A 、()90015,B∴⎩⎨⎧=+=90015,3600b k b ,解得:⎩⎨⎧=-=3600,180b k∴直线AB 的解析式为:3600180+-=t S …………………………………………………(6分)(2)解一:小明取道具后,赶往学校的时间为:5360900=⨯(分)∴小明取道具共花费的时间为:20515=+(分)………………………………………(8分)∵2520<∴小明能在毕业晚会开始前到达学校. …………………………………………………(9分) 解二:在3600180+-=t S 中,令0=S ,即03600180=+-t ,解得:20=t ,即小明的父亲从出发到学校花费的时间为20分, ……………………………………(8分)(第23题图)B 2C 2A 2B 1C 1A 1OBACxy∵2520<∴小明能在毕业晚会开始前到达学校. …………………………………………………(9分) 25.(本小题13分)解:(1)把点()0,0O 代入()442+-=x a y ,得:()44002+-=a ,解得:41-=a .………………………………………………………………………………(3分)(2)若OP ON ⊥,则︒=∠90NOP ,显然点P 在第四象限,如图1所示, ∴︒=∠+∠90AON POB ,作y NA ⊥轴于点A ,y PB ⊥轴于点B ∴︒=∠=∠90PBO NAO ∴︒=∠+∠90POB OPB 又︒=∠+∠90AON POB , ∴AON OPB ∠=∠ ∴ANO ∆∽BOP ∆. ∴OABP ANOB =……………………………………………………………(6分)由(1)得:41-=a ,∴抛物线的解析式是()44412+-=x y ,即x xy 2412+-=.∵点P 是抛物线上的点,∴设点⎪⎭⎫ ⎝⎛+-0200241,x x x P 则直线OP 的解析式为:x x x x x x y ⎪⎭⎫ ⎝⎛+-=+-=24124100020.∴()8,40+-x M , ……………………………………………………………………(7分) (若由ODM ∆∽PBO ∆,也可得80-=x DM ,∴()8,40+-x M 同样可得分) 由()44412+-=x y 可得顶点()4,4Q ,又点M 、N 关于顶点Q 对称∴()0,4x N∴4==OD AN ,020241x x OB -=,0x BP =,0x OA =由OABP ANOB =,得00204241x x x x =-,即0168020=--x x ,解得:2440±=x ,又40>x∴2440+=xxy B ANM QOPD(图1)∴点()4,244-+P故当点P 在对称轴l 右侧的抛物线上运动时,存在点P 的坐标()4,244-+,使得OP ON ⊥.……………………………………………………………(10分)②作l PH ⊥于点H , 如图2, 由点⎪⎭⎫ ⎝⎛+-0200241,x x x P 、()0,4x N ,可得:40-=x PH , 020020041241x x x x x NH -=⎪⎭⎫ ⎝⎛+--=,在PHN Rt ∆中,02004414tan x x x x NHPH PNH =--==∠,……………………………………(11分)在ODN Rt ∆中, 04tan x DNOD OND ==∠, ………………………………………………(12分)∴OND PNH ∠=∠tan tan∴OND PNH ∠=∠,即直线l 平分ONP ∠, ∴OPN ∆的内心必在对称轴l 上.…………………………………………………………………………………………………(13分)26.(本小题13分)解:(1)()a a E -1,,()b b F ,1-………………………………………………………………(4分) (2)∵x PM ⊥轴,y PN ⊥轴, ∴四边形NOMP 是矩形, ∴︒=∠90P ,∴EF 是⊙Q 的直径.(不妨设经过E 、P 、F 三点的圆为⊙Q ) ∴︒=∠90FTE∴OE FT ⊥,又OE 经过半径FT 的外端T ,∴OE 是⊙F 的切线…………………………………………………………………………(7分) (3)①由直线1+-=x y 可求得:()1,0B ,()0,1A ,即ABO ∆是等腰直角三角形.如图所示,由(1)得:()a a E -1,,()b b F ,1-, 则()11-+=--=-=b a b a FN PN PF , ()11-+=--=-=b a a b EM PM PE ,xyT EF A B N M OP (图2)xyHN MQ DOP l在PEF Rt ∆中,由勾股定理得: ()()()121122-+=-++-+=b a b a b a EF 同理可得:()1221222+-=-+=a a a a OE ,()a a a BE 21122=--+=,∴12222+-=a a OE ,()a ab a a b a BE EF 2222122-+=⋅-+=⋅∵()b a P ,在反比例函数图象上 ∴ab 21=,即12=ab∴()a a a b a BE EF 2122122-+=⋅-+=⋅∴2OE BE EF =⋅,即OEBE EFOE =又BEO OEF ∠=∠∴OEF ∆∽BEO ∆.∴︒=∠=∠45ABO EOF ………………………………(11分)EOF ∠的度数是︒45②EOF ∠的度数是︒135………………………………………………………………………………………………(13分)四、附加题(共10分)1.(5分)15 ………………………………………………………………………………(5分)2.(5分)3±…………………………………………………………………………………(5分)。
2013年晋江市初中学业升学考试
数 学 试 题
(试卷满分:150分;考试时间:120分钟)
一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,
请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1. 2013-绝对值是( ).
A. 2013 B . 2013- C. 20131 D. 2013
1- 2. 如图1,已知直线b a //,直线c 与a 、b 分别交点于A 、B ,
︒=∠501,则=∠2( ).
A .︒40 B.︒50 C.︒100 D.︒130
3. 计算:2
3
2x x ⋅等于( ).
A. 2 B. 5
x C. 5
2x D. 6
2x
4. 已知关于x 的方程052=--a x 的解是2-=x ,则a 的值为( ). A.1 ﻩB .1- C .9 D .9- 5. 若反比例函数x
y 2
=
的图象上有两点),2(11y P 和),3(22y P ,那么( ). A .021<<y y B.021>>y y C. 012<<y y D. 012>>y y 6. 如图2,是由一个长方体和一个圆锥体组成的立体图形,其正视图是( ).
7. 如图3,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,
CF BE =,连接CE 、DF .将BCE ∆绕着正方形的中心O 按逆时针方向旋转到CDF ∆的位置,则旋转角是( ). A .︒45 ﻩB .︒60 C.︒90 D .︒120
二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8. 化简:=--)2( . 9. 分解因式:=-2
4a .
正面
(图2)
A. B. C D.
B
E F
C
A
D
(图3)
O
c
2 1 a b
(图1)
A B
10. 从2013年起,泉州市财政每年将安排50000000元用于建设“美丽乡村”. 将数据5
0000000用科学记数法表示为 . 11. 计算:
=-+-x
x x 222 .
12. 不等式组的解集是 .
13. 某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:
80,92,125,60,97.则这5名同学成绩的中位数是 分. 14.正六边形的每个内角的度数为 .
15. 如图4,在ABC ∆中,AC AB =,ABC ∆的外角︒=∠130DAC ,则=∠B °. 16. 若5=+b a ,6=ab ,则=-b a .
17. 如图5,在ABC Rt ∆中,︒=∠90C ,︒=∠30A ,34=AB .若动点D 在线段AC
上(不与点A 、C 重合),过点D 作AC DE ⊥交AB 边于点E . (1)当点D 运动到线段AC 中点时,=DE ; (2)点A 关于点D 的对称点为点F ,以FC 为半径作⊙C ,
当=DE 时,⊙C 与直线AB 相切.
三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:822)3(3902⨯+---+⨯-π.
19.(9分)先化简,再求值:)5()3(2
--+x x x ,其中2
1-=x .
20.(9分)如图6,BD 是菱形ABCD 的对角线,点E 、F 分别在边CD 、DA 上,且
AF CE =.求证:BF BE =.
A
B
D (图4)
C
B
C
D
E
F
(图5)
A
A
B
C
D F
E (图6)。