Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis
- 格式:pdf
- 大小:548.51 KB
- 文档页数:4
微图案BiFeO3薄膜的光刻自组装制备与表征王艳;谈国强;苗鸿雁【摘要】利用光刻自组装技术在玻璃基板上成功制备出图案化的BiFeO3薄膜.AFM和接触角测试表明,紫外光照射引起十八烷基三氯硅烷(OTS)单层膜改性,形成憎水的自组装单分子(SAM)区域和亲水的硅烷醇区域;XRD和XPS结果显示,OTS单层膜和紫外照射处理的玻璃基板表面诱导吸附的薄膜为纯相六方扭曲钙钛矿结构的BiFeO3薄膜:SEM和EDS表明,SAM区域沉积的BiFeO3薄膜不连续,在超声波震荡下容易脱落,而硅烷醇区域沉积的BiFeO3薄膜致密均一,与基底结合牢固,边缘轮廓清晰.【期刊名称】《无机材料学报》【年(卷),期】2010(025)011【总页数】5页(P1228-1232)【关键词】光刻白组装技术;BiFeO3薄膜;微图案【作者】王艳;谈国强;苗鸿雁【作者单位】陕西科技大学,教育部轻化工助剂化学与技术重点实验室,西安,710021;陕西科技大学,教育部轻化工助剂化学与技术重点实验室,西安,710021;陕西科技大学,教育部轻化工助剂化学与技术重点实验室,西安,710021【正文语种】中文【中图分类】O614;TB43Bismuth ferrite (BiFeO3, BFO) is a rhombohedrally distorted perovskite. BiFeO3 is one of such few materials that belongs to the multiferroic material due to coexistence of ferroelectricity (TC,bulk=830℃) and antiferromagnetism (TN,bulk=370℃). The combination of ferromagnetism and ferroelectricity could employ the material in many potential applications, including information storage, the emerging field of spinotronics, sensors and so on[1-4].Microfabrication and microelectronics are important to much of modern science and technology, which supports information technology and permeates society by the integration of microelectronic and optoelectronic functionalities within a very small area. Therefore, micropatterning techniques are essential. Now various novel nanolithographies such as solf lithography, dip-pen nanolithography[5-7], e-beam nanolithography and nanosphere lithography[8-12] have been used for the preparation of ordered nano-structure thin films. In contrast to the technology world, organisms develop abundant micro-patterned inorganic materials by a biomineralization process, which are usually under the assistance of a macromolecule template[13]. This macromolecule controls the nucleation, structure, morphology, crystal orientation and spatial confinement of the inorganic phase. The understanding of biomineralization is important for the design, control, and optimization of materials synthesis at both the molecular and the macroscopic levels[14]. In this article, BiFeO3 patterns were synthesized on glass substrates by employing a photolithography-self-assembly technique.1 Experimental1.1 MaterialsThe starting materials were Bi(NO3)3·5H2O (Paini Chemical Reagent Factory, analytical grade), Fe(NO3)3·9H2O (Tianjin Zhiyuan Chemical Reagent Co, Ltd., analytical grade), glacial acetic acid (Xi'an Sanpu Fine Chemical Plant, analytical grade), ethanol absolute (Xi'an Sanpu Fine Chemical Plant, ≥99.7%), citric acid (Xi'an Chemical Reagent Factory, analytical grade), octadecyl trichlorosilane (Tianjin Xiangyu Technology Trading Company, 98%), acetone (Shanghai Chemical Reagent Factory,≥99.5%), and toluene (Shanghai Chemical Reagent Factory, 99.9%). All chemicals were used without further purification.1.2 CharacterizationThe crystalline phase and orientation of the annealed films were characterized by X-ray diffraction (XRD, D/Max2550VB+/PC, Japan ). X-ray diffraction data were collected with Cu Kα radiation at a step of 0.02°/min in the range of 2θ=15-70°. The surface microstructure and morphology of patterned BiFeO3 thin films were observed by scanning electron microscope (SEM, JSM6700F, JEOL, Japan) and atomic force microscope (AFM, SPA400-SPI3800N, Japan). Energy dispersive spectroscope(EDS) was utilized for element analysis of the thin films. X-ray photoelectron spectroscope (XPS) was used to identify the oxidation state of Fe. Surface wettability of the pre-treatment substrates was measured by Contact Angle Meter (SL200B, Solon Tech. (Shanghai) Inc, Ltd. Shanghai) with 1μLwater drop added each time.1.3 SAM Surface FunctionalizationClean glass substrates were sonicated in water, acetone and ethanol for 10min respectively. The wafers dried under an N2 atmosphere were exposed to UV light(PL16-110 Sen lights corporation) for 15min so that organics of the surface were cleaned up and the substrate surface achieved“atomic cleanliness”. The OTS-SAM was prepared by immersing the cleaned and dried glass substrates in an anhydrous toluene solution containing 1 vol % OTS for 30min. The substrates with the SAM were baked at 120℃for 5 min to remove residual solvent and promote chemisorptions of the SAM. The SAM on the glass substrates was exposed to UV light(λ=184nm)for 30min through a photomask. Selective photocleavage can decompose the exposed areas, creating new functional terminal difference from the original ones. UV-irradiation caused the hydroxylation of the head silane-based functional group. Thus UV-irradiated parts became hydrophilic because of silanol group formation, while the non-irradiated regions remained unchanged. Formation of the SAM and the modification to silanol groups by UV irradiation were verified using the static water drop contact angle.1.4 Patterned BiFeO3 Films PreparationPatterned BiFeO3 thin films were grown on glass substrates by liquid phase deposition technology. App ropriate portions of Fe(NO3)3·9H2O and Bi(NO3)3·5H2O were used as raw materials and dissolved in glacial acetic acid and distilled water. Citric acid was added to the solution as acomplexing agent. Patterned OTS-SAMs were immersed vertically into the BiFe O3 precursor solution at 70℃ for 8h. After immersed in the solution, the samples were rinsed with distilled water and air-dried at room temperature and then annealed in air.1.5 PhotolithographyFigure 1 describes the photolithography scheme employed to fabricate the micro-patterns of BiFeO3[14]. Octadecyltrichlorosilane hydrolyzed to form silanol groups by the liberation of HCl (Fig. 1(a)). The hydrolyzed organosilane was bonded to the glass substrate surface creating a SAM with a terminal CH3 functional group (Fig. 1(b)). Selective modification of SAM was carried out by exposing the sample to UV light through a photomask. UV-irradiation caused the hydroxylation of the head silane-based functional group. UV-irradiated parts became hydrophilic because of silanol group formation, while the nonirradiated regions remained unchanged (Fig. 1(c), (d)). OTS-SAM was soaked into the BiFeO3 precursor solution at a certain temperature for a period of time. BiFeO3 was site-selectively deposited on hydrophilic regions, while for the hydrophobic regions, BiFeO3 failed to deposit (Fig. 1(e)). A uniform, dense and crack-free film was selectively formed in the hydrophilic silanol regions (Fig. 1(f)). Fig. 1 Schematic description of photolithography2 Results and discussion2.1 OTS-SAMFigure 2 shows AFM images of OTS monomolecular layer exposed to UV light for 30min through a photomask with scanning range of500nm×500nm. Non-irradiated and irradiated regions display different morphologies. A smooth surface is obtained on the non-irradiated regions compared to the irradiated areas, indicating that UV irradiation has an obvious effect on the modification of OTS monomolecular layer. This result is confirmed by the water contact angle, changing from 115° to 5°[15]. As seen, UV-irradiated parts become hydrophilic, while the non-irradiated regions remaine original hydrophobic.2.2 StructureFigure 3 is the X-ray diffraction spectra of BiFeO3 films deposited on glass substrates at 70℃ for 8h and annealed at 600℃ for 2h in air. From this, it is concluded that all BiFeO3 diffraction peaks are in good agreement with the JCPDS card for a rhombohedrally distorted structure BiFeO3 crystal. No other peaks are observed in this XRD pattern, indicating that these films are single phases. The signifcantly higher intensity of (101), (012) and (110) diffraction peaks illustrate that the BiFeO3 films have a high crystallinity. Fig. 2 AFM images of OTS-SAMFig. 3 XRD pattern of BiFeO3 filmFig. 4 X-ray photoelectron spectrum of the Fe2p line of BiFeO3 filmXPS spectrum of the Fe2p peaks in the BiFeO3 films deposited on glass substrates is shown in Fig. 4. Due to the spin-obit coupling, the Fe2p core level is split into the 2p1/2 and 2p3/2 components. The 3/2 and 1/2 spin-obit doublet components are positioned at 710.9 eV and 724.4 eV respectively. For Fe3+, the value of Fe2p3/2 peak appeares between 710.6 and 711.2 eV, while for Fe2+ ion it appeares at 709.4 eV[16-17]. The XPSresults indicate that the BiFeO3 films are single phases and the oxidation state of Fe ion should be Fe3+ without detectable Fe2+, consistent with the XRD results.2.3 MorphologyThe surface microstructure and morphology of BiFeO3 patterns deposited on glass substrates at 70℃ for 8h and annealed at 600℃ for 2h in air were observed by SEM. Figure 5((a), (b) and (c)) are the SEM photographs of as-deposited BiFeO3 patterns without sonicated in water. BiFeO3 crystals are nucleated and grown on both hydrophobic SAM regions and hydrophilic silanol regions under the present conditions, but no continuous film is formed on hydrophobic regions. The signifcantly higher density and thickness of the deposited BiFeO3 crystals on silanol regions suggest that films on these surfaces has good uniformity and adherence.The clear BiFeO3 micro-patterns were obtained after light sonication cleaning of the as-deposited BiFeO3 patterns in deionized water (Fig. 5(d), (e) and (f)). BiFeO3 crystals deposited on SAM areas can be easily peeled off by ultrasonication, giving patterns with a relatively thick BiFeO3 films in the hydrophilic areas. The boundaries between SAM and silanol regions can be observed clearly. In the deposition process, BiFeO3 crystals show different adhesions to the glass substrates due to different interface interactions. The surface functional groups impact some influence on the deposition behavior. Moreover, the nucleation energy in the hydrophilic silanol regions seems to be lower than that in the hydrophobic SAM regions because the induction period for nucleation in hydrophilic regionsis much shorter than that in hydrophobic regions[18]. The BiFeO3 patterns are therefore formed by preferable deposition in the UV-irradiated areas. The Fig. 5(f) is an enlarged image of BiFeO3 film in silanol regions. Thefilms are dense, uniform and smooth.Fig. 5 SEM images of BiFeO3 patterns: ( a, b, c) non-sonicated in water; (d, e, f) sonicated in waterTable 1 reveals the elemental contents of site-selective deposited regions corresponding to Fig. 6(a). It can be seen that the contents of Bi and Fe are 2.83at% and 2.61at% respectively, closing to the ideal Bi/Fe atomic percent ratio 1:1. Table 2 exhibites the elemental contents of non-irradiated regions corresponding to Fig. 6(b). Thus little Bi and no Fe could be observed. Based on the results described above, it is confirmed thatBiFeO3 precursorparticles are absorbed more readily and strongly to hydrophilic silanol areas rather than hydrophobic SAM regions. These results are in good agreement with SEM.Table 1 Elemental contents of EDS in the area of the BiFeO3 patternsElements wt% at% O K 67.26 94.57 Fe K 6.47 2.61 Bi M 26.27 2.83 Totals 100.00 -Table 2 Elemental contents of EDS in the area of the SAMElements wt% at% O K 64.46 77.82 Na K 10.53 8.84 Mg K 1.83 1.45 Si K 15.80 10.87 Ca K 0.86 0.42 Bi M 6.52 0.60 Totals 100.00 -Fig. 6 EDS patterns of BiFeO3 thin film patterns3 ConclusionIn conclusion, micro-patterned BiFeO3 thin films on glass wafers wereprepared successfully by photolithography-self-assembly method. The modification of OTS monomolecular layer was achieved by UV-irradiation through a photomask, generating hydrophilic silanol areas and hydrophobic SAM regions. No continuous BiFeO3 particles deposited on SAM regions could be easily peeled off by ultrasonication, while a uniform and dense film was site-selectively formed in the hydrophilic silanol regions. Due to the excellent performance of the BiFeO3 thin films, the BiFeO3 patterns have the wide application prospect in the ferroelectric field. Moreover, this novel technique features simplicity, reproducibility, nonhazardousness, cost effectiveness and suitability for producing large area patterns.References:【相关文献】[1] Hill N A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B, 2000, 104(29): 6694-6709.[2] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film feterostructures. Science, 2003, 299(5613): 1719-1722.[3] Yang S Y, Zavaliche F, Mohaddes-Ardabili L. Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl. Phys. Lett., 2005, 87(10): 2903-2905.[4] Yun K Y, Noda M, Okuyama M. Structural and multiferroic properties of BiFeO3 thin films at room temperature. J. Appl. Phys., 2004, 96(6): 3399-3403.[5] Liu G Y, Xu S, Qian Y L. Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc. Chem. Res., 2000, 33(7): 457-466.[6] Xu S, Liu G Y. Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly. Langmuir, 1997, 13(2): 127-129.[7] Kramer S, Fuierer R R, Gorman C B. Scanning probe lithography using self-assembled monolayers. Chem. Rev., 2003, 103(11): 4367-4418.[8] Hulteen J C, Van Duyne R P. Nanosphere lithogaphy: a materials general fabrication process for peri odic particle array surfaces. J. Vac. Sci. Technol. A, 1995, 13(3): 1553-1558.[9] Hulteen J C, Treichel D A, Smith M T, et al. Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J. Phys. Chem. B, 1999, 103(19): 3854-3863. [10] Kuo C W, Shiu J Y, Chen P. Size and shape-controlled fabrication of large-area periodic nanopillar arrays. Chem. Mater., 2003, 15(15): 2917-2920.[11] Bullen H A, Garrett S J. TiO2 nanoparticle arrays prepared using a nanosphere lithography technique. Nano Letters, 2002, 2(7): 739-745.[12] Frey W, Woods C K, Chilkoti A. Ultraflat nanosphere lithography: a new method to fabricate flat nanostructures. Adv. Mater., 2000, 12(20): 1515-1519.[13] Aizenberg J, Muller D A, Grazul J L. Direct fabrication of large micropatterned single crystals. Science, 2003, 299(5610): 1205-1208.[14] Gao Y F, Koumoto K. Bioinspired ceramic thin film processing: present status and future perspectives. Crys. Growth Des., 2005, 5(5): 1983-2017.[15] Tan G Q, Song Y Y, Miao H Y, et al. Micropatterning BiFeO3 thin film on self-assembled monolayers. Chinese J. Inorg. Chem., 2009, 25(11): 1-5 (in Chinese).[16] Zhang Y, Pang L H, Lu M H, et al. Microstructures and multiferroic properties of textured Bi0.8La0.2FeO3 thin films. App. Sur. Sci., 2008, 254(21): 6762-6765.[17] Xu J M, Wang G M, Wang H X, et al. Synthesis and weak ferromagnetism of Dy-doped BiFeO3 powdes. Mater. Lett., 2009, 63(11): 855-857.[18] Masuda Y, Gao Y F, Zhu P X, et al. Site-selective deposition of ceramic thin film using self-assembled monolayers. J. Ceram. Soc. Jpn., 2004, 112(5): 1495-1505.。
BiFeO3粉体的水热法制备与表征BiFeO3是一种重要的多铁材料,具有较高的铁电和铁磁性能,广泛应用于大规模电子设备和存储器件中。
现在水热法被广泛应用于制备BiFeO3粉体,因为它具有简单、快速、低成本的优势。
本文将介绍BiFeO3粉体的水热法制备过程,并对制备得到的BiFeO3粉体进行形貌和物理性质的表征。
Bi(NO3)3•5H2O和Fe(NO3)3•9H2O是BiFeO3的制备所需的原始材料。
将它们溶解在去离子水中,并通过搅拌促使其充分混合。
然后,将该溶液转移到一个高温高压的反应容器中,并置于恒温恒压的水热条件下进行反应。
选择适当的温度和时间可使溶液中的Bi3+和Fe3+离子与水热条件下形成BiFeO3晶核,随后晶核逐渐生长。
产物经过水热法制备后,需要对其形貌进行观察和表征。
最常用的表征手段是扫描电子显微镜(SEM)和透射电子显微镜(TEM)。
通过这些仪器可以观察到BiFeO3粉体的形貌和尺寸分布。
X射线衍射(XRD)技术还可以用来分析产物的晶体结构。
由于BiFeO3是具有特定晶体结构的材料,通过与标准库进行比对,可以确认制备的产物是否为BiFeO3。
XRD还可以提供BiFeO3晶体的晶胞参数和晶体品质。
除了形貌和晶体结构,BiFeO3粉体的物理性质也需要进行表征。
BiFeO3的铁电性质可以通过极化-电压曲线和介电性能测试进行表征。
极化-电压曲线可以确定BiFeO3样品的饱和极化和剩余极化,分析其铁电性能。
而介电性能测试可以提供BiFeO3样品在不同频率下的介电常数和损耗因子,用于评估其电介质性能。
BiFeO3的磁性性质也对其进行了研究。
可通过磁性测量系统(VSM)测量BiFeO3的磁滞回线和磁化曲线,分析其铁磁性能。
改进水热法制备BiFeO_3粉体及其磁性研究孙玉霞;夏钊;刘红日;熊襄玉;周勇;余画【期刊名称】《人工晶体学报》【年(卷),期】2012(41)2【摘要】以Bi(NO3)3.5H2O和Fe(NO3)3.9H2O为原料,采用改进的水热法制备了BiFeO3微晶。
采用浓度为0.1mol/L的前驱物沉淀制备得到非常均匀的尺度为10μm的微球,经超声分散可以得到100 nm的均匀颗粒。
XRD研究表明BiFeO3纳米颗粒具有斜方的钙钛矿结构。
扫描电镜结果表明BiFeO3纳米粒子具有立方形貌。
而TEM结构分析表明BiFeO3纳米颗粒具有完整的单畴结构;磁性分析表明纳米的BiFeO3颗粒具有弱的铁磁有序。
制备的BiFeO3具有Fe-O键的伸缩振动和弯曲振动,证实了Fe-O八面体的存在以及BiFeO3具有钙钛矿结构。
【总页数】5页(P535-538)【关键词】BiFeO3粉体;水热合成;铁磁性;多铁【作者】孙玉霞;夏钊;刘红日;熊襄玉;周勇;余画【作者单位】湖北师范学院计算机科学与技术学院;湖北师范学院物理与电子科学学院;污染物分析与资源化技术湖北省重点实验室【正文语种】中文【中图分类】O469【相关文献】1.Ni-Zn铁氧体粉体的水热法制备与磁性研究 [J], 阳征会;龚竹青;李宏煦;马玉天;陈文汨2.Pr掺杂BiFeO_3粉体的水热制备方法研究 [J], 刘红日;余画;孙玉霞;熊襄玉;赵清峰;黄玲玲3.水热法制备BiFeO_3粉体的工艺研究 [J], 陈险峙;周剑平4.水热法制备BiFeO_3粉体 [J], 苗鸿雁;张琼;谈国强5.水热法制备BiFeO_3粉体的相变研究 [J], 李波;孙华君;陈文;张成勇;沈杰;周静因版权原因,仅展示原文概要,查看原文内容请购买。
BiFeO3及其掺杂体系的纳米粒子和薄膜的制备与性
质研究的开题报告
一、选题背景
铁酸钡钛石(BFO,BiFeO3)是一种多铁性材料,具有磁性和铁电
性质,因此被广泛应用于磁存储、铁电存储、传感器等领域。
然而,它
的应用受到晶体结构、缺陷、掺杂等因素的影响,因此需要对其纳米粒
子和薄膜的制备与性质研究进行探究。
二、研究目的
本研究旨在制备BFO及其掺杂体系的纳米粒子和薄膜,并分析其结构、形貌、物理性质等,研究其对多铁性性质的影响,进一步探究其应
用于磁存储、铁电存储、传感器等领域的可能性。
三、研究内容及方法
1.合成BFO及其掺杂体系的纳米粒子和薄膜;
2.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)等技术对其结构、形貌进行表征;
3.使用磁学和电学测试系统,对BFO及其掺杂体系的磁性和铁电性
能进行测试;
4.利用光学测试系统,对其光学性能进行测试;
5.分析实验结果,探究对多铁性性质的影响。
四、预期研究结果
1.成功制备BFO及其掺杂体系的纳米粒子和薄膜;
2.分析其结构、形貌和物理性质等;
3.探究BFO及其掺杂体系对多铁性性质的影响;
4.为BFO及其掺杂体系的应用提供理论依据。
五、研究意义
BFO及其掺杂体系的研究对于制备高性能的多功能材料、发展铁电存储和磁存储技术起到重要作用。
本研究有助于深入了解BFO及其掺杂体系的物理性质,为其应用于磁存储、铁电存储、传感器等领域的开发提供了重要理论基础。
电纺丝制备磁性单晶BiFeO3纳米纤维并用于Cr(VI)的可见
光催化还原
张立;周晓玲;涂新满
【期刊名称】《南昌航空大学学报(自然科学版)》
【年(卷),期】2024(38)1
【摘要】本工作提出一种将溶胶凝胶与静电纺丝结合的分步快速烧结技术,成功制备了单晶BiFeO3纳米纤维。
通过热重差热分析(TG-DTG)、XRD、SEM、TEM、EDS、紫外可见漫反射光谱和氮气吸附脱附曲线等测试对所制备材料的结构和形貌进行表征。
同时,考察了BiFeO3纳米纤维在可见光下对水中Cr(VI)的光催化还原性能。
结果显示,相比于传统方式制备的纳米颗粒,该材料因更大的比表面积而具有更高的光催化活性。
空穴消耗剂酒石酸的加入能够促进该材料对Cr(VI)的光催化还原反应,使还原效率提高87%。
总之,本文制备的BiFeO3材料能在可见光下响应,并在常温下具有弱磁性,能通过磁场力回收,在环境净化领域具有广阔的应用前景。
【总页数】9页(P23-31)
【作者】张立;周晓玲;涂新满
【作者单位】南昌航空大学环境与化学工程学院
【正文语种】中文
【中图分类】X703
【相关文献】
1.电纺丝制备单晶BiFeO3纳米纤维及用于可见光光催化还原六价铬的研究
2.电纺丝法制备CoNd0.05Fe1.95O4铁氧体纳米纤维及其磁性能
3.CuS纳米片修饰
Bi5O7I复合材料用于光催化还原Cr(VI)水溶液4.静电纺丝制备BiFeO_3/TiO_2磁性纳米纤维及其光催化性能研究5.电纺BiOCl@UiO-66-NH_(2)@TSPAN纳米纤维可见光催化还原Cr(Ⅵ)
因版权原因,仅展示原文概要,查看原文内容请购买。
BiFeO3纳米粉体的制备及其紫外光催化性能刘晓林;解焕英;陈建峰【期刊名称】《北京化工大学学报(自然科学版)》【年(卷),期】2011(038)004【摘要】采用共沉淀法制备了斜菱方钙钛矿结构的BiFeO3纳米粉体,通过X射线衍射、透射电镜和紫外-可见光谱仪等测试手段表征了粉体的物相、形貌及其特征吸收光谱,同时考察了升温速率和煅烧温度对BiFeO3物相的影响.结果表明:当煅烧温度为500℃,升温速率为10~15℃/min时可形成粒径为30~90nm的球形BiFeO3纳米粉体;该粉体的吸收截止波长为600nm,对应的禁带宽度为2.05eV,具有较宽的光波长响应范围.光催化实验表明在紫外光照射下,加入0.3g的BiFeO3纳米粉体后,只需3h即可使100mL质量浓度为4.8mg,/L的罗丹明溶液的脱色率达到9%,证实其对紫外光具有良好的响应,可用于光催化降解有机污染物.【总页数】4页(P22-25)【作者】刘晓林;解焕英;陈建峰【作者单位】北京化工大学机无机复合材料国家重点实验室,北京100029;北京化工大学机无机复合材料国家重点实验室,北京100029;北京化工大学机无机复合材料国家重点实验室,北京100029【正文语种】中文【中图分类】TQ174【相关文献】1.Zn2+掺杂BiFeO3粉体的制备及其可见光光催化性能研究 [J], 钟起权;黄妙良;王金颖;魏月琳;林建明;吴季怀2.非晶态配合物法制备钙钛矿型纳米粉体催化剂及其CO催化氧化性能 [J], 王海;朱永法;谭瑞琴;曹立礼3.溶胶-凝胶法制备BiFeO3:Y3+纳米粉末及其光催化性能研究 [J], 王家玺; 罗莉; 贠蕊; 李小芬; 王银海; 张伟4.炭吸附共沉淀钒酸铋纳米粉体的制备及其光催化性能研究 [J], 牛宇彤;郭贵宝5.溶胶-凝胶法制备S掺杂TiO2纳米粉体的光催化性能 [J], 王竹梅;张天峰;李月明;沈宗洋;左建林因版权原因,仅展示原文概要,查看原文内容请购买。
胰岛素固体脂质纳米粒粉雾剂的制备毕茹【摘要】目的制备胰岛素固体脂质纳米粒肺吸入粉雾剂.方法复乳法可提高水溶性大分子药物胰岛素的包封率,再用喷雾冷冻干燥技术将混悬液微粉化,考察各因素对粉体性质的影响.结果所得粉末疏松多孔、密度小,具有良好的雾化性能;复溶后仍可得形态圆整的纳米粒,理化性质略有改变.结论通过摸索处方及工艺,制得的粉雾剂既可满足在肺泡上皮区域沉积的要求,又可使纳米粒维持一定的包封率,以达到肺内缓慢释药的目的.【期刊名称】《西北药学杂志》【年(卷),期】2011(026)003【总页数】3页(P204-206)【关键词】胰岛素;固体脂质纳米粒;粉雾剂【作者】毕茹【作者单位】天津国际SOS紧急救援诊所药剂科,天津,300074【正文语种】中文【中图分类】R944近年来蛋白质多肽类大分子药物肺部给药得到广泛研究乃至商品化[1],肺吸入胰岛素粉雾剂ExuberaTM的上市更成为糖尿病治疗史上的重大突破,但该药只起到速效作用。
笔者对胰岛素肺部给药的长效制剂进行了初步研究。
固体脂质纳米粒(SLN)作为新型的亚微粒给药系统,可延长药物在局部的滞留时间、控制药物的释放、提高生物利用度,具有耐受性好、安全性高等特点[2],因此特别适用于肺内控释给药。
笔者将胰岛素(INS)包裹于固体脂质纳米粒(INS-SLN)中,再将其通过一定的微粉化方法制备成吸入粉雾剂(INS-SLN-DPI),以达到缓释长效及提高制剂稳定性的目的。
1.1 仪器高效液相色谱仪(LC-10ATVP,日本岛津);紫外检测器(SPD-10A VP,日本岛津);高速冷冻离心机(TGL-16G-A,上海安亭科学仪器厂);透射电子显微镜(日本电子公司);粒度分布与电势分析仪(ZETASIZER3000,英国Malvern公司);喷枪(瑞士Buchi公司 B-191喷雾干燥仪);冷冻干燥机(军事医学科学院实验仪器厂);光学显微镜(E200,日本尼康公司);扫描电子显微镜(S-570,日本日立公司);胶囊型粉雾吸入器(上海市天平制药厂);水分测定仪(MB45,美国奥豪斯公司);有效部位沉积量测定装置(自制)。
BiFeO3纳米纤维压电式压力传感器的研究
近年来,随着纳米技术的广泛应用,纳米纤维材料在传感器领域受到了广泛关注。
BiFeO3纳米纤维作为一种多功能材料,具有良好的压电性能,成为了研究的热点之一。
本文将对BiFeO3纳米纤维压电式压力传感器的研究进行介绍。
首先,本研究利用静电纺丝技术制备了BiFeO3纳米纤维。
通过调节静电纺丝参数,成功获得了直径在100纳米左右的BiFeO3纳米纤维。
纳米纤维的制备工艺对于传感器性能至关重要,通过优化实验条件,得到了较为理想的纳米纤维。
接着,研究人员对所制备的BiFeO3纳米纤维进行了表征。
扫描电子显微镜(SEM)观察结果显示,纳米纤维呈现出典型的纤维状结构,并且直径均匀分布。
X射线衍射(XRD)分析结果表明,纳米纤维具有纯相的BiFeO3晶体结构。
此外,通过对纳米纤维的压电性能测试,发现BiFeO3纳米纤维具有良好的压电效应。
最后,将所制备的BiFeO3纳米纤维应用于压力传感器中。
实验结果表明,当外界施加压力时,BiFeO3纳米纤维产生的压电效应能够转化为电信号输出。
通过测量输出电信号的变化,可以准确地反映外界压力的大小。
此外,该传感器具有快速响应、高灵敏度和稳定性的特点。
综上所述,本研究成功制备了BiFeO3纳米纤维,并将其应用于压力传感器中。
实验结果表明,BiFeO3纳米纤维具有良好的压电性能,并且能够实现对外界压力的准确感知。
这为纳米纤维材料在传感器领域的应用提供了新的思路和方法。
未来,进一步的研究可以探索纳米纤维的优化制备方法和传感器性能的提升,以满足更广泛的应用需求。
BiFeO3粉体的制备、表征及掺杂改性的开题报告
一、课题背景与研究意义
BiFeO3是一种具有多种优良性质的多功能材料,具有良好的光电、磁电、铁电等特性,在光学、电子、能源等领域都有广泛应用前景。
BiFeO3粉体的制备、表征及掺杂改性是当前研究的热点之一,对其进行
深入研究有利于优化材料性能,拓展其应用领域。
二、研究内容及方案
(1)BiFeO3粉体的制备
采用化学沉淀法、溶胶-凝胶法等制备BiFeO3粉体,并比较不同制
备方法的优缺点。
(2)BiFeO3粉体的表征
采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显
微镜(TEM)、拉曼光谱等手段对BiFeO3粉体进行表征,分析其晶体结构、形貌、尺寸分布、函数化学官能团等。
(3)掺杂改性研究
采用离子掺杂、表面修饰等方法对BiFeO3粉体进行掺杂改性,探究掺杂元素对BiFeO3电学、磁学、力学等性能的影响,优化其物理性质。
三、研究计划与进度
(1)BiFeO3粉体制备及表征(3个月)
采用化学沉淀法、溶胶-凝胶法制备BiFeO3粉体,通过XRD、SEM、TEM、拉曼光谱等手段对其进行表征。
(2)BiFeO3掺杂改性研究(6个月)
采用离子掺杂、表面修饰等方法对BiFeO3进行掺杂改性,分析不同掺杂元素对其性能的影响。
(3)论文撰写(3个月)
撰写毕业论文,准备答辩。
四、预期研究成果
通过对BiFeO3粉体的制备、表征及掺杂改性研究,得出优化BiFeO3性能的方法及其机制,有望为BiFeO3材料的应用拓展提供参考。
Journal of the European Ceramic Society27(2007)4399–4402Characterization of BiFeO3nanopowder obtainedby mechanochemical synthesisI.Szafraniak a,b,∗,M.Połomska b,B.Hilczer b,A.Pietraszko c,L.K˛e pi´n ski ca Institute of Materials Science and Engineering,Pozna´n University of Technology,M.Skłodowska-Curie Sq.5,60-965Pozna´n,Polandb Institute of Molecular Physics,Polish Academy of Sciences,M.Smoluchowskiego17,60-179Pozna´n,Polandc Institute of Low Temperature and Structure Research,Polish Academy of Sciences,Ok´o lna2,50-422Wrocław,PolandAvailable online30March2007AbstractBismuth ferrite nanopowders have been obtained by mechanochemical synthesis.The materials were characterized by high resolution electron microscopy,X-ray diffraction and NIR Raman scattering.The XRD pattern of the powder consists of reflections,characteristic of BiFeO3perovskite structure,superimposed on broad maxima that can be ascribed to an amorphous/disordered phase.The analysis of the two broad bands at low2θangle yields mean distances of about3and1.8˚A which may be related to Bi O and Fe O bonds,respectively.The powder consists of loosely packed grains with a broad distribution of sizes between a few nm and45nm.The grains of sizes larger than about30nm exhibit well-developed crystalline structure.©2007Elsevier Ltd.All rights reserved.Keywords:BiFeO3;Milling;Electron microscopy;X-ray method1.IntroductionMultiferroic materials are characterized by a coexistence of at least two various kinds of long range ordering:ferroelec-tric(or antiferroelectric),ferromagnetic(or antiferromagnetic), which in addition can be combined with ferroelastic proper-ties.Under an external magneticfield,such materials would switch electric polarization while an external electricfield would change magnetization,depending on the coupling between the various characteristic order parameters.Those materials were proposed by Pierre Curie more than100years ago and attracted a great attention during the1960s and1970s due to the interest in the understanding of some fundamental physics.1,2Recently, multiferroism is the subject of intensive investigation because multiferroic materials potentially offer a whole range of new applications,including the emergingfield of spintronics,new data-storage media,and multiple-state memories.A great atten-tion has attracted bismuth ferrite,which shows ferroelectric and antiferromagnetic properties at room temperature.Its phase transition temperatures are high(T N=370◦C and T C=810◦C),∗Corresponding author.Tel.:+48616653779;fax:+48616653576.E-mail address:izabela.szafraniak@put.poznan.pl(I.Szafraniak).which makes it very attractive from application point of view. Moreover,enhancement of polarization and related properties in heteroepitaxially constrainedfilms of BiFeO3has been reported recently.3Bismuth ferrite has perovskite structure and this group usually is fabricated by convention solid state reaction at high temperatures.Other preparation routes need also high temperature treatment during or after deposition.Recently,sev-eral attempts have been made in order to prepare nanosized BiFeO3.4–6However,it is still a challenge to prepare it at room temperature.This issue is even more important for compounds contenting volatile elements at high temperature like bismuth. Recently,it was demonstrated that simple perovskite compounds (like BaTiO3,(K,Na)NbO3,PbTiO3)can be obtained at room temperature via mechanochemical synthesis.7–10However,no such work has been reported for BiFeO3.Formation of the prod-uct phase in solid state reaction proceeds usually at the interfaces of the reactant and the growth of the product phase requires a dif-fusion of reactant phases atoms through a product barrier layer that prevents further reaction.9High energy milling reduces the particle sizes(increases in the contact area of reactant particles) and the reaction can proceed without the diffusion trough the product layer,i.e.during mechanochemical synthesis the solid state reaction occurs at lower temperatures.0955-2219/$–see front matter©2007Elsevier Ltd.All rights reserved. doi:10.1016/j.jeurceramsoc.2007.02.1634400I.Szafraniak et al./Journal of the European Ceramic Society27(2007)4399–4402This work was focused on preparation of BiFeO3nanopow-der at room temperature.Mechanochemical synthesis was successfully applied for fabrication of perovskite phase with-out any additional thermal treatment.Structural investigations of the nanograins were done by XRD,high resolution electron microscopy,as well as Raman spectroscopy.2.ExperimentalCommercially available oxides(Bi2O3and Fe2O3purchased from Aldrich,99%purity)were used as starting materials. Mechanochemical synthesis was performed under normal atmo-sphere using a SPEX8000Mixer Mill.The starting oxides in stoichiometric ratio were milled for different period between5 and120h.The crystallographic structure of obtained material was proved by X-ray powder diffraction.XRD were performed using an X-ray powder diffractometer with Co K␣radiation. The detailed XRD analysis was done on the diffractogram obtained with a Siemens D-500diffractometer with Cu K␣radi-ation using DHN-PDS-1995program for data reduction.Further investigations were done by high resolution electron microscopy (HREM),and Raman scattering.The structure of the powder was studied by TEM with Philips CM-20TEM working at the accel-erating voltage of200kV.Raman spectra were recorded with Horiba Jobin Yvon spectrometer in backscattering geometry. The samples were excited with632.8nm light from an He–Ne laser.Power of the incident beam was12mW.BiFeO3samples in the form of nanopowder were used in the experiment.All Raman spectra were obtained at room temperature.3.Results and discussionFig.1shows theθ–2θXRD patterns of the starting oxides and mixture after various time of milling.After10h milling,almost all of the XRD peaks of the staring materials have disappeared. After70h of synthesis,several relatively sharp diffraction peaks appear.They correspond to the perovskite structure of BiFeO3. The appearance of these diffraction peaks prove that BiFeO3can be grown at room temperature without any additional crystal-lization step.The direct synthesis of perovskite materials from respective oxides by mechanical milling yields an asymmetric distribution of grain sizes with the mean size being dependent mainly on the milling time.For detailed characterizations,powders obtained after120h of milling have been chosen.Their detailed analysis of XRD(see Fig.2)has shown that the relatively sharp diffrac-tion reflections are superimposed on two broad maxima.All reflections are characteristic of perovskite structure of BiFeO3. The broad bands can be ascribed to an amorphous/disordered phase.The additional scattering appears distinctly in two ranges of the2θangle(about25–35and40–60◦)and the analysis of the two broad bands yield mean distances of about3and 1.8˚A.The spacings may be related to Bi O and Fe O bonds, respectively.11Fig.3presents TEM images of the120h milled sample. The powder forms irregular agglomerates with lateral size of 100–150nm.Detailed analysis made at high resolutionshowed Fig.1.XRD patterns(Co K␣)of starting oxides and BiFeO3nanopowder after different stages of synthesis.that these grains are built as loosely packed structures composed of nanocrystallites.BiFeO3nanograins exhibit core/shell struc-ture.The inner part of the grains has well-developed crystalline structure.For oval grains,it is difficult to specify the direction of the incident electron beam with respect to the basic transla-tion vectors of the lattice.Therefore,we analyzed the spacing of sets of parallel fringes due to the imaging of various crystallo-graphic planes.The calculated spacing corresponds to the(001) crystallographic planes of the perovskite structure(see Fig.3). All crystallites are surrounded by thin layer of1–2nm thickness which does not posses crystallographic order.This structurally disordered(or amorphous)shell with broken bonds and/or dif-ferent electron densities on the ions is apparent as broad bands in the XRD spectrum of the nanopowder(Fig.2).Fig.4has presented a Raman spectrum for nanopowder of BiFeO3obtained after120h synthesis.According to factor group analysis,rhombohedral R3c structure gives13Raman active modes:4A1+9E.12,14Our Raman spectrumcontains Fig.2.XRD patterns BiFeO3nanopowder,after120h of mechanochemical synthesis,obtained with Cu K␣radiation.I.Szafraniak et al./Journal of the European Ceramic Society 27(2007)4399–44024401Fig.3.TEM images of BiFeO 3powder after 120h of mechanochemical syn-thesis.Fig.4.Raman spectrum of BiFeO 3nanopowders after 120h of mechanochem-ical synthesis.much less lines in comparison to spectrum of BiFeO 3single crystal.12Besides,the lines are shifted to lower frequencies and some of them are broadened.There are two reasons which should be taken in account:possible strain existing in nanoparticles and relatively large amount of disordered/amorphous volume.Mechanochemical synthesis introduces usually strain,13which can be also present in BiFeO 3nanopowders.The Raman spec-tra of BiFeO 3nanopowder are more similar to those obtained recently for epitaxial films 14than for single crystals.The thin films are deposited on substrates,and due to lattice and ther-mal mismatch,they are strained.On the other hand,presence of amorphous materials results usually in broadening of line widths or sometimes merging neighbour lines to broad band.4.ConclusionsMechanochemical synthesis is a method in which the solid state reaction proceeds due to high mechanical energy impact.The method has the advantage over the conventional solid state synthesis since it occurs at room temperature and results in a product of particle size in nanometer scale.It was demon-strated that bismuth ferrite nanopowders can be successfully fabricated by this method directly at room temperature.The X-ray diffraction showed the perovskite structure of the powder.It was found that:(1)the powder consists of loosely packed grains with a broad distribution of sizes between a few nm and 45nm,(2)the grains have core/shell structure and (3)grains of sizes larger than about 30nm exhibit well-developed crystalline pared with traditional ceramics and single crystalline BiFeO 3,the core/shell structure of nanopowder has influence on its Raman spectra.AcknowledgementThis work was partially founded by Ministry of Science under projects PBZ-MIN-012/KBN/2004and 11/6.PR UE/2005/7.References1.Smolenskii,G.A.,Bokov,V .A.,Isupov,V .A.,Krainik,N.N.and Nedlin,G.H.,Magnetically ordered ferroelectrics.Helvetica Physica Acta ,1968,41,1187–1198.2.Smolenskii,G.A.and Chupis,I.E.,p.,1982,25,475–493.3.Wang,J.,Neaton,J.B.,Zheng,H.,Nagarajan,V .,Ogale,S.B.,Liu,B.et al.,Epitaxial BiFeO 3multiferroic thin film heterostructures.Science ,2003,299,1719–1722.4.Fruth,V .,Berger,D.,Matei,C.,Ianculescu,A.,Popa,M.,Tenea,E.et al.,Preparation and characterization of BiFeO 3nanopowders.J.Phys.IV ,2005,128,7–11.5.Ghosh,S.,Dasgupta,S.,Sen,A.and Maiti,H.S.,Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route.J.Am.Ceram.Soc.,2005,88,1349–1352.6.Cheng,J.,Chen,C.,Yu,S.,Che,L.and Meng,Z.,Hydrothermal synthesis of perovskite bismuth ferrite crystallites.J.Cryst.Growth ,2006,291,135–139.7.Van Hal,H. A.M.,Groen,W. A.,Maassen,S.and Keur,W. C.,Mechanochemical synthesis of BaTiO 3,Bi 0.5Na 0.5TiO 3and Ba 2NaNb 5O 15dielectric ceramics.J.Eur.Ceram.Soc.,2001,21,1689–1692.8.Rojac,T.,Kosec,M.,Malic,B.and Holc,J.,Mechanochemical synthesis of NaNbO 3,KNbO 3and K 0.5Na 0.5NbO 3.Sci.Sintering ,2005,37,61–67.4402I.Szafraniak et al./Journal of the European Ceramic Society27(2007)4399–44029.Stojanovic,B.D.,Simoes,A.Z.,Paiva-Santos,C.O.,Jovalekic,C.,Mitic,V.V.and Varela,J.A.,Mechanochemical synthesis of barium titanate.J.Eur.Ceram.Soc.,2005,25,1985–1989.10.Szafraniak,I.,Połomska,M.and Hilczer,B.,XRD,TEM and Ramanscattering studies of PbTiO3nanopowders.Cryst.Res.Tech.,2006,41, 576–579.11.Kubel,F.and Schmid,H.,Structure of a ferroelectric and ferroelasticmonodomain crystal of the perovskite BiFeO3.Acta Cryst.,1990,B46, 698–702.12.Haumont,R.,Kreisel,J.,Bouvier,P.and Hippert,F.,Phonon anomalies andferroelectric phase transition in multiferroic BiFeO3.Phys.Rev.,2006,B73, 132101–132111.13.Fecht,H.-J.,Nanostructured materials synthesized by mechanical means.Dekker Encyclopedia of Nanoscience and Nanotechnology.Marcel Dekker, New York,2004,pp.2583–2593.14.Singh,M.K.,Jang,H.M.,Ryu,S.and Jo,M.-H.,Polarized Raman scatteringof multiferroic BiFeO3epitaxialfilms with rhombohedral R3c symmetry.Appl.Phys.Lett.,2006,88,042907.。