发电机励磁系统参数辨识的仿真研究
- 格式:pdf
- 大小:261.25 KB
- 文档页数:4
2023年度电力系统同步发电机励磁系统的建模与仿真随着电力系统的快速发展和电力负荷的不断增加,同步发电机在电力系统中的作用日益重要。
在发电过程中,同步发电机的励磁系统起着至关重要的作用,它不仅决定了发电机的输出功率和电压稳定度,还直接影响到电力系统的稳定性和安全性。
因此,对同步发电机励磁系统进行建模和仿真,分析其特性及优化其性能具有十分重要的实用价值和工程应用前景。
本文将针对电力系统同步发电机励磁系统的建模和仿真,从理论分析、实验研究和实际应用等角度进行探讨,并提出相应的解决方案和建议。
一、同步发电机励磁系统的基本原理同步发电机是电力系统中常用的发电设备之一,其工作原理是通过励磁系统对转子产生恒定电磁势,使得电动机的旋转速度与电网同步。
励磁系统由调节回路和发电机励磁机组成,前者用于调节励磁电流大小,后者用于产生励磁电流。
励磁机由交流电源供电,将电能转换为磁能,形成恒定的磁场,以激励转子产生电势,并与电网同步。
二、同步发电机励磁系统的建模方法同步发电机励磁系统建模方法通常采用开环和闭环两种方法。
开环方法着重考虑发电机励磁机的特性和参数,而忽略负载和电力系统的影响;闭环方法则将发电机励磁系统与负载和电力系统耦合起来,考虑更加全面的影响因素。
基于此,可以利用MATLAB等软件对同步发电机励磁系统建立模型并进行仿真。
三、同步发电机励磁系统的特性分析同步发电机励磁系统特性分析是建模和仿真的重要内容,其目的是分析系统的性能和稳定性。
特性分析主要包括励磁电路特性分析、励磁系统数学模型建立、励磁机暂态过程仿真等方面。
四、同步发电机励磁系统的优化同步发电机励磁系统的优化可以通过改变发电机励磁电路参数、控制环节参数等方式进行。
其中,提高励磁机的内部反馈控制效果,降低负载波动对励磁系统的影响,并采用先进的励磁控制算法等方法,可以显著提升系统的质量和性能。
五、同步发电机励磁系统仿真结果分析通过对同步发电机励磁系统的仿真分析,可以建立电网和发电机系统的各种工况和稳态性能参数,并提出相应的改进措施和建议。
发电机励磁参数辨识研究——PSS低通滤波环节参数辨识摘要:本文首先用最小二乘法对PSS低通滤波环节的数学模型进行了详细推导。
对于推导结果,所得的数学模型是非线性方程,因此采用牛顿法来求解,使用牛顿法时要进行多次迭代,结合这个特点,最终选择使用MATLAB软件来求解方程。
运用MATLAB软件辨识后得到的PSS低通滤波环节参数辨识结果与国家标准相比较,进而验证辨识的实用性和合理性。
关键词:励磁系统,PSS低通滤波环节,参数辨识,最小二乘法Research On Generator excitation parameter identification ——PSS low-pass link parameter identificationXU Tao, MEI Hong, LUO De-gang, CHEN Qi-yang,CHEN ChenAbstract: Firstly, the Least Squares method is deduced in detail on mathematical model of PSS Low Pass Filter. For the results, because of the mathematical model is solving nonlinear equations,. so the Newton method is used. When using Newton iterations, with this feature, choose to use MATLAB software to solve the equation. Identification of the use of MATLAB software lags after the PSS low-pass parameters obtained recognition results compared with national standards, identifying and verifying the practicability.Key words: excitation systems, PSS low-pass link, parameter identification, Least Square method0引言同步发电机尤其是大型同步发电机的励磁控制系统对电力系统的安全稳定运行有重要影响。
发电机励磁系统参数辨识研究为了了解实际中励磁系统元件的参数,可以采集运行的数据及使用参数辨识,把相关参数应用到仿真的研究里具有重大意义。
本文综述了发电机励磁系统参数辨识的方法及相关国内外发展现状。
标签:励磁系统;参数辨识;发电机1 引言准确的励磁系统模型想到了励磁系统的各个部件特征,如自动稳压器(A VR),电力系统稳定器(PSS)及电压/电流转换器等,也应该是能够在它们之间反映线性或非线性相互作用。
制造商提供的参数通常在离线测试的条件下进行测试,并对组件的参数进行测试,然后集成在一起,以获得不反映元件之间相互作用的集成系统模型参数,如果这些参数参数直接用于电力系统的稳定性计算,结果将与实际情况不同。
因此,根据收集的数据识别励磁系统参数是非常重要的任务。
在这方面,近年来,在电机励磁系统参数识别方法和应用方面,国内外电力工人做了大量的探索和实践。
2 发电机系统参数辨识国内外发展现状2.1 人工智能法。
目前用于识别发电机励磁系统参数的人工智能方法是遗传算法(GA)。
GA方法是鲁棒的,对目标函数没有连续和可微的要求,局部最小值因此不会出现,可以用于處理传统搜索措施没法处理的复杂和非线性问题。
基于GA方法的这些特征,GA方法可以应用于非线性系统的参数识别。
下面介绍系统参数识别GA方法:就实际励磁系统而言,GA方法第一筛选对应结构的准确模型,或直接基于实际系统建模,之后随意设置多组模型参数,涵盖非线性链路。
为得到优化参数,基于模型求取多个结构参数,把激励信号x场采样加入各个确认好的模型,能够获得对应的输出ym,ym和实际系统输出yr对比模型误差e,之后接着改进GA方法,最后得到最优参数模型。
2.2 时域辨识法。
时域识别法可依据模型分成2个类别,一个是非参数模型识别法,意思就是第一要对于要对测试的系统识别非参数特征-时域相应(如阶跃响应),而且基于动态特征曲线得到模型参数动态拟合技术。
第二个是参数识别法,意思就是基于积分,滤波及正交变换分析,这样可以直接得到各类系数和状态空间模型的微分方程,包括估计对象的详细参数,基于最小二乘法给予物理意义的参数特点,因此能够更好地去识别运行过程的方法就是参数识别法,也因为电力系统的研发离不开技术人员的分析计算,技术人员也习惯运用有具体物理意义的参数,因此能够最好地去识别运行过程的方法就是此参数识别,被广泛运用于发电机励磁系统参数,时域最小二乘法和状态滤波、矩形脉冲函数法等是识别参数的识别方法,时域最小二乘法的特征在于状态空间模型,适用于多输入多输出(MIMO)系统,可以在线性近似后应用于非线性方程,并可应用于系统的某些状态线性表壳。
发电机励磁系统建模与参数辨识综述摘要:发电机励磁系统对电力系统的电压控制和稳定控制具有重要作用。
随着电力系统的发展,我国电网规模越来越大,电网安全及其稳定运行问题的重要性日益突出,通过电力系统稳定计算以确定系统最优运行工况是提高系统稳定性的一个重要手段,而电力系统安全稳定计算的关键是建立准确的数学模型和采用与实际系统相吻合的模型参数。
因此,结合发电机励磁系统的特点,开展模型参数辨识工作,从而建立起准确的励磁系统数学模型的研究非常必要。
关键词:发电机;励磁系统建模;参数辨识一、励磁系统和发变组概述(一)励磁系统概述在常规化运行环境或者是电力系统出现故障的环境中,都需要配合发电机励磁系统限制器,建构完整的应用模式和控制机制。
一般而言,励磁系统主要指的就是基于电源的整流装置,励磁静止系统完成能源的供给。
一方面,励磁系统能对发电机出口电压参数和无功功率参数予以控制,维持其稳定性和运行的合理性,并配合发电机并列运行处理机制,打造良好的应用环境。
另一方面,励磁系统凭借其较快的响应速度和可靠的运行维护模式,能更好地满足静态应用效果,提高电力系统运行的稳定性,最大程度上打造良好的运行载体。
自并励励磁系统无论是暂态稳定性还是运行安全性都要高于常规的励磁系统,能维持较好的应用环境,并且能更好地处理距离较近的电压降失衡问题,保证调节工序的合理性、稳定性和安全性。
(二)发变组定值设置概述在发变组定值设置的过程中,要结合具体应用规范和标准落实匹配的设置机制。
(1)设置零序补偿机制。
在电力变压器应用运行过程中,其自身配置的接线组会出现扭转现象,尤其是普通变压器,扭转角度一般为15~30°,为了保证其应用效果,就要配合行测绕组,有效对变压器的扭转角度予以补偿处理,维持继电器运行的稳定性。
另外,三角形接线还能配合电流零序结构,有效消除零序分量造成的影响,打造更加稳定的运行环境。
(2)设置基础性制动模式,在变压器设置工序中,基础性差动保护具有重要的应用价值,能减少合闸空载产生的励磁涌流,其主要的工作原理在于二次谐波的产生,能形成良好的制动模式。
同步发电机励磁系统实时数字仿真模型及参数研究的开题报告一、研究背景随着电力系统规模不断扩大和电力质量要求的不断提高,同步发电机励磁系统的稳定性和动态响应特性越来越受到关注。
数字仿真技术作为一种有效的分析工具,已广泛应用于电力系统的研究和分析中。
因此,对于同步发电机励磁系统实时数字仿真模型及参数的研究具有重要的现实意义和理论价值。
二、研究内容和目标本文的研究内容主要为同步发电机励磁系统的实时数字仿真模型及参数的研究。
通过分析同步发电机励磁系统的结构特点和工作原理,建立相应的数字仿真模型,并针对不同的方案和参数进行研究和分析,以提高同步发电机励磁系统的动态响应和稳定性。
本文的研究目标主要有以下几个方面:1.建立同步发电机励磁系统的实时数字仿真模型,考虑其结构特点和工作原理,并对相应的参数进行调整和优化。
2.通过对比实验和仿真结果,验证数字仿真模型的准确性和可靠性。
3.研究同步发电机励磁系统的动态响应特性和稳定性,并提出改进措施,以优化其性能。
三、研究方法和技术路线本文的研究方法可分为以下几步:1.收集同步发电机励磁系统相关文献,了解其结构特点和工作原理。
2.建立同步发电机励磁系统的实时数字仿真模型,考虑其结构和参数等因素。
3.编写仿真程序,进行数字仿真,获得模拟结果。
4.与实验数据进行对比,验证数字仿真模型的准确性和可靠性。
5.对数字仿真模型进行优化,改进同步发电机励磁系统的动态响应特性和稳定性。
四、研究意义和预期结果本文的研究意义在于提高同步发电机励磁系统的动态响应特性和稳定性,以保证电力系统的稳定供电。
同时,通过建立实时数字仿真模型,可以更好地了解同步发电机励磁系统的运行机理和工作性能,为其改进和优化提供理论依据。
预期结果主要包括以下几个方面:1.建立同步发电机励磁系统的实时数字仿真模型,考虑其结构特点和工作原理,并调整优化其相关参数。
2.验证数字仿真模型的准确性和可靠性,并分析其适用范围和局限性。
上海电力学院《自动控制原理》MATLAB仿真实验报告课程:自动控制原理题目:发电机励磁控制系统院系:电气工程学院班级:2010021姓名:学号:20102168发电机励磁控制系统(PID 、超前、滞后控制)仿真一、仿真模型图1发电机励磁控制系统模型如图所示为发电机励磁控制系统模型。
功率励磁装置的传递函数为11f T S+,发电机的等效传递函数为11d T S'+,10.05T s =,0.5f T s =,5d T s '=,20K =,分别用不同的控制器(PID ,超前,滞后)使系统相位域量50γ≥,误差系数大于40。
,在实验过程中比较不同控制器的特点。
二、系统控制器 (1) PID 控制器PID 控制器有三个可以调整的参数,即p K 、i T 和d T ,11c p d i G K T s T s⎛⎫=++ ⎪⎝⎭这种控制器既有比例作用的及时迅速,又有积分作用的消除余差能力,还有微分作用的超前控制功能。
当偏差阶跃出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使偏差幅度减小,由于比例作用是持久和起主要作用的控制规律,因此可使系统比较稳定;而积分作用慢慢把余差克服掉。
只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。
PID 控制器特别适用于过程的动态特性是线性的而且控制性能要求不太高的场合。
(2) 超前校正控制器超前校正装置的主要作用是通过其相位超前效应来改变频率响应曲线的形状,产生足够大的相位超前角,以补偿原来系统中元件造成的过大的相位滞后。
利用其相位超前特性,可以增大系统的稳定裕度,提高动态响应的平稳性和快速性;对提高系统稳态精度作用不大,系统抗干扰能力有所下降(一般用于稳态精度已基本满足要求,但动态性能差的系统);利用校正函数()11c p TSG s K TSα+=+,()1α>求得参数进行校正。