安徽省庐江中学2014-2015学年高一上学期第一次月考数学试题(扫描版,无答案)
- 格式:doc
- 大小:249.00 KB
- 文档页数:4
高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
高一数学第一学期月考模拟卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1,2,3P =-,集合{}12Q x x =-<<,则P Q = ()A.{}1 B.{}0,1 C.{}1,0,1- D.{}0,1,22.下列函数中,是同一函数的是()A.2y x =与y x x= B.y =2y =C.2x x y x+=与1y x =+ D.21y x =+与21y t =+3.函数()11f x x =++的定义域为()A.{|3x x ≥-且}1x ≠- B.{|3x x >-且}1x ≠- C.{}1|x x ≥- D.{}|3x x ≥-4.“0x >”是“20x x +>”的()A.充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件5.若21y x ax =-+有负值,则a 的取值范围是()A .2a >或2a <-B .22a -<<C .2a ≠±D .13a <<6.下列函数中,值域是(0,)+∞的是()A.21(0)y x x =+> B.2y x = C.y = D.2y x=7.若0,0a b >>,则“4a b +≤”是“4ab ≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.已知集合{}2|340A x x x =--<,{|()[(2)]0}B x x m x m =--+>,若A B =R ,则实数m 的取值范围是()A.(1,)-+∞ B.(,2)-∞ C.(1,2)- D.[1,2]-二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合22–234,4{}3M x x x x =+-+-,,若2M ∈,则满足条件的实数x 可能为()A .2B .–2C .–3D .110.设{}28150A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值可以为()A.15B.0C.3D.1311.有下面四个不等式,其中恒成立的有()A.2a b+ B.1(1)4a a -≤C.222a b c ab bc ca++≥++ D.2b a a b+≥12.下列命题正确的是()A.2,,2(1)0a b R a b ∃∈-++≤ B.a R x R ∀∈∃∈,,使得2>ax C.0ab ≠是220a b +≠的充要条件D.1a b >-≥,则11a b a b≥++三、填空题(本大题共4个小题,每小题5分,共20分)13.若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_______________.14.已知不等式2520ax x +->的解集是M .若2M ∈且3M ∉,求a 的取值范围_______________.15.设U 为全集,对集合X 、Y ,定义运算“*”,()U X Y X Y *=I ð.对于集合{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则()X Y Z **=_______________.16.已知函数()f x ,则函数()y f x =的定义域为______________;函数(21)y f x =+的定义域是___________________.四、解答题(本大题共6个小题,18题10分,19题~23题每题12分.共70分.)17.已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当1a =时,求,A B A B ;(2)设0a >,若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.18.已知命题p :[1,2]x ∀∈,20x a -≥,命题q :x R ∃∈,2220x ax a +-=+.若命题p 与q 都是真命题,求实数a 的取值范围.19.解关于x 的不等式2(23)60()ax a x a R -++>∈.20.已知函数()2()(2)4f x x a x a R =-++∈.(1)若关于x 的不等式()0f x <的解集为()1,b ,求a 和b 的值;(2)若对14x ∀≤≤,()1f x a ≥--恒成立,求实数a 的取值范围.21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为()m x .(1)设总造价y (元)表示为长度()m x 的函数;(2)当()m x 取何值时,总造价最低,并求出最低总造价.22.已知()f x 是二次函数,且满足(0)2f =,(1)()23f x f x x +-=+.(1)求函数()f x 的解析式;(2)设()()2h x f x tx =-,当[]1,3x ∈时,求函数()h x 的最小值.高一数学第一学期月考模拟卷答案一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1,2,3P =-,集合{}12Q x x =-<<,则P Q = ()A.{}1 B.{}0,1 C.{}1,0,1- D.{}0,1,2【解析】交集是两个集合的公共元素,故{}0,1P Q ⋂=.【答案】B 2.下列函数中,是同一函数的是()A.2y x =与y x x= B.y =2y =C.2x x y x+=与1y x =+ D.21y x =+与21y t =+【解析】【详解】A 中的函数22,0,0x x y x x x x ⎧≥==⎨-<⎩,故两个函数的对应法则不同,故A 中的两个函数不是相同的函数;B 中函数y =R ,而2y =的定义域为[)0,+∞,故两个函数不是相同的函数;C 中的函数2x xy x+=的定义域为()(),00,-∞⋃+∞,而1y x =+的定义域为R ,故两个函数不是相同的函数;D 中的函数定义域相同,对应法则相同,故两个函数为同一函数,综上,选D.3.函数()11f x x =++的定义域为()A.{|3x x ≥-且}1x ≠- B.{3xx -且}1x ≠- C.{}1|x x ≥- D.{}|3x x ≥-【解析】根据二次根式的性质结合分母不为0,求出函数的定义域即可.【详解】由题意得:3010x x +≥⎧⎨+≠⎩,解得:3x ≥-且1x ≠-.故选:A .4.“0x >”是“20x x +>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】设A ={x |x >0},B ={x |x <1-,或x >0},判断集合A ,B 的包含关系,根据“谁小谁充分,谁大谁必要”的原则,即可得到答案.【详解】设A ={x |x >0},B ={x |x <1-,或x >0},∵A ≠⊂B ,故“x >0”是“20x x +>”成立的充分不必要条件.故选A .5.若21y x ax =-+有负值,则a 的取值范围是()A .2a >或2a <-B .22a -<<C .2a ≠±D .13a <<【解析】【详解】因为21y x ax =-+有负值,所以必须满足二次函数的图象与x 轴有两个不同的交点,2()40Δa =-->,24a >,即2a >或2a <-,故选A .6.下列函数中,值域是(0,)+∞的是()A.21(0)y x x =+>B.2y x =C.y =D.2y x=【解析】A 、函数21y x =+在(0,)+∞上是增函数,∴函数的值域为(1,)+∞,故错;B 、函数20y x = ,函数的值域为[)0,+∞,故错;C 、函数y =的定义域为(,1)(1,)-∞-+∞ 0>0>,故函数的值域为(0,)+∞D 、函数2y x=的值域为{|0}y y ≠,故错;故选:C .【点睛】本题考查,二次函数,一次函数的值域,考查学生发现问题解决问题的能力,属于基础题.7.若0,0a b >>,则“4a b +≤”是“4ab ≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【答案】A8.已知集合{}2|340A x x x =--<,{|()[(2)]0}B x x m x m =--+>,若A B = R ,则实数m 的取值范围是()A.(1,)-+∞ B.(,2)-∞ C.(1,2)- D.[1,2]-【解析】【详解】集合{}2|340(1,4)A x x x =--<=-,集合{|()[(2)]0}(,)(2,)B x x m x m m m =--+>=-∞⋃++∞,若A B = R ,则124m m >-⎧⎨+<⎩,解得(1,2)m ∈-,故选C.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合22–234,4{}3M x x x x =+-+-,,若2M ∈,则满足条件的实数x 可能为()A .2B .–2C .–3D .1【答案】AC10.设{}28150A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值可以为()A.15B.0C.3D.13【解析】28150x x -+= 的两个根为3和5,{}3,5A \=,A B B = ,B A ∴⊆,B ∴=∅或{}3B =或{}5B =或{}3,5B =,当B =∅时,满足0a =即可,当{}3B =时,满足310a -=,13a ∴=,当{}5B =时,满足510a -=,15a ∴=,当{}3,5B =时,显然不符合条件,∴a 的值可以是110,,35.【答案】ABD11.有下面四个不等式,其中恒成立的有()A.2a b+ B.1(1)4a a -≤C.222a b c ab bc ca++≥++ D.2b a a b+≥【解析】A.当0,0a b <<时,2a b+不成立,故错误;B.a (1﹣a )22111244a a a ⎛⎫-+=--+≤ ⎪⎝⎭,故正确;C.2222222,2,2a b ab a c a cc b cb +≥+≥+≥,两边同时相加得a 2+b 2+c 2≥ab +bc +ca ,故正确D.当,a b 异号时,不成立,故错误;故选:BC 12.下列命题正确的是()A.2,,2(1)0a b R a b ∃∈-++≤ B.a R x R ∀∈∃∈,,使得2>ax C.0ab ≠是220a b +≠的充要条件 D.1a b >-≥,则11a ba b≥++【解析】A .当2,1a b ==-时,不等式成立,所以A 正确.B.当0a =时,0=02x ⋅<,不等式不成立,所以B 不正确.C.当0,0a b =≠时,220a b +≠成立,此时=0ab ,推不出0ab ≠.所以C 不正确.D.由(1)(1)11(1)(1)(1)(1)a b a b b a a b a b a b a b +-+--==++++++,因为1a b >-≥,则11a b a b≥++,所以D 正确.【答案】AD三、填空题(本大题共4个小题,每小题5分,共20分)13.若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_______________.,【解析】由题意得若命题“2R,(1)10x x a x ∃∈+-+<”是假命题,则命题“2R,(1)10x x a x ∀∈+-+≥,”是真命题,则需()2014013a a ∆≤⇒--≤⇒-≤≤,故本题正确答案为[]1,3-.14.已知不等式2520ax x +->的解集是M .若2M ∈且3M ∉,求a 的取值范围_______________.【解析】∵不等式2520ax x +->的解集是M ,2M ∈且3M ∉,∴4809130a a +>⎧⎨+≤⎩,解得–2a <139≤-15.设U 为全集,对集合X 、Y ,定义运算“*”,()U X Y X Y *=I ð.对于集合{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则()X Y Z **=___________.【解析】【详解】由于{}1,2,3,4,5,6,7,8U =,{}1,2,3X =,{}3,4,5Y =,{}2,4,7Z =,则{}3X Y =I ,由题中定义可得(){}1,2,4,5,6,7,8U X Y X Y *==I ð,则(){}2,4,7U X Y Z =I I ð,因此,()(){}1,3,5,6,8UUX Y Z X Y Z **==⎡⎤⎣⎦I I ,故答案为{}1,3,5,6,8.16.已知函数f (x ),则函数y =f (x )的定义域为_____;函数(21)y f x =+的定义域是_____.【答案】(1).[]1,4-(2).31,2⎡⎤-⎢⎣⎦【解析】(1)令2340x x -++≥,解得14x -≤≤,()f x ∴的定义域为[]1,4-;(2)()f x 的定义域为[]1,4-,∴在函数(21)f x +中,满足1214x -£+£,解得312x -≤≤,(21)f x ∴+的定义域为31,2⎡⎤-⎢⎥⎣⎦.故答案为:(1)[]1,4-(2)31,2⎡⎤-⎢⎣⎦.四、解答题(本大题共6个小题,18题10分,19题~23题每题12分.共70分.)17.已知集合{}22|430A x x ax a =-+<,集合{|(3)(2)0}B x x x =--≥.(1)当1a =时,求,A B A B ;(2)设0a >,若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.【答案】(1){}23A B x x ⋂=≤<,{}13A B x x ⋃=<≤;(2)12a <<【解析】(1)当1a =时,{}{}2|430|13A x x x x x =-+<=<<,集合B {|23}x x =≤≤,所以{|23},{|13}A B x x A B x x ⋂=≤<⋃=<≤.(2)因为0a >,所以{}|3A x a x a =<<,B {|23}x x =≤≤,因为“x A ∈”是“x B ∈”的必要不充分条件,所以B A ≠⊂,所以2,33,a a <⎧⎨>⎩解得:12a <<.18.已知命题p :任意x ∈[1,2],x 2-a ≥0,命题q :存在x ∈R ,x 2+2ax +2-a =0.若命题p 与q 都是真命题,求实数a 的取值范围.【答案】{a |a ≤-2,或a =1}.【解析】【详解】由命题p 为真,可得不等式x 2-a ≥0在x ∈[1,2]上恒成立.所以a ≤(x 2)min ,x ∈[1,2].所以a ≤1.若命题q 为真,则方程x 2+2ax +2-a =0有解.所以判别式Δ=4a 2-4(2-a )≥0.所以a ≥1或a ≤-2.又因为p ,q 都为真命题,所以112a a a ≤⎧⎨≥≤-⎩或所以a ≤-2或a =1.所以实数a 的取值范围是{a |a ≤-2,或a =1}.19.解关于x 的不等式ax 2-(2a +3)x +6>0(a ∈R ).【答案】详见解析【解析】【详解】原不等式可化为:(ax ﹣3)(x ﹣2)>0;当a =0时,化为:x <2;当a >0时,化为:(x 3a-)(x ﹣2)>0,①当3a >2,即0<a 32<时,解为:x 3a >或x <2;②当3a =2,即a 32=时,解为:x ≠2;③当3a <2,即a 32>时,解为:x >2或x 3a<,当a <0时,化为:(x 3a -)(x ﹣2)<0,解为:3a<x <2.综上所述:当a <0时,原不等式的解集为:(3a,2);当a =0时,原不等式的解集为:(﹣∞,2);当0<a 32<时,原不等式的解集为:(﹣∞,2)∪(3a,+∞);当a 32=时,原不等式的解集为:(﹣∞,2)∪(2,+∞);当a 32>时,原不等式的解集为:(﹣∞,3a)∪(2,+∞)20.已知函数()2()(2)4f x x a x a R =-++∈.(1)若关于x 的不等式()0f x <的解集为()1,b ,求a 和b 的值;(2)若对14x ∀≤≤,()1f x a ≥--恒成立,求实数a 的取值范围.【答案】(1)34a b =⎧⎨=⎩;(2)4a ≤【解析】【详解】解:(1)关于x 的不等式()0f x <的解集为()1,b ,即1x =,x b =为方程2(2)40x a x -++=的两解,所以124b a b +=+⎧⎨=⎩解得34a b =⎧⎨=⎩(2)对任意的[]1,4x ∈,()1f x a ≥--恒成立,即2(2)50x a x a -+++≥对任意的[]1,4x ∈恒成立,即()2251x x a x -+≥-恒成立,①当1x =时,不等式04≤恒成立,此时a R∈②当(]1,4x ∈时,2254111x x a x x x -+≤=-+--,因为14x <≤,所以013x <-≤,所以4141x x -+≥=-当且仅当411x x -=-时,即12x -=,即3x =时取等号,所以4a ≤,综上4a ≤21.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为()m x .(1)设总造价y (元)表示为长度()m x 的函数;(2)当()m x 取何值时,总造价最低,并求出最低总造价.【答案】(1)20018400400y x x ⎛⎫=++ ⎪⎝⎭,(4,50)x ∈;(2)当x =时,总造价最低为18400+元.【解析】【详解】(1)由矩形的长为()m x ,则矩形的宽为200(m)x,则中间区域的长为()4m x -,宽为2004(m)x-,则定义域为(4,50)x ∈,则200200100(4)4200200(4)4y x x x x ⎡⎤⎡⎤⎛⎫⎛⎫=⨯--+-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,整理得20018400400y x x ⎛⎫=++⎪⎝⎭,(4,50)x ∈.(2)200x x +≥=,当且仅当200x x =时取等号,即(4,50)x =,所以当x =时,总造价最低为18400+元.22.已知()f x 是二次函数,且满足(0)2f =,(1)()23f x f x x +-=+.(1)求函数()f x 的解析式;(2)设()()2h x f x tx =-,当[]1,3x ∈时,求函数()h x 的最小值.【答案】(1)2()22f x x x =++(2)见解析.【解析】【详解】(1)设2()f x ax bx c =++,(0)2f c \==,(1)()23f x f x x +-=+ ,()()()221123a x b x c ax bx c x \++++-++=+,即223ax a b x ++=+,223a a b ì=ï\í+=ïî,1,2a b ∴==,2()22f x x x ∴=++;(2)由(1)知()[]2()222,1,3h x x t x x =+-+Î,()h x ∴的对称轴为1x t =-,当11t -≤,即2t ≤时,()h x 在[1,3]单调递增,()min ()152h x h t \==-,当113t <-<,即24t <<时,()h x 在()1,1t -递减,在()1,3t -递增,()2min ()121h x h t t t \=-=-++,当13t -³,即4t ≥时,()h x 在[1,3]单调递减,()min ()3176h x h t \==-,综上:当2t ≤时,min ()52h x t =-;当24t <<时,2min ()21h x t t =-++;当4t ≥时,min ()176h x t =-.。
【最新整理,下载后即可编辑】高一(上)第一次月考数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={A∈A|A>−1},则()A.A∉AB.√2∉AC.√2∈AD.{√2}⊆A2.已知集合A到A的映射A:A→A=2A+1,那么集合A中元素2在A中对应的元素是()A.2B.5C.6D.83.设集合A={A|1<A<2},A={A|A<A},若A⊆A,则A的范围是()A.A≥2B.A≥1C.A≤1D.A≤24.函数A=√2A−1的定义域是()A.(12, +∞) B.[12, +∞) C.(−∞, 12) D.(−∞, 12]5.全集A={0, 1, 3, 5, 6, 8},集合A={1, 5, 8 },A={2},则集合(∁A A)∪A=()A. {0, 2, 3, 6}B.{0, 3, 6}C.{2, 1, 5, 8}D.A6.已知集合A={A|−1≤A<3},A={A|2<A≤5},则A∪A=()A.(2, 3)B.[−1, 5]C.(−1, 5)D.(−1, 5]7.下列函数是奇函数的是( ) A.A =A B.A =2A 2−3C.A =√AD.A =A 2,A ∈[0, 1]8.化简:√(A −4)2+A =( ) A.4 B.2A −4 C.2A −4或4 D.4−2A9.集合A ={A |−2≤A ≤2},A ={A |0≤A ≤2},给出下列四个图形,其中能表示以A 为定义域,A 为值域的函数关系的是( ) A.B.C.D.10.已知A (A )=A (A )+2,且A (A )为奇函数,若A (2)=3,则A (−2)=( ) A.0 B.−3 C.1 D.311.A (A )={A 2,A >0A 0,A <0,A =0,则A {A [A (−3)]}等于( )A.0B.AC.A 2D.912.已知函数A (A )是 A 上的增函数,A (0, −1),A (3, 1)是其图象上的两点,那么|A (A )|<1的解集是( ) A.(−3, 0) B.(0, 3) C.(−∞, −1]∪[3, +∞) D.(−∞, 0]∪[1, +∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知A (A )={A +5(A >1)2A 2+1(A ≤1),则A [A (1)]=________.14.已知A (A −1)=A 2,则A (A )=________.15.定义在A 上的奇函数A (A ),当A >0时,A (A )=2;则奇函数A (A )的值域是________.16.关于下列命题:①若函数A =2A +1的定义域是{A |A ≤0},则它的值域是{A |A ≤1};②若函数A =1A的定义域是{A |A >2},则它的值域是{A |A ≤12}; ③若函数A =A 2的值域是{A |0≤A ≤4},则它的定义域一定是{A |−2≤A ≤2};④若函数A =A +1A的定义域是{A |A <0},则它的值域是{A |A ≤−2}.其中不正确的命题的序号是________.(注:把你认为不正确的命题的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合A ={1, 2, 3, 4, 5, 6, 7, 8},A ={A |A 2−3A +2=0},A ={A |1≤A ≤5, A ∈A },A ={A |2<A <9, A ∈A }(1)求A∪(A∩A);(2)求(∁A A)∪(∁A A)18.设A={A|A2−AA+A2−19=0},A={A|A2−5A+ 6=0},A={A|A2+2A−8=0}.(1)若A=A,求实数A的值;(2)若A⊊A∩A,A∩A=A,求实数A的值.19.已知函数A(A)=A+1A(1)判断函数的奇偶性,并加以证明;(2)用定义证明A(A)在(0, 1)上是减函数;(3)函数A(A)在(−1, 0)上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).20.已知函数A(A)是定义在A上的偶函数,且当A≤0时,A(A)=A2+2A.(1)现已画出函数A(A)在A轴左侧的图象,如图所示,请补出完整函数A(A)的图象,并根据图象写出函数A(A)的增区间;(2)写出函数A(A)的解析式和值域.21.设函数A(A)=AA2+AA+1(A≠0, A∈A),若A(−1)=0,且对任意实数A(A∈A)不等式A(A)≥0恒成立.(1)求实数A、A的值;(2)当A∈[−2, 2]时,A(A)=A(A)−AA是增函数,求实数A的取值范围.22.已知A(A)是定义在A上的函数,若对于任意的A,A∈A,都有A(A+A)=A(A)+A(A),且A>0,有A(A)>0.(1)求证:A(0)=0;(2)判断函数的奇偶性;(3)判断函数A(A)在A上的单调性,并证明你的结论.答案1. 【答案】B【解析】根据题意,易得集合A的元素为全体大于−1的有理数,据此分析选项,综合可得答案.【解答】解:∵集合A={A∈A|A>−1},∴集合A中的元素是大于−1的有理数,对于A,“∈”只用于元素与集合间的关系,故A错;对于A,√2不是有理数,故A正确,A错,A错;故选:A.2. 【答案】B【解析】由已知集合A到A的映射A:A→A=2A+1中的A与2A+1的对应关系,可得到答案.【解答】解:∵集合A到A的映射A:A→A=2A+1,∴2→A=2×2+1=5.∴集合A中元素2在A中对应的元素是5.故选:A.3. 【答案】A【解析】根据两个集合间的包含关系,考查端点值的大小可得2≤A.【解答】解:∵集合A={A|1<A<2},A={A|A<A},A⊆A,∴2≤A,故选:A.4. 【答案】B【解析】原函数只含一个根式,只需根式内部的代数式大于等于0即可.【解答】解:要使函数有意义,则需2A−1≥0,即A≥12,所以原函数的定义域为[12, +∞).故选:A.5. 【答案】A【解析】利用补集的定义求出(A A A),再利用并集的定义求出(A A A)∪A.【解答】解:∵A={0, 1, 3, 5, 6, 8},A={ 1, 5, 8 },∴(A A A)={0, 3, 6}∵A={2},∴(A A A)∪A={0, 2, 3, 6}故选:A6. 【答案】B【解析】分别把两集合的解集表示在数轴上,根据数轴求出两集合的并集即可.【解答】解:把集合A={A|−1≤A<3},A={A|2<A≤5},表示在数轴上:则A∪A=[−1, 5].故选A7. 【答案】A【解析】由条件利用函数的奇偶性的定义,得出结论.【解答】解:∵函数A=A(A)=A的定义域为A,且满足A(−A)=−A=−A(A),故函数A(A)是奇函数;∵函数A=A(A)=2A2−3的定义域为A,且满足A(−A)= 2(−A)2−3=2A2−3=A(A),故函数A(A)是偶函数;∵函数A=√A的定义域为[0, +∞),不关于原点对称,故函数为非奇非偶函数;∵函数A=A2,A∈[0, 1]的定义域不关于原点对称,故函数为非奇非偶函数,故选:A.8. 【答案】A【解析】由A<4,得√(A−4)2=4−A,由此能求出原式的值.【解答】解:√(A−4)2+A=4−A+A=4.故选:A.9. 【答案】B【解析】本题考查的是函数的概念和图象问题.在解答时首先要对函数的概念从两个方面进行理解:一是对于定义域内的任意一个自变量在值域当中都有唯一确定的元素与之对应,二是满足一对一、多对一的标准,绝不能出现一对多的现象.【解答】解:由题意可知:A={A|−2≤A≤2},A={A|0≤A≤2},对在集合A中(0, 2]内的元素没有像,所以不对;对不符合一对一或多对一的原则,故不对;对在值域当中有的元素没有原像,所以不对;而符合函数的定义.故选:A.10. 【答案】C【解析】由已知可知A(2)=A(2)+2=3,可求A(2),然后把A=−2代入A(−2)=A(−2)+2=−A(2)+2可求【解答】解:∵A(A)=A(A)+2,A(2)=3,∴A(2)=A(2)+2=3∴A(2)=1∵A(A)为奇函数则A(−2)=A(−2)+2=−A(2)+2=1故选:A11. 【答案】C【解析】应从内到外逐层求解,计算时要充分考虑自变量的范围.根据不同的范围代不同的解析式.【解答】解:由题可知:∵−3<0,∴A(−3)=0,∴A[A(−3)]=A(0)=A>0,∴A{A[A(−3)]}=A(A)=A2故选A12. 【答案】B【解析】|A(A)|<1等价于−1<A(A)<1,根据A(0, −1),A(3, 1)是其图象上的两点,可得A(0)<A(A)<A(3),利用函数A(A)是A上的增函数,可得结论.【解答】解:|A(A)|<1等价于−1<A(A)<1,∵A(0, −1),A(3, 1)是其图象上的两点,∴A (0)<A (A )<A (3)∵函数A (A )是A 上的增函数, ∴0<A <3∴|A (A )|<1的解集是(0, 3) 故选:A . 13. 【答案】8【解析】先求A (1)的值,判断出将1代入解析式2A 2+1;再求A (3),判断出将3代入解析式A +5即可. 【解答】解:∵A (1)=2+1=3 ∴A [A (1)]=A (3)=3+5=8 故答案为:814. 【答案】(A +1)2【解析】可用换元法求解该类函数的解析式,令A −1=A ,则A =A +1代入A (A −1)=A 2可得到A (A )=(A +1)2即A (A )=(A +1)2【解答】解:由A (A −1)=A 2,令A −1=A ,则A =A +1代入A (A −1)=A 2可得到A (A )=(A +1)2 ∴A (A )=(A +1)2 故答案为:(A +1)2. 15. 【答案】{−2, 0, 2}【解析】根据函数是在A 上的奇函数A (A ),求出A (0);再根据A >0时的解析式,求出A <0的解析式,从而求出函数在A 上的解析式,即可求出奇函数A (A )的值域. 【解答】解:∵定义在A 上的奇函数A (A ), ∴A (−A )=−A (A ),A (0)=0设A <0,则−A >0时,A (−A )=−A (A )=−2∴A (A )={2A >00A =0−2A <0∴奇函数A (A )的值域是:{−2, 0, 2} 故答案为:{−2, 0, 2} 16. 【答案】②③【解析】逐项分析.①根据一次函数的单调性易得;②根据反比例函数的图象和性质易知其值域应为(0, 12);③可举反例说明;④利用均值不等式可得.【解答】解:①当A ≤0时,2A +1≤1,故①正确; ②由反比例函数的图象和性质知,当A >2时,0<1A<12,故②错误;③当函数定义域为[0, 2]时,函数值域也为[0, 4],故③错误; ④当A <0时,A =A +1A=−[(−A )+1−A].因为(−A )+1−A≥2√(−A )⋅1−A=2,所以A ≤−2,故④正确.综上可知:②③错误. 故答案为:②③.17. 【答案】解:(1)依题意有:A ={1, 2},A ={1, 2, 3, 4, 5},A ={3, 4, 5, 6, 7, 8},∴A ∩A ={3, 4, 5},故有A ∪(A ∩A )={1, 2}∪{3, 4, 5}={1, 2, 3, 4, 5}.; (2)由∁A A ={6, 7, 8},∁A A ={1, 2}; 故有(∁A A )∪(∁A A )={6, 7, 8}∪{1, 2}={1, 2, 6, 7, 8}.【解析】(1)先用列举法表示A 、A 、A 三个集合,利用交集和并集的定义求出A ∩A ,进而求出A ∪(A ∩A ).; (2)先利用补集的定义求出(∁A A )和(∁A A ),再利用并集的定义求出(∁A A )∪(∁A A ).【解答】解:(1)依题意有:A ={1, 2},A ={1, 2, 3, 4, 5},A ={3, 4, 5, 6, 7, 8},∴A ∩A ={3, 4, 5},故有A ∪(A ∩A )={1, 2}∪{3, 4, 5}={1, 2, 3, 4, 5}.; (2)由∁A A ={6, 7, 8},∁A A ={1, 2}; 故有(∁A A )∪(∁A A )={6, 7, 8}∪{1, 2}={1, 2, 6, 7, 8}.18. 【答案】解:(1)由题意知:A ={2, 3}∵A =A ∴2和3是方程A 2−AA +A 2−19=0的两根.由{4−2A +A 2−19=09−3A +A 2−19=0得A =5.; (2)由题意知:A ={−4, 2}∵A ⊂A ∩A ,A ∩A =A ∴3∈A ∴3是方程A 2−AA +A 2−19=0的根.∴9−3A +A 2−19=0∴A =−2或5当A =5时,A =A ={2, 3},A ∩A ≠A ;当A =−2时,符合题意故A =−2.【解析】(1)先根据A =A ,化简集合A ,根据集合相等的定义,结合二次方程根的定义建立等量关系,解之即可;; (2)先求出集合A 和集合A ,然后根据A ∩A ≠A ,A ∩A =A ,则只有3∈A ,代入方程A 2−AA +A 2−19=0求出A 的值,最后分别验证A 的值是否符合题意,从而求出A 的值.【解答】解:(1)由题意知:A ={2, 3}∵A =A ∴2和3是方程A 2−AA +A 2−19=0的两根.由{4−2A +A 2−19=09−3A +A 2−19=0 得A =5.; (2)由题意知:A ={−4, 2}∵A ⊂A ∩A ,A ∩A =A ∴3∈A ∴3是方程A 2−AA +A 2−19=0的根.∴9−3A +A 2−19=0∴A =−2或5当A =5时,A =A ={2, 3},A ∩A ≠A ;当A =−2时,符合题意故A =−2.19. 【答案】证明:(1)函数为奇函数A (−A )=−A −1A =−(A +1A )=−A (A ); (2)设A 1,A 2∈(0, 1)且A 1<A 2A (A 2)−A (A 1)=A 2+1A 2−A 1−1A 1=(A 2−A 1)(1−1A 1A 2) =(A 2−A 1)(A 1A 2−1)A 1A 2 ∵0<A 1<A 2<1,∴A 1A 2<1,A 1A 2−1<0, ∵A 2>A 1∴A 2−A 1>0.∴A (A 2)−A (A 1)<0,A (A 2)<A (A 1)因此函数A (A )在(0, 1)上是减函数; (3)A (A )在(−1, 0)上是减函数.【解析】(1)用函数奇偶性定义证明,要注意定义域.; (2)先任取两个变量,且界定大小,再作差变形看符号,; (3)由函数图象判断即可.【解答】证明:(1)函数为奇函数A (−A )=−A −1A =−(A +1A )=−A (A ); (2)设A 1,A 2∈(0, 1)且A 1<A 2A (A 2)−A (A 1)=A 2+1A 2−A 1−1A 1=(A 2−A 1)(1−1A 1A 2) =(A 2−A 1)(A 1A 2−1)A 1A 2 ∵0<A 1<A 2<1,∴A 1A 2<1,A 1A 2−1<0,∵A 2>A 1∴A 2−A 1>0.∴A (A 2)−A (A 1)<0,A (A 2)<A (A 1)因此函数A (A )在(0, 1)上是减函数; (3)A (A )在(−1, 0)上是减函数.20. 【答案】解:(1)因为函数为偶函数,故图象关于A 轴对称,补出完整函数图象如有图:所以A (A )的递增区间是(−1, 0),(1, +∞).; (2)设A >0,则−A <0,所以A (−A )=A 2−2A ,因为A (A )是定义在A 上的偶函数,所以A (−A )=A (A ),所以A >0时,A (A )=A 2−2A ,故A (A )的解析式为A (A )={A 2+2A ,A ≤0A 2−2A ,A >0 值域为{A |A ≥−1}【解析】(1)因为函数为偶函数,故图象关于A 轴对称,由此补出完整函数A (A )的图象即可,再由图象直接可写出A (A )的增区间.; (2)可由图象利用待定系数法求出A >0时的解析式,也可利用偶函数求解析式,值域可从图形直接观察得到.【解答】解:(1)因为函数为偶函数,故图象关于A 轴对称,补出完整函数图象如有图:所以A (A )的递增区间是(−1, 0),(1, +∞).; (2)设A >0,则−A <0,所以A (−A )=A 2−2A ,因为A (A )是定义在A 上的偶函数,所以A (−A )=A (A ),所以A >0时,A (A )=A 2−2A ,故A (A )的解析式为A (A )={A 2+2A ,A ≤0A 2−2A ,A >0 值域为{A |A ≥−1}21. 【答案】解:(1)∵A (−1)=0,∴A −A +1=0.… ∵任意实数A 均有A (A )≥0成立,∴{A >0△=A 2−4A ≤0. 解得A =1,A =2.…; (2)由(1)知A (A )=A 2+2A +1, ∴A (A )=A (A )−AA =A 2+(2−A )A +1的对称轴为A =A −22.… ∵当A ∈[−2, 2]时,A (A )是增函数,∴A −22≤−2,…∴实数A 的取值范围是(−∞, −2].…【解析】(1)利用A (−1)=0,且对任意实数A (A ∈A )不等式A (A )≥0恒成立,列出方程组,求解即可.; (2)求出函数的对称轴,利用函数的单调性列出不等式,求解即可.【解答】解:(1)∵A (−1)=0,∴A −A +1=0.… ∵任意实数A 均有A (A )≥0成立,∴{A >0△=A 2−4A ≤0. 解得A =1,A =2.…; (2)由(1)知A (A )=A 2+2A +1,∴A (A )=A (A )−AA =A 2+(2−A )A +1的对称轴为A =A −22.… ∵当A ∈[−2, 2]时,A (A )是增函数,∴A −22≤−2,…∴实数A 的取值范围是(−∞, −2].…22. 【答案】解:(1)由A (A +A )=A (A )+A (A ),令A =A =0,∴A (0)=2A (0),∴A (0)=0.; (2)由A (A +A )=A (A )+A (A ),令A =−A ,∴A (0)=A (A )+A (−A ),即A (−A )=−A (A ),且A (0)=0,∴A (A )是奇函数.; (3)A (A )在A 上是增函数.证明:在A 上任取A 1,A 2,并且A 1>A 2,∴A (A 1−A 2)=A (A 1)−A (A 2).∵A 1>A 2,即A 1−A 2>0,∴A (A 1−A 2)=A (A 1)−A (A 2)>0,∴A (A )在A 上是增函数.【解析】(1)直接令A =A =0,代入A (A +A )=A (A )+A (A )即可;; (2)令A =−A ,所以有A (0)=A (A )+A (−A ),即证明为奇函数;; (3)直接利用函数的单调性定义证明即可;【解答】解:(1)由A (A +A )=A (A )+A (A ),令A =A =0,∴A (0)=2A (0),∴A (0)=0.; (2)由A (A +A )=A (A )+A (A ),令A =−A ,∴A (0)=A (A )+A (−A ),即A (−A )=−A (A ),且A (0)=0,∴A (A )是奇函数.; (3)A (A )在A 上是增函数.证明:在A 上任取A 1,A 2,并且A 1>A 2,∴A (A 1−A 2)=A (A 1)−A (A 2).∵A 1>A 2,即A 1−A 2>0,∴A(A1−A2)=A(A1)−A(A2)>0,∴A(A)在A上是增函数.。
2014-2015学年度第一学期高三第一次模拟考试数学(理科)试卷命题人:周扬本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分为150分,考试用时为120分钟.第Ⅰ卷(选择题,共40分) 一、选择题:(本大题共8小题,每小题5分,共40分)1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则B A ⋂= ( ) A .{-2} B.{2} C .{-2,2} D . Φ 2.命题“若α=4π,则tan α=1”的逆否命题是 ( ) A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π3.下列函数中,在其定义域内既是奇函数又是减函数的是( )A. R x x y ∈-=,3B. R x x y ∈=,sinC. R x x y ∈=,D. R x x y ∈=,)21(4.若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( ) A. 是减函数,有最小值0 B. 是减函数,有最大值0 C. 是增函数,有最大值0 D. 是增函数,有最小值05.“14m <”是“一元二次方程20x x m ++=”有实数解的 ( ) A .充分非必要条件 B.充分必要条件 C .必要非充分条件 D.非充分必要条件6.设5.13529.01)21(y ,2log 2y ,4y -===,则()A 、123y y y >>B 、 321y y y >>C 、231y y y >>D 、 312y y y >>7.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ·()g x 是偶函数B .|()f x |·()g x 是奇函数C .()f x ·|()g x |是奇函数D .|()f x ·()g x |是奇函数8.若函数)1x (f +是R 上的奇函数,且对于0)]f(x -))[f(x x -(x R,x ,x 212121<∈∀,则0)x 1(f >- 的解集是( )A .)0,(-∞B 、),1()1,(+∞⋃--∞C 、)1,1(-D 、),0(+∞第II 卷(非选择题,共110分)二、填空题(本大题共6小题,每小题5分,共30分) 9. 函数)ln()(2x x x f -=的定义域为 10.命题“存在0x ∈R ,02x ≤0”的否定是11. 已知函数x )x (f =则2log (2)f 的值为12. 设函数)(x f y =是定义在R 上的周期为2的偶函数,当1)(]1,0[+=∈x x f x 时,,则=)23(f13.函数x a )x (f =(a >0,a ≠1)在[1,2]中的最大值比最小值大2a,则a 的值为 14. 给出下列命题:①βαβαβαsin cos )cos(,,+=+∈∃使R ; ②有零点函数a x x x f a -+=>∀ln ln )(,02; ③),0(,)1()(,342+∞⋅-=∈∃+-且在是幂函数使m mx m x f m R 上递减;④若函数()21xf x =-,则[]12,0,1x x ∃∈且12x x <,使得 12()()f x f x >其中是假命题...的 (填序号).三、解答题:(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.) 15. (满分12分)已知函数]5,5[x ,2ax 2x )x (f 2-∈++=.(1)当1a -=时,求函数)x (f 的最大值和最小值;(2)求实数a 的取值范围,使)x (f y =在区间[-5,5]上是单调函数.16、(满分12分)(1)求函数x log 1)x (f 6-=的定义域; (2)求函数1x 1x 2y --=的值域; (3)化简)0y ,0x (y x 16448<<.17.(满分14分) 已知当)3,0(x ∈时,使不等式240x mx -+≥恒成立, 求实数m 的取值范围.18.(满分14分) 设集合}3x 2|x {A <<-=,4{|1}3B x x =>+. (1)求集合B A ⋂;(2)若不等式222230ax bx a b -+<的解集为B ,求a ,b 的值.19. (满分14分)已知函数b a bx ax x f ,(1)(2++=为实数),x ∈R ,(1)若0)1(f =-,且函数()f x 的值域为)0,+∞⎡⎣,求()f x 的解析式;(2)在(1)的条件下,当kx x f x g x -=-∈)()(,]2,2[时是单调函数,求实数k 的取值范围.20.(满分14分) 函数()f x 对一切实数x ,y 均有()()(21)f x y f y x y x +-=++成立,且(1)0f =. (Ⅰ)求(0)f 的值;(Ⅱ)求函数()f x 的解析式;(Ⅲ)对任意的11(0,)2x ∈,21(0,)2x ∈,都有12()2log a f x x +<成立时,求a 的取值范围.2014-2015学年度第一学期高三第一次模拟考试数学(理科)试卷答案一、选择题(共8题,每题5分共40分)二、填空题(每小题5分共30分)9.),1()0,(+∞⋃-∞ 10. 对任意的x ∈R, 2x >0 11.2112. 23 13. 12或3214. ④ 三、解答题:本大题共6小题,满分80分。
2023-2024学年安徽省合肥市庐江县高一上册第一次月考数学试题一、单选题1.已知集合{1,2,3,4,5},{2,3,5},{2,5}U A B ===,则()A .A B⊆B .{1,3,4}U B =ðC .{2,5}A B = D .{3}A B ⋂=【正确答案】B利用集合间的关系,集合的交并补运算对每个选项分析判断.【详解】由题B A ⊆,故A 错;∵{1,2,3,4,5}U =,{2,5}B =,∴{1,3,4}U B =ð,B 正确;{2,3,5}A B = ,C 错;{2,5}A B ⋂=,D 错;故选:B2.已知全集U =R ,集合{|02}A x x =≤≤,{}20B x x x =->,则图中的阴影部分表示的集合为()A .{|1x x ≤或2}x >B .{|0x x <或12}x <<C .{|12}x x ≤<D .{|12}x x <≤【正确答案】A 【分析】解不等式可得集合A 与集合B ,进而可得解.【详解】解不等式可得{0B x x =<或}1x >,由题意可知阴影部分表示的集合为()()U A B A B ð,且{|12}A B x x =<≤ ,A B ⋃=R ,(){1U A B x x ∴=≤ ð或}2x >,所以()(){1U A B A B x x =≤ ð或}2x >,故选:A.3.已知集合{|0A x x =<或2}x >,B =N ,则集合()A B R ð中元素的个数为()A .2B .3C .4D .5【正确答案】B【分析】根据题意,结合补集、交集运算,即可求解.【详解】根据题意,可知{}R 02A x x =≤≤ð,由B =N ,得(){}R 0,1,2A B = ð,集合中有3个元素.故选:B.4.有下列关系式:①{}{},,a b b a =;②{}{},,a b b a ⊆;③{}∅=∅;④{}0=∅;⑤{}0∅Ü;⑥{}00∈.其中不正确的是()A .①③B .②④⑤C .①②⑤⑥D .③④【正确答案】D【分析】根据集合相等的定义、子集的定义、空集的性质,结合元素与集合的关系进行判断即可.【详解】对①:因为集合元素具有无序性,显然①正确;对②:因为集合{}{},,a b b a =,故{}{},,a b b a ⊆正确,即②正确;对③:空集∅是一个集合,而集合{}∅是以∅为元素的一个集合,因此{}∅≠∅,故③不正确;对④:{}0是一个集合,仅有一个元素0,但是空集不含任何元素,于是{}0≠∅,故④不正确;对⑤:由④可知,{}0非空,于是有{}0∅Ü,因此⑤正确;对⑥:显然{}00∈成立,因此⑥正确.综上,本题不正确的有③④,故选:D5.下列集合符号运用不正确的是()A .2Z∈B .}{}{1,2,31,2⊆C .{}12⋂∅=∅,D .N R R⋃=【正确答案】B【分析】根据集合知识,逐项分析,即可求得答案.【详解】对于A,由2Z ∈,故A 正确;对于B,因为}{}{1,21,2,3⊆,故B 错误;对于C,因为{}12⋂∅=∅,,故C 正确;对于D,因为N R R ⋃=,故D 正确.故选:B.解题关键是掌握集合的基础知识,考查了分析能力,属于基础题.6.下列命题正确的是A .很小的实数可以构成集合B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合C .自然数集N 中最小的数是1D .空集是任何集合的子集【正确答案】D【详解】试题解析:A 元素不确定B .第一个集合是数集,第二个集合是点集,对象不统一C 最小的数是0本题考查集合的概念点评:解决本题的关键是理解集合的概念7.若集合{}21A x x =-<,{}(1)(4)0B x x x =--≥,则下列结论正确的是()A .A B ⋂=∅B .A B =RC .A B ⊆D .R B A ⊆ð【正确答案】A【分析】解不等式求得集合A 、B ,然后逐一验证所给选项即可.【详解】{}{}{}2112113A x x x x x x =-<=-<-<=<<,{}{}(1)(4)014B x x x x x x =--≥=≤≥或,{}R 14B x x =<<ð,A B ⋂=∅,选项A 正确;{}34A B x x x ⋃=<≥或,选项B 错误;A 不是B 的子集,选项C 错误;R A B ⊆ð,选项D 错误.故选:A .8.如图,,A B 是非空集合,定义A B #为阴影部分表示的集合.若{A x y ==,{}3,0B y y x x ==>,则A B =#()A .{}02x x <<B .{}12x x <≤C .{|01x x ≤≤或}2x ≥D .{|0x x =或}2x >【正确答案】D 【分析】求函数的定义域求得集合A ,求函数的值域求得集合B ,结合A B #的定义求得正确答案.【详解】()2220,220x x x x x x -≥-=-≤,解得02x ≤≤,所以{}02A x x =≤≤,{}0B y y =>,所以{}02A B x x ⋂=<≤.令{}0U A B x x =⋃=≥,则()U A B A B =⋂=#ð{|0x x =或}2x >.故选:D9.设U =R ,已知集合{}{}|1,|A x x B x x a =≥=>,且()U A B R ⋃=ð,则实数a 的取值范围是()A .()1,+∞B .(],1-∞C .[)1,+∞D .(),1-∞【正确答案】D【分析】由题设可得{}|1U A x x =<ð,根据已知集合的并集结果即可求a 的取值范围.【详解】由题设,{}|1U A x x =<ð,又()U A B R ⋃=ð,{}|B x x a =>,∴1a <.故选:D10.设集合{}2|670A x x x =--<,{|}B x x a =≥,现有下面四个命题:1p :a R ∃∈,A B ⋂=∅;2p :若0a =,则(7,)A B =-+∞ ;3p :若(,2)R B =-∞ð,则a A ∈;4p :若1a ≤-,则A B ⊆.其中所有的真命题为()A .1p ,4p B .1p ,3p ,4p C .2p ,3p D .1p ,2p ,4p 【正确答案】B 【详解】由题设可得,()17A =-,,则当7a ≥时,有A B ⋂=∅,所以命题1p 正确;若0a =时,[)0B =+∞,,则()1,A B =-+∞ ,所以命题2p 错误;若()2B =-∞R ,ð,则2a A =∈,所以命题3p 正确;若1a ≤-时,A B ⊆成立.故正确答案为B.点睛:此题主要考查集合的补集、交集、并集、包含等基本关系与运算,以及二次不等式、命题的真假判断等运算与技能,属于中低档题型,也是常考题型.在二次不等式的求解过程中,首先要算出其相应二次方程的根()1212,x x x x <,当0a >时,则有“大于号取两边,即()()12,x x -∞⋃+∞,,小于号取中间,即()12,x x ”.11.已知非空集合A ,B 满足以下两个条件(){1,i A B ⋃=2,3,4,5,6},A B φ= ;()ii 若x A ∈,则1x B +∈.则有序集合对(),A B 的个数为()A .12B .13C .14D .15【正确答案】A【分析】对集合A 的元素个数分类讨论,利用条件即可得出.【详解】解:由题意分类讨论可得:若{}1A =,则{2,B =3,4,5,6};若{}2A =,则{1,B =3,4,5,6};若{}3A =,则{1,B =2,4,5,6};若{}4A =,则{1,B =2,3,5,6};若{}5A =,则{2,B =3,4,1,6};若{}1,3A =,则{2,B =4,5,6};若{}1,4A =,则{2,B =3,5,6};若{}1,5A =,则{2,B =3,4,6};若{}2,4A =,则{1,B =3,5,6};若{}2,5A =,则{1,B =3,4,6};若{}3,5A =,则{1,B =2,4,6};若{1,A =3,5},则{2,B =4,6}.综上可得:有序集合对(),A B 的个数为12.故选A .本题考查了元素与集合之间的关系、集合运算、分类讨论方法,考查了推理能力与计算能力,属于中档题.二、填空题12.已知集合{}2,1A =-,{}2B x ax ==,若A B B = ,则实数a 值集合为______.【正确答案】{}0,1,2-【分析】由A B B = 得到B A ⊆,则{}2,1A =-的子集有∅,{}2-,{}1,{}2,1-,分别求解即可.【详解】因为A B B = ,故B A ⊆;则{}2,1A =-的子集有∅,{}2-,{}1,{}2,1-,当B =∅时,显然有0a =;当{}2B =-时,221a a -=⇒=-;当{}1B =,122a a ⋅=⇒=;当{}2,1B =-,a 不存在,所以实数a 的集合为{}0,1,2-;故答案为{}0,1,2-.13.已知集合A ={1,3},B ={1,m },A ∪B =A ,则m =________.【正确答案】0或3由并集结果推出B A ⊆,则3m =,求解出m 代入集合中验证是否满足条件即可.【详解】A B A ⋃ =,B A ∴⊆,则3m =,若3m =,A ={1,3,B ={1,3},满足B A ⊆;若m =0m =或1m =,0m =时,A ={1,3,0},B ={1,0},满足B A ⊆;1m =时,A 、B 不满足集合中元素的互异性,舍去.综上所述,0m =或3.故0或3本题考查根据集合并集运算结果求参数、集合中元素的互异性,属于基础题.14.设A 、B 为两个集合.下列四个命题:①A 不包含于B ⇔对任意x A ∈,有x B ∉;②A 不包含于B A B ⇔⋂=∅;③A 不包含于B ⇔B 不包含于A ;④A 不包含于B ⇔存在x A ∈,使得x B ∉.其中真命题的序号是________________.(把符合要求的命题序号都填上)【正确答案】④【分析】根据集合之间的关系,对每个选项进行逐一分析,即可判断.【详解】对①:取{}{}1,2,2,3A B ==,满足A 不包含于B ,但存在2A ∈,有2B ∈,故①错;对②:取{}{}1,2,2,3A B ==,满足A 不包含于B ,但{}2A B ⋂=,故②错;对③:取{}{}1,2,1A B ==,满足A 不包含于B ,但B 包含于A ,故③错;对④:A 不包含于B ⇔存在x A ∈,使得x B ∉正确,故④正确;故④.15.已知集合A ={}20,21,a a-,B ={5,1,9}a a --,且9∈(A ∩B ),则a 的值为________.【正确答案】5或-3根据元素与集合关系列方程,再代入验证,即得结果.【详解】因为9∈(A ∩B ),所以9∈A ,即2a -1=9或a 2=9,解得a =5或a =±3.当a =5时,A ={0,9,25},B ={0,4,9}-,A ∩B ={0,9},9∈(A ∩B ),符合题意;当a =3时,A ={0,5,9},a -5=1-a =-2,B 中有元素重复,不符合题意,舍去;当a =-3时,A ={0,7,9}-,B ={8,4,9}-,A ∩B ={9},9∈(A ∩B ),符合题意,综上所述,a =5或a =-3.故5或-3本题考查根据元素与集合关系求参数,考查基本分析求解能力,属基础题.三、解答题16.已知{}2|210,A x ax x a R =++=∈.(1)若1A ∈,用列举法表示A ;(2)当A 中有且只有一个元素时,求a 的值组成的集合B .【正确答案】(1)11,3A ⎧⎫=-⎨⎬⎩⎭(2){}0,1B =【分析】(1)由1A ∈,求出a ,从而确定集合A 中的元素;(2)0a =时,方程是一元一次方程,只有一解;0a ≠时,只有0∆=,方程有两个相等实根,集合只有一个元素。
2015~2016学年度第一学期高一年级第一次段考数学试卷本试卷满分150分 考试时间:120分钟;一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{}{}M=4,5,6,8,N=3,5,7,8,则=MN ( )A .∅B .{}5C .}{8D .{}5,82.下列对应不是从集合A 到集合B 的映射是( )A . A ={直角坐标平面上的点},B ={(,)x y |,x R y R ∈∈},对应法则是:A 中的点与B 中的(,)x y 对应.B . A ={平面内的圆},B ={平面内的三角形},对应法则是:作圆的内接三角形;C . A =N , B =}{0,1,对应法则是:除以2的余数;D . }{0,1,2A =,}{4,1,0B =,对应法则是2:f x y x →=.3.函数()()x xx f ++-=1lg 11的定义域是( ). .(,1)A -∞- .(1,)B +∞ .(1,1)(1,)C -+∞ .(,)D -∞+∞4.已知函数()x x f =,则下列哪个函数与函数()y f x =相等( )A .()()2x x g =B .()2x x h = C .()x x s = D .⎩⎨⎧<->=00x x x x y ,, 5.函数21 (01)x y a a a -=->≠且的图象必经过点( )..(0,1)A .(1,1)B .(2,0)C .(2,2)D6.设2()2f x ax bx =++是定义在[]1,2a +上的偶函数,则)(x f 的值域是( ).A .[10,2]-B .[12,0]-C .[12,2]-D .与,a b 有关,不能确定7.已知2()y f x x =+是奇函数,且(1)1f =.若()()5g x f x =+,则(1)g -=( )..2A .5B .1C - .5D -8.已知函()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( ). A .()1,2 B .()2,3C .(]2,3D .(2,)+∞9.已知0,0,1,1,a b a b >>≠≠,且1ab =,则函数()xf x a =与函数()log b g x x =-的图像可能是( )10.已知是定义在上的偶函数,且在(],0-∞上是增函数,设()4log 7a f =,)3(log 2f b =,()0.60.2c f =,则,,a b c 的大小关系是( ).A .c b a << B .b c a << C .b a c << D .a b c << 11.设函数f (x )=122,11log ,1x x x x -⎧≤⎨->⎩,则满足()2≤x f 的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,+∞D .[)0,+∞12.任取],,[,21b a x x ∈且,21x x ≠若12121()[()()]22x x f f x f x +<+,称()f x 是 [a ,b]上的严格下凸函数,则下列函数中是严格下凸函数的有( ) ①()31f x x =+ ②1(),(0,)f x x x =∈+∞③2()32f x x x =-++ ④()lg f x x = ⑤()2xf x =.1A 个 .2B 个 .3C 个 .4D 个二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.设函数()f x =21121x x x x⎧+≤⎪⎨>⎪⎩,则((3))f f =14.若幂函数()y f x =的图象经过点1(9,)3,则(25)f 的值是________. 15.若函数()f x 的反函数为2()log g x x =,则()f x =________.R ()fx16.若{}min ,,a b c 表示,,a b c 三个数中的最小值,设{}()min 2,2,10(0)x f x x x x =+-≥,则()f x 的最大值为________.三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设U R =,}{}{13,24A x x B x x =≤≤=<<,}{1C x a x a =≤≤+(a 为实数) (Ⅰ)分别求A B ,()U A C B ;(Ⅱ)若BC C =,求a 的取值范围.18.(本小题满分12分)计算:(Ⅰ)2120223213(2)()(3)(1.5)(12)88--⎡⎤----++-⎣⎦(Ⅱ)7log 23log 27lg25lg47lg1++++19.(本小题满分12分)已知函数()f x 是定义域为R 的偶函数,当0x ≥时,()(2)f x x x =-. (Ⅰ)在给定的图示中画出函数()f x 的图象(不需列表);(Ⅱ)求函数()f x 的解析式;(Ⅲ)若方程()f x k =有两解,求k 的范围.(只需写出结果,不要解答过程)20.(本小题满分12分)已知定义在(,0)(0,)-∞⋃+∞上的函数()f x 在(0,)+∞ 上为增函数 ,对定义域内的任意实数,x y 都有)()()(y f x f xy f +=,且(2)1f =, (Ⅰ)求)1(f ,(1)f -的值 ;(Ⅱ)试判断函数f (x )的奇偶性,并给出证明; (Ⅲ)如果(2)2f x -≥,求x 的取值范围.21.(本小题满分12分)已知函数21()log 1axf x x +=-(a 为常数)是奇函数. (Ⅰ)求a 的值;(Ⅱ)若当(]1,3x ∈时,()f x m >恒成立.求实数m 的取值范围.22. (本小题满分12分) 已知二次函数2()f x ax bx c =++和一次函数()g x bx =-,其中,,a b c R ∈且满足,(1)0a b c f >>=.(Ⅰ)证明:函数()f x 与()g x 的图像交于不同的两点;(Ⅱ)若函数()()()F x f x g x =-在[]2,3上的最小值为9,最大值为21,试求,a b 的值.宁国中学高一年级第一学期第一次段考数学试题答案一、选择题(本大题共有12小题,每小题5分,共60分)二、填空题(每小题5分,共20分)解:(1) A ∩B={x |2<x ≤3},.................2分U B={x |x ≤2或x ≥4}A ∪(U B)= {x |x ≤3或x ≥4}...........................4分(2)∵B ∩C=C ∴C ⊆B∴2<a <a +1<4...........................................8分 ∴2<a <3.................................................10分题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B C B C A A C B C D B13、 139 14、 1515、 2x16、 6 三、解答题(共70分,填写在每一题对应格子内,不要超出答题框) 17、(本小题10分)设U R =,}{}{13,24A x x B x x =≤≤=<<,}{1C x a x a =≤≤+(a 为实数) (Ⅰ)分别求A B ,()U A C B ;(Ⅱ)若B C C =,求a 的取值范围.18、(本小题12分)计算:(Ⅰ)2120223213(2)()(3)(1.5)(12)88--⎡⎤----++-⎣⎦ (Ⅱ)7log 23log 27lg25lg47lg1++++解:(Ⅰ)原式=442121992--++-=......6分 (Ⅱ)原式=32202112+++=.............12分19、(本小题12分)已知函数()f x 是定义域为R 的偶函数,当0x ≥时,()(2)f x x x =-.(Ⅰ)在给定的图示中画出函数()f x 的图象(不需列表);(Ⅱ)求函数()f x 的解析式;(Ⅲ)若方程()f x k =有两解,求k 的范围.(只需写出结果,不要解答过程)(Ⅰ)画图正确给4分.(Ⅱ)当0x <时,0()(2)x f x x x ->∴-=-+ 即()(2)f x x x =-+故(2),0()(2),0x x x f x x x x -≥⎧=⎨-+<⎩.............8分(也可根据图像求解析式)(Ⅲ)1k =或0k <...........................................12分20、(本小题12分)已知定义在(,0)(0,)-∞⋃+∞上的函数()f x 在(0,)+∞ 上为增函数 ,对定义域内的任意实数,x y 都有)()()(y f x f xy f +=,且(2)1f =,(Ⅰ)求)1(f ,(1)f -的值 ;(Ⅱ)试判断函数f (x )的奇偶性,并给出证明; (Ⅲ)如果(2)2f x -≥,求x 的取值范围.解:(Ⅰ)令1(1)0x y f ==⇒=...........,....,..1分 令1(1)0x y f ==-⇒-=.............2分 (Ⅱ)()f x 为偶函数................................3分 证明:令1y =-()()(1)f x f x f ⇒-=+- 即()()f x f x -=所以()f x 为偶函数...........,..6分(Ⅲ)令2(4)2(2)2x y f f ==⇒==.........8分 (2)(4)(2)(4)f x f f x f ∴->⇒->.......10分 242x x ⇒->⇒<-或6x >故x 的取值范围为2x <-或6x >.................12分。
【最新整理,下载后即可编借】1•已知集合 ={ | 2- 1= 6},则下列式子表示正确的有 ①7G ②{—7}G ③ e ④{—7, 7}C • A.7个 B.2个C..玲个2.已知全集 = 0 1,2, 3t 令,集合=[1, 2, .3},= {2t 4}则(C ) u 为()A.{7, 2, 4B.{2 4 4C. {a 4 4 4D.{a 2, 4\3•设集合: ={ \1<<令,集合={ 1 2--2 - 3< 则 n (C)=0A.(7, 4) B© 4)C.(7,卩0.(7, 2) U (4 4)4.满足条件{7, 2另9§ {Z 2t 3f 4,5份的集合的个数是A.SB.7C.6D.55•若集合: ={一 1,乃, ={〃多,则集合{ | = = +,e , e }中的元素的个数为() A.JB.4C.3D.26.设集合: = {-/, o t /}, ={ 1 2<},则n =()A.{0 B .{G 7} C ・{—7, f]D.{—7, ()t 1}7.已知集合={ G|3 +2>〃},={6 1( +高一(上)第一次月考数学试卷一、选择题:本大题共12小题,每小题5分,共60分.()0,)①+则的值=7 +/)( —则 n=()A.B.(-A -|)(-OC)-/)C.(一二D.(3 +a).33)8.已知全集=,={ I ( +3<0,=—7}则图中阴影部分表示的集合是()A.{|- B.{|-3<< 3<<—7} 0 C.{ | -D.{ <1<< —3}9.已知集合 ={厶3厂},= {/, }, U =()A.0或需B. 〃或3C.7或需D.7或31()•已知,是关于的一元二次方程2 + (2 + 2= 0的两个不相等的实数根,且满足- + -=-7, 是() A.3 或—7B.3C. 1D.—3或 711•设集合={ | = - + ;, E },= { |$ G },则()"A .=B. g c. gD.与关系不确S 习的最大值是 _________12.设常数 G ,集合={ |( - /)(-)>6^, ={ |>- 7},若 U =,则的取值范围为() A.(—03 2)B.(—8, 2\C.(2 + R)D.[2 +二、填空题:本大题共4小题,每小题5分,共20分.13.若2 ——2=()、则-―2_)/2^巧的值等于16.已知集合 ={ |-- 3+ 2= 6}至多有一个元素,则的取值范围是 _________ .三、解答题:本大题共4小题,共40分17.已知全集 =,={ 1 "={丨—+7< 0,=:{丨 n - 7}(7)求 n;u(C )⑵若 u=,求实数的取值范围.1&已知集合 ={ \-2<5弘 ={1- +U <2 - 7}且 C ,求实数的取值范围.19.已知集合 ={「-+ 2 _ 19=分, ={12_5+ 6= % =={ 1 +—8=。
2014—2015学年度(上)第一次月考高一数学试卷试题满分:150分 考试时间:120分钟 高一 班;姓名:一、选择题(5分×12=60分)1.在“①高一数学课本中的难题;②所有的正三角形; ③方程220x +=的实数解”中,能够表示成集合的是( )A .②B .③C .②③D .①②③2.若{{}|0,|12A x x B x x =<<=≤<,则A B ⋃= ( ) A .{}|0x x ≤ B .{}|2x x ≥C.{0x ≤≤ D .{}|02x x << 3.在映射中B A f →:,},|),{(R y x y x B A ∈==,且),(),(:y x y x y x f +-→,则 与A 中的元素)2,1(-对应的B 中的元素为( )A .)1,3(-B .)3,1(C .)3,1(--D .)1,3(4.下列各组函数)()(x g x f 与的图象相同的是( )A .2)()(,)(x x g x x f ==B .22)1()(,)(+==x x g x x fC .0)(,1)(x x g x f ==D .⎩⎨⎧-==x x x g x x f )(|,|)( )0()0(<≥x x 5.下列图象中表示函数图象的是( )A B C D6.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于( )A .-7B .1C .17D .25 7.已知集合M={x N|4-x N}∈∈,则集合M 中元素个数是( )A .3B .4C .5D .68.已知函数212x y x⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是( ) A .-2 B .2或52- C . 2或-2 D .2或-2或52- 9.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=,则a 的值为( )A .-3或1B .2C .3或1D .110.下列各组函数)()(x g x f 与的图象相同的是( )A .2)()(,)(x x g x x f ==B .22)1()(,)(+==x x g x x fC .0)(,1)(x x g x f ==D .⎩⎨⎧-==x x x g x x f )(|,|)( )0()0(<≥x x 11.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有 )5()5(t f t f -=+,那么下列式子一定成立的是( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9)一、填空题11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B = .12.函数y =x -2x -1+2的值域为__ ___.13.函数()1,3,x f x x +⎧=⎨-+⎩ 1,1,x x ≤>则()()4f f = .14.函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__15.全集R B C A x x B a x x A R =⋃<<-=<=)(},31{},{且,则实数a 的取值范围是二、解答题16.已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R . (Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.17.(1)若函数y = f (2x +1)的定义域为[ 1,2 ],求f (x )的定义域.(2)已知函数f (x )的定义域为[-21,23],求函数g (x )=f (3x )+f (3x )的定义域18.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围19.设函数)(x f 是定义在()∞+,0上的增函数,并且满足)()()(y f x f xy f +=,()12=f ,(1)求)1(f 的值 (2)如果2)3-()(<+x f x f ,求x 的取值范围20.设22{|190}A x x ax a =-+-=,2{|560}B x x x =-+=,}{0822=-+=x x x C 。
2015-2016学年安徽省合肥市庐江县乐桥中学高一(上)第一次月考数学试卷一.选择题(共12小题,每小题5分,共60分)1.若集合X={x|x>﹣1},下列关系式中成立的为()A.0⊆X B.{0}∈X C.∅∈X D.{0}⊆X2.集合A={x|2≤x<4},B={x|x≥3},则A∩B=()A.[2,4)B.[3,+∞)C.[3,4)D.[2,3)3.当x∈[0,+∞)时,下列函数中不是增函数的是()A.y=x+a2x﹣3 B.y=2x C.y=2x2+x+1 D.y=|3﹣x|4.下列函数与y=x有相同图象的一个函数是()A.y=B.y=C.y=log a a x D.y=a(a>0且a≠1)5.根式(式中a>0)的分数指数幂形式为()A.B.C.D.6.若函数f(x)=4x2﹣kx﹣8在[5,8]上是单调函数,则k的取值范围是()A.(﹣∞,40] B.[40,64] C.(﹣∞,40]∪[64,+∞)D.[64,+∞)7.设函数则f(f(f(1)))=()A.0 B.C.1 D.28.已知函数f(x)=ax7+bx5+cx3++6,若f(3)=5,则f(﹣3)=()A.﹣5 B.5 C.6 D.79.函数f(x)=+lg(3x+1)的定义域是()A.(﹣,1)B.(﹣,+∞)C.(﹣,)D.(﹣∞,﹣)10.已知函数f(x)=ax2﹣x+a+1在(﹣∞,2)上单调递减,则a的取值范围是()A.(0,] B.[0,] C.[2,+∞)D.[0,4]11.已知函数y=f(x)的图象如图,则以下四个函数y=f(﹣x),y=﹣f(x),y=f(|x|)与y=|f(x)|的图象分别和上面四个图的正确对应关系是()A.①②④③ B.①②③④ C.④③②① D.④③①②12.定义在R上的偶函数f (x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有<0,又f (﹣3)=1,则不等式f (x)<1的解集为()A.{x|x<﹣3或x>3} B.{x|x<﹣3或0<x<3}C.{x|x>3或﹣3<x<0} D.{x|﹣3<x<0或0<x<3}二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.当a>0且a≠1时,函数f(x)=a x﹣2﹣3必过定点.14.已知函数f(x)是偶函数,当x>0时,f(x)=﹣(x﹣1)2+1,则当x<0时,f(x)= .15.函数f(x)=log(5+4x﹣x2)的单调递增区间.16.已知函数f(x)=,则满足不等式f(1﹣x2)>f(2x)的实数x的取值范围是.三.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.求值:(1)(2).18.已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁R N);(2)若M∪N=M,求实数a的取值范围.19.定义在R上的奇函数f(x),当x>0时,f(x)=x(1+x)+1,(1)求函数的解析式(2)求函数的值域.20.设,若0<a<1,试求:(1)f(a)+f(1﹣a)的值;(2)的值.21.已知函数f(x)=log a(1+x),g(x)=log a(1﹣x),其中(a>0且a≠1),设h(x)=f(x)﹣g(x).(1)判断h(x)的奇偶性,并说明理由;(2)若f(3)=2,求使h(x)>0成立的x的集合.22.分设函数f(x)是定义在R上的函数,对任意实数m、n,都有f(m)•f(n)=f(m+n),且当x<0时,f(x)>1.(1)证明当x>0时,0<f(x)<1;(2)证明f(x)是R上的减函数;(3)如果对任意实数x,有f(2ax﹣x2)•f(ax2﹣2x+4)<1恒成立,求实数a的取值范围.2015-2016学年安徽省合肥市庐江县乐桥中学高一(上)第一次月考数学试卷参考答案与试题解析一.选择题(共12小题,每小题5分,共60分)1.若集合X={x|x>﹣1},下列关系式中成立的为()A.0⊆X B.{0}∈X C.∅∈X D.{0}⊆X【考点】子集与真子集;元素与集合关系的判断.【专题】计算题.【分析】根据0大于﹣1可知0是集合X中的元素,且以0为元素的集合是集合X的子集,即可判断出答案.【解答】解:根据集合中的不等式x>﹣1可知0是集合X的元素即0∈X,则{0}⊆X故选D.【点评】此题考查学生掌握元素与集合关系的判断方法,以及理解子集和真子集的概念来判断两集合之间的关系,也是高考常考的题型.学生做题时容易把元素与集合的关系与集合与集合的关系混淆.2.集合A={x|2≤x<4},B={x|x≥3},则A∩B=()A.[2,4)B.[3,+∞)C.[3,4)D.[2,3)【考点】交集及其运算.【专题】集合.【分析】由A与B,找出两集合的交集即可.【解答】解:∵A=[2,4),B=[3,+∞),∴A∩B=[3,4).故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.当x∈[0,+∞)时,下列函数中不是增函数的是()A.y=x+a2x﹣3 B.y=2x C.y=2x2+x+1 D.y=|3﹣x|【考点】函数单调性的判断与证明.【专题】计算题.【分析】根据一次函数单调性,我们可以判断A答案是否答条件;根据指数函数单调性,我们可以判断B答案是否答条件;根据二次函数单调性,我们可以判断C答案是否答条件;根据一次函数单调性,结合函数图象的对折变换法则,我们可以判断D答案是否答条件;进而得到答案.【解答】解:在x∈[0,+∞)时,A中,函数y=x+a2x﹣3为增函数;在x∈[0,+∞)时,B中,函数y=2x为增函数;在x∈[0,+∞)时,C中,函数y=2x2+x+1为增函数;D中,函数y=|3﹣x|在[0,3]上为减函数,在[3,+∞)上为增函数;故选D【点评】本题考查的知识点是函数单调性的判断与证明,熟练掌握各种初等基本函数的单调性,是解答本题的关键.4.下列函数与y=x有相同图象的一个函数是()A.y=B.y=C.y=log a a x D.y=a(a>0且a≠1)【考点】判断两个函数是否为同一函数.【专题】函数的性质及应用.【分析】本题可以根据选项中函数的定义域、值域、解析式等方面来判断它们与原函数是否为同一个函数,得到本题结论.【解答】解:选项A中,y≥0,与原函数y=x的值域R不符;选项B中,x≠0,与原函数y=x的定义域R不符;选项C,y=log a a x=x,与原函数y=x一致;选项D,x≥0,与原函数y=x的定义域不符;故选C.【点评】本题考查了函数的定义,本题难度不大,属于基础题.5.根式(式中a>0)的分数指数幂形式为()A.B.C.D.【考点】根式与分数指数幂的互化及其化简运算.【专题】函数的性质及应用.【分析】直接利用分数指数幂的运算法则求解即可.【解答】解:═=.故选:C.【点评】本题考查分数指数幂的运算法则的应用,基本知识的考查..6.若函数f(x)=4x2﹣kx﹣8在[5,8]上是单调函数,则k的取值范围是()A.(﹣∞,40] B.[40,64] C.(﹣∞,40]∪[64,+∞)D.[64,+∞)【考点】二次函数的性质.【专题】计算题.【分析】根据二次函数的性质知对称轴,在[5,8]上是单调函数则对称轴不能在这个区间上,,或,解出不等式组求出交集.【解答】解:根据二次函数的性质知对称轴,在[5,8]上是单调函数则对称轴不能在这个区间上∴,或,得k≤40,或k≥64故选C.【点评】本题考查二次函数的性质,本题解题的关键是看出二次函数在一个区间上单调,只有对称轴不在这个区间上,本题是一个基础题.7.设函数则f(f(f(1)))=()A.0 B.C.1 D.2【考点】函数的值.【专题】计算题;函数的性质及应用.【分析】由函数,知f (1)=0,f (0)=2,f (2)=1,由此能求出f (f (f (1)))的值.【解答】解:∵函数,∴f(f (f (1)))=f (f (0)) =f (2)=1. 故选C .【点评】本题考查函数值的求法,是基础题.解题时要认真审题,仔细解答,注意分段函数的性质的灵活运用.8.已知函数f (x )=ax 7+bx 5+cx 3++6,若f (3)=5,则f (﹣3)=( ) A .﹣5 B .5C .6D .7【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】由已知可得f (x )﹣6+f (﹣x )﹣6=0,代入即可得出. 【解答】解:∵f(x )=ax 7+bx 5+cx 3++6, ∴f(x )﹣6+f (﹣x )﹣6=0, ∴5﹣12+f (﹣3)=0, 解得f (﹣3)=7, 故选:D .【点评】本题考查了函数的奇偶性、函数求值,考查了推理能力与计算能力,属于中档题.9.函数f (x )=+lg (3x+1)的定义域是( )A .(﹣,1)B .(﹣,+∞)C .(﹣,)D .(﹣∞,﹣) 【考点】函数的定义域及其求法. 【专题】函数的性质及应用.【分析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解x的取值集合得答案.【解答】解:要使原函数有意义,则,解得:.∴函数f(x)=+lg(3x+1)的定义域是().故选:A.【点评】本题考查函数的定义域及其求法,考查了不等式组的解法,是基础题.10.已知函数f(x)=ax2﹣x+a+1在(﹣∞,2)上单调递减,则a的取值范围是()A.(0,] B.[0,] C.[2,+∞)D.[0,4]【考点】二次函数的性质.【专题】计算题.【分析】对函数求导,函数在(﹣∞,2)上单调递减,可知导数在(﹣∞,2)上导数值小于等于0,可求出a的取值范围.【解答】解:对函数求导y′=2ax﹣1,函数在(﹣∞,2)上单调递减,则导数在(﹣∞,2)上导数值小于等于0,当a=0时,y′=﹣1,恒小于0,符合题意;当a≠0时,因函导数是一次函数,故只有a>0,且最小值为y′=2a×2﹣1≤0,⇒a≤,∴a∈[0,],解法二、当a=0时,f(x)递减成立;当a>0时,对称轴为x=,由题意可得≥2,解得0<a≤,当a<0不成立.∴a∈[0,].故选B.【点评】本题主要二次函数的性质、考查函数的导数求解和单调性的应用.属于基础题.11.已知函数y=f(x)的图象如图,则以下四个函数y=f(﹣x),y=﹣f(x),y=f(|x|)与y=|f(x)|的图象分别和上面四个图的正确对应关系是()A.①②④③ B.①②③④ C.④③②① D.④③①②【考点】函数的图象.【专题】数形结合;函数的性质及应用.【分析】y=f(﹣x)与函数y=f(x)的图象关于y轴对称;y=﹣f(x)与函数y=f(x)的图象关于x轴对称;要得到y=f(|x|)的图象,可将y=f(x),x≤0的部分作出,再利用偶函数的图象关于y轴的对称性,作出x<0的图象即可;要得到y=|f(x)|的图象,可将y=f(x)的图象在x轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变即可;【解答】解:由对称变换规律知:y=f(﹣x)与函数y=f(x)的图象关于y轴对称;y=﹣f(x)与函数y=f(x)的图象关于x轴对称;要得到y=f(|x|)的图象,可将y=f(x),x≤0的部分作出,再利用偶函数的图象关于y 轴的对称性,作出x<0的图象即可;要得到y=|f(x)|的图象,可将y=f(x)的图象在x轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变即可;故选:A.【点评】本题考查函数的图象、函数的图象与图象变化,考查学生读图能力,分析问题解决问题的能力,属于基础题.12.定义在R上的偶函数f (x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有<0,又f (﹣3)=1,则不等式f (x)<1的解集为()A.{x|x<﹣3或x>3} B.{x|x<﹣3或0<x<3}C.{x|x>3或﹣3<x<0} D.{x|﹣3<x<0或0<x<3}【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】先根据<0,可推断f(x)在[0,+∞)上单调递减,又由于f(x)是偶函数,可知在(﹣∞,0]单调递增.进而由f (3)=f (﹣3)=1,可得不等式f (x)<1的解集.【解答】解:∵对任意的x1,x2∈[0,+∞)(x1≠x2),有<0,∴f(x)在[0,+∞)上单调递减,又∵f(x)是偶函数,∴f(x)在(﹣∞,0]单调递增.∵f (3)=f (﹣3)=1,由f (x)<1得:x<﹣3或x>3,∴不等式f (x)<1的解集为{x|x<﹣3或x>3},故选:A【点评】本题主要考查了函数奇偶性的应用和函数的单调性的应用.属基础题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.当a>0且a≠1时,函数f(x)=a x﹣2﹣3必过定点(2,﹣2).【考点】指数函数的单调性与特殊点.【专题】计算题.【分析】由式子a0=1可以确定x=2时,f(2)=﹣2,即可得答案.【解答】解:因为a0=1,故f(2)=a0﹣3=﹣2,所以函数f (x)=a x﹣2﹣3必过定点(2,﹣2)故答案为:(2,﹣2)【点评】本题考查指数型函数恒过定点问题,抓住a0=1是解决问题的关键,属基础题.14.已知函数f(x)是偶函数,当x>0时,f(x)=﹣(x﹣1)2+1,则当x<0时,f(x)= ﹣x2﹣2x .【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据偶函数的对称性进行转化即可.【解答】解:若x<0,则﹣x>0,∵当x>0时,f(x)=﹣(x﹣1)2+1,∴f(﹣x)=﹣(﹣x﹣1)2+1=﹣(x+1)2+1,∵函数f(x)是偶函数,∴f(﹣x)=f(x),即f(﹣x)=﹣(x+1)2+1=f(x),即f(x)=﹣(x+1)2+1=﹣x2﹣2x,(x<0),故答案为:﹣x2﹣2x【点评】本题主要考查函数解析式的求解,根据函数奇偶性的对称性是解决本题的关键.15.函数f(x)=log(5+4x﹣x2)的单调递增区间[2,5).【考点】复合函数的单调性.【专题】函数的性质及应用.【分析】令t=5+4x﹣x2 >0,求得函数的定义域为(﹣1,5 ),f(x)=log t,本题即求二次函数t=﹣(x﹣2)2+9在(﹣1,5 )上的减区间,再利用二次函数的性质可得t在(﹣1,5 )上的减区间.【解答】解:令t=5+4x﹣x2 >0,求得﹣1<x<5,故函数的定义域为(﹣1,5 ),f(x)=log t,故本题即求二次函数t=﹣(x﹣2)2+9在(﹣1,5 )上的减区间,利用二次函数的性质可得t=﹣(x﹣2)2+9在(﹣1,5 )上的减区间为[2,5),故答案为:[2,5).【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.16.已知函数f(x)=,则满足不等式f(1﹣x2)>f(2x)的实数x的取值范围是(1,+∞)∪(﹣∞,﹣1﹣),.【考点】其他不等式的解法.【专题】函数的性质及应用.【分析】由题意可得①1﹣x2 <0,2x>0,或②1﹣x2 <0,2x≤0,1﹣x2 <2x.分别求出①和②的解集,再取并集即得所求.【解答】解:由题意可得①1﹣x2 <0,2x>0,或②1﹣x2 <0,2x≤0,1﹣x2 <2x.由①可得 x>1;由②可得 x<﹣1﹣.综上可得,实数x的取值范围为(1,+∞)∪(﹣∞,﹣1﹣),故答案为(1,+∞)∪(﹣∞,﹣1﹣).【点评】本题主要考查一元二次不等式的解法,体现了分类讨论的数学思想,属于中档题.三.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.求值:(1)(2).【考点】对数的运算性质.【专题】计算题.【分析】分别根据指数幂和对数的运算法则直接进行计算即可.【解答】解:(1)原式===50,(2)原式===11.【点评】本题主要考查指数幂和对数的计算,要求熟练掌握指数幂和对数的运算法则,考查学生的计算能力.18.已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁R N);(2)若M∪N=M,求实数a的取值范围.【考点】并集及其运算;交、并、补集的混合运算.【专题】集合.【分析】(Ⅰ)a=2时,M={x|﹣2≤x≤5},N={3≤x≤5},由此能求出M∩(C R N).(Ⅱ)由M∪N=M,得N⊂M,由此能求出实数a的取值范围.【解答】(本小题满分8分)解:(Ⅰ)a=2时,M={x|﹣2≤x≤5},N={3≤x≤5},C R N={x|x<3或x>5},所以M∩(C R N)={x|﹣2≤x<3}.(Ⅱ)∵M∪N=M,∴N⊂M,①a+1>2a+1,解得a<0;②,解得0≤a≤2.所以a≤2.【点评】本题考查交集、实集的应用,考查实数的取值范围的求法,是基础题.19.定义在R上的奇函数f(x),当x>0时,f(x)=x(1+x)+1,(1)求函数的解析式(2)求函数的值域.【考点】函数解析式的求解及常用方法;函数的值域.【专题】函数的性质及应用.【分析】(1)运用奇函数定义求解,注意f(0)的值.(2)根据二次函数,分段函数解析式求解.【解答】解:(1)∵在R上的奇函数f(x),∴f(﹣x)=f(x),即x=0,则f(0)=0∵当x>0时,f(x)=x(1+x)+1,∴当x<0时,﹣x>0,f(﹣x)=(﹣x)(1﹣x)+1=x2﹣x+1,f(x)=﹣x2+x﹣1,(x<0)故f(x)=(2)根据解析式可判断,∵当x>0时,函数单调递增,f(x)>1,当x<0时,函数单调递增,f(x)<﹣1,∴函数的值域值域为:(﹣∞,﹣1)∪(1,+∞)∪{0}【点评】本题考查了函数的性质,概念,属于容易题.20.设,若0<a<1,试求:(1)f(a)+f(1﹣a)的值;(2)的值.【考点】数列的求和;函数的值.【专题】计算题;函数的性质及应用;等差数列与等比数列.【分析】(1)由,0<a<1,知f(a)+f(1﹣a)=+,由此能求出f(a)+f(1﹣a)的值.(2)由f(a)+f(1﹣a)=1,知=[f()+f()]+[f()+f()]+…+[f()+f()],由此能求出结果.【解答】解:(1)∵,0<a<1,∴f(a)+f(1﹣a)=+=+=+=1.(2)∵f(a)+f(1﹣a)=1,∴=[f()+f()]+[f()+f()]+…+[f()+f()]=1×1005=1005.【点评】本题考查函数值的求法,考查等价转化思想.解题时要认真审题,仔细解答,合理地挖掘题设中的隐含条件,巧妙地加以利用.21.已知函数f(x)=log a(1+x),g(x)=log a(1﹣x),其中(a>0且a≠1),设h(x)=f(x)﹣g(x).(1)判断h(x)的奇偶性,并说明理由;(2)若f(3)=2,求使h(x)>0成立的x的集合.【考点】函数奇偶性的判断;对数函数的单调性与特殊点.【专题】计算题;函数的性质及应用.【分析】(1)由对数的意义,确定函数h(x)的定义域,再验证h(﹣x)与h(x)的关系,即可得到结论;(2)确定函数h(x)的解析式,从而可得对数不等式,利用对数函数的单调性,即可求得使h(x)>0成立的x的集合.【解答】解:(1)由题意得1+x>0,即x>﹣1,∴函数f(x)的定义域为(﹣1,+∞),1﹣x>0,即x<1,∴函数g(x)的定义域为(﹣∞,1),∴函数h(x)的定义域为(﹣1,1).∵对任意的x∈(﹣1,1),﹣x∈(﹣1,1),h(﹣x)=f(﹣x)﹣g(﹣x)=log a(1﹣x)﹣log a(1+x)=g(x)﹣f(x)=﹣h(x),∴h(x)是奇函数.…(2)由f(3)=2,得a=2.此时h(x)=log2(1+x)﹣log2(1﹣x),由h(x)>0即log2(1+x)﹣log2(1﹣x)>0,∴log2(1+x)>log2(1﹣x).由1+x>1﹣x>0,解得0<x<1.故使h(x)>0成立的x的集合是{x|0<x<1}.…【点评】本题考查函数奇偶性的判断,考查解不等式,考查对数的运算法则,属于中档题.22.分设函数f(x)是定义在R上的函数,对任意实数m、n,都有f(m)•f(n)=f(m+n),且当x<0时,f(x)>1.(1)证明当x>0时,0<f(x)<1;(2)证明f(x)是R上的减函数;(3)如果对任意实数x,有f(2ax﹣x2)•f(ax2﹣2x+4)<1恒成立,求实数a的取值范围.【考点】函数恒成立问题;函数单调性的判断与证明.【专题】函数的性质及应用.【分析】(1)赋值法先求出f(0)的值,然后结合x<0时f(x)的范围;(2)利用定义法,结合第一问的结果利用作商法比较f(x1)与f(x2)的大小;(3)结合已知先将原式左边合并,将式子变成两个函数值的大小比较,再利用单调性列出不等式.【解答】解:(1)令m=0,n=﹣1,则f(0)f(﹣1)=f(﹣1),∵f(﹣1)>0,∴f(0)=1,再令m=x>0,n=﹣x则f(x)f(﹣x)=f(0)=1,∴,∵﹣x<0,∴,即当x>0时,0<f(x)<1(2)设x1<x2,则f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)f(x1),。