隧道控制爆破技术--实例
- 格式:ppt
- 大小:1.90 MB
- 文档页数:81
建筑技术Construction & Decoration建筑与装饰2020年4月中 163简述地铁隧道矿山法控制爆破技术张明安徽省路桥工程集团有限责任公司 安徽 合肥 230000摘 要 某地铁矿山法暗挖隧地处城市核心区,下穿高速,沿线重要建筑物众多,隧道埋深较浅,围岩岩性较差,如何设计爆破开挖方案,从而控制好爆破震动的不利效应十分重要,本文结合工程具体实例,主要分析地铁隧道矿山法控制爆破技术方法。
关键词 地铁隧道;爆破技术1 工程概况某地铁中间风井区间矿山法隧道,下穿高速,沿线重要建筑物众多。
围岩级别以Ⅱ~Ⅲ级为主,位于中~微风化花岗岩层中,拱顶埋深约9.8~23.6m 。
地下水类型主要为基岩裂隙水,主要含水层为强、中风化岩带基岩风化裂隙水,地层分布连续,厚度较大,属弱~中等透水性地层,并具微承压性。
场地地下水埋深0.80m ~5.80m ,稳定水位标高为3.89~11.70m 。
2 竖井施工2.1 施工方案爆破器材采用直径32mm 的2号岩石乳化炸药,1~15奇数段位非电毫秒雷管连接爆破网络,电毫秒雷管引爆爆破网络,采用专用起爆器起爆方式。
采用YT-28风枪钻孔,孔径为42mm ,掏槽孔为4孔楔形掏槽,孔深控制在1.2m ,倾角70°,炮眼间距、排距控制在0.8~0.9m ;周边孔及辅助孔深度控制在1.0m ,炮眼间距0.5m ,排距0.6m 。
爆破开挖时,首先按照方案制定的方式分三次爆破。
设计掏槽眼为楔形多级掏槽,由中向两侧逐渐过渡成垂直炮眼。
采用反向装药的形式,雷管“对号入座”药卷入孔后用PVC 管将其推至炮眼最底端。
炸药使用2号岩石乳化炸药,起爆网络采用1~15的奇数段非电毫秒雷管分段延期起爆,起爆方式为起爆器连接电毫秒雷管起爆。
装药完毕后用炮泥填塞密实,填塞长度不得小于20cm 。
装药完毕后按照技术交底的要求连接网络,15~20根导爆管扎成一束,由2发电毫秒雷管反向绑扎引爆。
邻近铁路运营线隧道控制爆破技术摘要:福州绕城公路东南段A14合同段鳌峰山隧道施工:该隧道为双洞分离式隧道,全长1728.5米,隧道临近现有杭深运营线,控制爆破区域为隧道出口的进洞420m段,为保证既有运营线在隧道爆破时能安全运营,通过对隧道口采用盘踞分块切割工艺,并在后期爆破施工时采用小间距光面爆破并增加防爆排架保证施工安全,为邻近铁路运营线隧道爆破施工提供了重要参考意义。
关键词:小间距光面爆破;盘踞分块切割;安全监控;关键技术1工程概况福州绕城公路东南段A14合同段鳌峰山隧道施工:该隧道为双洞分离式隧道,全长1728.5米。
设计行车道宽度为3.75×3m,高度为5m,计算车速为100km/h。
其中本合同段负责左线982.2m,自ZK68+815.8至ZK69+798,右线956m,自YK68+820至YK69+776。
控制爆破区域为隧道出口的进洞420m段,桩号ZK69+363~ZK69+783,YK69+350~YK69+770。
隧道土石方开挖约13万m3。
鳌峰山隧道与铁路杭深线邻近,位于福厦线福州~福清区间。
新建鳌峰山隧道工程(洞口桩号YK69+776)距离福厦高铁630米。
2施工方案根据鳌峰山隧道特点,隧道洞口15m范围内采用盘踞分块切割,石块转移破碎的机械开挖施工工艺,隧道洞身开挖采用控制爆破法施工,对既有铁路设施安全允许振动速度控制在1cm/s以内,爆破作业前,按照爆破设计方案进行试爆,试爆工作遵循由小到大的原则进行。
试爆先按设计单耗的最低量并进行三个以上爆点实施,根据试爆的结果调整爆破孔、排距及炸药单耗,开挖台车的前、中、后位置,设置3道密孔钢筋网对爆破飞石进行阻截。
网孔孔径20mm,幅宽1m,密孔钢筋网设计为折叠式,爆破时展开,覆盖整个初支后的断面,有效防止飞石飞出洞外。
隧道口10m处搭设12m高的双层钢管防护排架悬挂一层嵌丝炮被,防止爆破飞石影响铁路运营,保证施工及其他人员、设备安全。
隧道控制爆破设计与实践1 工程条件道德山隧道为新建向莆铁路中的一条隧道,全长6043m,围岩以Ⅱ级为研究基础。
2 光面爆破设计2.1 光面爆破的意义隧道施工中,光爆质量越好,隧道的安全度越高,施工成本越低。
因此,研究和实施光面爆破技术在当今隧道施工中是十分必要的,具有重要意义。
2.2 光面爆破施工要点2.2.1 转变“宁超勿欠”的传统观念大部分“规范”要求严格,不允许欠挖,其实这是不科学的。
在控制超欠挖的光爆技术的研究中,首先应转变观念,即必须转变“宁超勿欠”的传统观点,树立“少欠少超”的观点。
2.2.2 提高钻孔技术水平钻孔技术对隧道超欠挖的影响主要是周边炮孔的外插角(q)、开口位置(e)和钻孔的深度(L),它们与超欠挖高度(h)有如下的关系: h=e+Ltan(q/2)(1)式表明:随外插角q和钻孔深度L的增大,h增大。
L是一个设计指标,可在设计中加以控制。
一般情况下,都采用3.5m左右的钻孔深度。
深孔爆破的一次装药量也大,对周边围岩的损伤也大。
这也不符合施工中尽可能地维护围岩自身的、固有的强度的原则。
q和e主要取决于司钻工的操作水平和所采用的钻机的某些性能。
通常,钻机都有一个外缘高度,为保证后续掘进能正常钻孔,就必须有一个超挖高度hd。
此外由于钻孔作业覆盖空间所限,以及受隧道形状的影响,拱部180度范围内,则应控制上仰角,而在两侧边墙部位则应控制水平的外插角。
周边孔开口位置e有三种情况,第一种情况是在放样线处开钻孔,第二种情况是在放样线外e处开钻孔,第三种情况是在放样线内移e 处开钻孔。
其出现机率和差值大小则主要决定于钻孔水平。
第一种情况不影响超欠挖;在第二种情况时,将使超挖增加一个e值,而第三种情况,将使超挖减小一个e值,而出现欠挖。
因而,钻孔时先定位,后钻进,并在掌子面上完整醒目地标出周边孔位线,把e控制在较小范围内(约在3cm)是可能的。
由(1)式可知:當q、L一定时,e作为一个独立参数,当e为正值时,随e的增加,h增加;而当e为负值时,随e的减小,h则减小。
隧道下穿施工爆破开挖控制技术莞惠城际轨道交通项目起点自穗莞深洪梅站外区间接轨后折向东北,经东莞市洪梅、道滘、南城、东城、寮步、松山湖、大朗、常平、谢岗镇(区),惠州市沥林、陈江、惠环、惠城等镇(区)。
贯通方案正线全长99.448km,其中东莞市境内长67.460 km,惠州市境内长31.988 km。
全线高架段长55.831 km(含高架站),路基段长6.586 km(含地面站),地下段长35.391 km(含地下站),过渡段(U型槽)长1.640 km。
莞惠城际线路DK23+680~DK25+790段从上屯村居民区下穿过,地面以下埋深20~40m,采用矿山法施工。
隧道下穿上屯村居民区,周边建筑密集、交通繁忙、人流与车流密度大;隧道场地内地层条件复杂,场地内含有粉细砂、中粗砂、砾砂、软土等多个土质不均、性质较差的土层,软土多为淤泥、淤泥质土及淤泥质粉细砂,呈软~流塑状,具有天然含水量高、天然孔隙比大、高压缩性等特点。
论文以该工程为例,就隧道穿越上屯村居民区施工中的爆破、开挖控制等进行了论述,指导了该工程的施工。
1. 工程概况及工程地质1.1 工程概况本标段为GZH-4标,位于东莞市东城区及寮步镇,招标设计线路沿八一大道、松山湖大道布设,现线路向北侧改移穿越八一大道、旗峰山、高尔夫球场、环城路、莞深高速、1.1 km居民区、黄沙河后与GZH-5标相接。
本标段共设7座竖井,井深19~52m,暗挖隧道全部通过竖井开挖。
本标段正线长 5.300km (DK19+780~DK25+080),全部为暗挖隧道,另包括无砟轨道道床、道路改移、沟渠改移、管线改移(不包括10KV及以上高压线路迁改)、工程建设其他费用(大型零时工程)。
(注:6#竖井暂时取消)1.2 地形地貌本标段位于东莞市东城区及竂步镇,区间场地属剥蚀丘陵及丘间谷底地貌,地形有较大起伏,标高在6.2~133.3m之间变化,谷间多为菜地、高尔夫球场、上屯村居民区。
隧道全断⾯开挖光⾯爆破⼯法(附⽰意图)隧道全断⾯开挖光⾯爆破⼯法(附⽰意图)隧道全断⾯开挖光⾯爆破⼯法光⾯爆破是通过正确选择爆破参数和合理的施⼯⽅法,达到爆后壁⾯平整规则、轮廓线符合设计要求的⼀种控制爆破技术。
隧道全断开挖光⾯爆破⼯法,是应⽤光⾯爆破技术,对隧道实施全断⾯⼀次开挖的⼀种施⼯⽅法。
它与传统的爆破法相⽐,最显著的优点是能有效地控制周边眼炸药的爆破作⽤,从⽽减少对围岩的扰动,保持围岩的稳定,确保施⼯安全,同时,⼜能减少超、⽋挖,提⾼⼯程质量和进度。
⼀、光⾯爆破作⽤原理光⾯爆破的破岩机理是⼀个⼗分复杂的问题,⽬前仍在探索之中。
尽管在理论上还不甚成熟,但在定性分析⽅⾯已有共识。
⼀般认为,炸药起爆时,对岩体产⽣两种效应:⼀是药包爆炸瞬时⾼温⾼压⽓体形成的冲击波效应;⼆是爆炸⽓体膨胀做功所起的作⽤。
光⾯爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产⽣应⼒波的叠加,并产⽣切向拉⼒,拉⼒的最⼤值发⽣在相邻炮眼中⼼连线的中点,当岩体的极限抗拉强度⼩于此拉⼒时,岩体便被拉裂,在炮眼中⼼连线上形成裂缝,随后,爆炸⽓的膨胀使裂缝进⼀步扩展,形成平整的爆裂⾯⼆、光⾯爆破的技术要点要使光⾯爆破取得良好效果,⼀般需掌握以下技术要点:1.根据围岩特点,合理选定周边眼的间距和最⼩抵抗线,尽最⼤努⼒提⾼钻眼质量。
2.严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。
3.周边眼宜使⽤⼩直径药卷和低猛度、低爆速的炸药。
为满⾜装结构要求,可借助导爆索(传爆线)来实现空⽓间隔装药。
4.采⽤毫秒微差有序起爆。
要安排好开挖程序,使光⾯爆破具有良好的临空⾯。
(⼀)周边眼常⽤参数的选择1.周边眼间距E它是直接控制开挖轮廓⾯平整度的主要因素。
⼀般情况下E=(12~15)d,其中炮眼直径d=35~45mm。
对于节理较发育、层理明显以及开挖轮廓要求较⾼的地下⼯程,周边眼间距可适当减⼩,也可在两炮眼之间增加⼀个不装药的导向空眼。
0引言当前,在高速铁路建设中,特别是在与高压输电线错综交叉且又紧邻高压输电设备的复杂环境下进行石方控制爆破施工时,为避免爆破施工事故的发生,应采取一套安全、可靠、经济、有效的管理和技术措施。
本文针对紧邻高压输电线及铁塔的特别复杂隧道工程控制爆破施工,从方案施工总体思路、爆破方案确定、施工工艺及操作要点、爆破参数设计、装药结构、填塞质量控制、起爆网络设计、安全防护设计等方面进行分析,并据此提出施工建议,以期对在隧道施工中存在高压输电铁塔复杂环境下的控制爆破施工起到参考和借鉴作用。
1工程概况南宁至玉林高速铁路为国家Ⅰ级电气化铁路,设计时速为350km/h ,由中铁二十五局集团承建的南玉铁路№1标段站前工程,隧道工程共5座,其中盘古岭隧道进口右侧DYK2+422m 有一处220kV 高压输电线与线路中线成73°夹角斜向在上空穿过,该高压线铁塔高度为18m ,根据设备管理单位提供资料,铁塔基础为4根1.8m×1.8m 钢筋混凝土桩基础,长为8m ,距隧道洞底垂直高度为32m ,距锚固桩顶面正上方垂直高度为39.5m ;线路右侧高压线铁塔距隧道开挖线27m 、高出线路位置26.5m ,距两个锚固桩为20m ,高出锚固桩顶面26.5m ,存在爆破飞石击中高压输电线和爆破振动对铁塔稳定的可能性,给爆破施工防护带来困难。
具体施工环境如图1、图2所示。
图1盘古岭隧道进口爆破作业平面示意图2盘古岭隧道进口与高压输电线及铁塔位置立面示意为保证施工爆破振动及电力电塔的安全,隧道施工中应对DYK2+362.95~DYK2+450采取控制爆破,并对电塔基础进行质点峰值振动速度和主振频率进行监测,加强对洞内及电塔监测,确保施工安全。
【作者简介】蒋桂燕,女,任职于中铁二十五集团第四工程有限公司,工程师,研究方向:建筑工程。
【引用本文】蒋桂燕.南玉隧道高压铁塔控制爆破施工技术应用[J ].企业科技与发展,2023(2):59-62.◆本期专题◆南玉隧道高压铁塔控制爆破施工技术应用蒋桂燕(中铁二十五局集团第四工程有限公司,广西柳州545007)摘要:文章为解决高速铁路隧道爆破施工对高压铁塔爆破振动和飞石的有害影响,结合南玉高速铁路隧道工程实例,介绍在新建隧道洞口紧邻高压电塔且又存在锚固桩爆破施工的复杂情况下,采取抗非法起爆、精确延时、起爆时序等一套可行的控制爆破施工技术,保证了安全要求和工期目标,为其他类似工程的施工工作提供一定的借鉴。
・隧道/地下工程・收稿日期:20060713作者简介:齐景岳(1941—),男,高级工程师,1964年毕业于唐山铁道学院桥隧系。
隧道控制爆破技术齐景岳(铁道部工程管理中心,北京 100844)摘 要:通过对隧道爆破在围岩中产生的破坏和扰动,以及爆破地震动效应的分析指出,通常用控制爆破时隧道围岩或结构物的峰值振动速度,来实现控制爆破破坏的目的是可行的。
详细介绍微振动爆破技术的设计程序和施工要点。
列举铁路、公路、城市地铁等一些不同类型的隧道工程成功的实例,介绍其各具特色的施工方法和技术参数,总结隧道控制爆破技术要点。
关键词:隧道工程;控制爆破;微振动爆破中图分类号:U45516 文献标识码:A 文章编号:10042954(2006)11007209近年来,随着国民经济的飞速发展,各种工程建设的规模也日益扩大。
在全国各地,蓬勃突起的铁路、公路、水工建设,特别是高速公路和许多城市地铁及轻轨的建设,都有许多隧道和地下工程。
在这数量众多的、有着多种不同用途的隧道工程的建设过程中,有些隧道会遇到在开挖时必须采用减轻爆破振动强度的爆破技术,方能按期安全完成施工任务。
这时,通常有以下3种情况:(1)软弱围岩隧道为避免塌方和能安全地进行大断面开挖,使用大型施工机械;(2)城市隧道地面及地下环境复杂,人口密集,房屋建筑林立,地下建筑管线密布等引发的与山岭隧道完全不同的一些新的问题;(3)两相邻的隧道线间距偏小,同时施工或新建隧道紧邻已有隧道开挖爆破的问题。
在完成隧道工程施工的同时,不对隧道围岩以及隧道周围环境,特别是地表建筑造成破坏,或是过大的扰动,是当前技术人员在许多工程实践中正在努力追求的一个目标。
为此,城市隧道、山岭隧道等工程控制爆破技术也越来越受到广大工程技术人员的关注。
而隧道爆破技术,虽然经过了数十年的发展和大量的工程实践,有些如隧道光面爆破、预裂爆破技术已趋于成熟;但是,由于爆破器材发展的滞后,以及对许多工程爆破现象缺乏深入、理性的认识和解析,隧道控制爆破目前仍然主要依靠经验,主要用工程类比法来完成施工。