垂直流人工湿地
- 格式:pdf
- 大小:526.99 KB
- 文档页数:7
人工湿地工程施工方案目录人工湿地工程施工方案 (1)一、湿地概述 (2)复合垂直流人工湿地系统由下向流池和上向流池串联组成,两池中间设有隔墙,底部连通。
下行池和上行池中均填有不同粒径的碎石和其他填料,其中下行池表层的填料层比上行池厚10cm。
基质种植不同种类的净化植物。
下行流表层铺设布水管,上行流表层布设收集管,基质底层布设排空管。
污水首先经过配水管向下流行,穿越基质层,在底部的连通层汇集后,穿过隔墙进入上行池,在上行池中,污水由下向上经收集管收集排出。
污水在复合垂直流人工湿地系统中的流动完全不需要动力。
其基本结构如下图所示。
该系统独特的下行流—上行流水流方式能有效的解决其它类型湿地易出现的“短路”现象,而且形成了下行流池好氧、上行流池部分厌氧的复合水处理结构。
(2)二、PE土工膜防渗工程 (3)1、材料物理性能 (3)2、运输及储存 (4)3、施工工艺流程 (4)三、无纺布铺设 (8)1、材料要求 (8)2、无纺布铺设 (9)3、回填覆盖 (10)4、质量检查和验收 (10)四、混凝土结构施工 (10)1、施工准备 (10)2、挖槽 (11)3、混凝土垫层基础 (11)4、钢筋工程 (12)5、模板工程 (14)6、止水安装 (16)7、聚乙烯低发泡闭孔泡沫塑料板 (17)8、聚硫密封胶(膏) (18)9、预留孔洞施工 (21)五、管道施工 (22)1、钢管安装、防腐及水压试验 (22)2、PVC-U管道安装 (31)六、滤料填筑 (34)1、概述 (35)2、材料要求 (35)3、施工部署 (35)4、运输和堆放 (36)5、湿地填料铺设 (36)七、运行调试 (37)八、验收 (38)一、湿地概述1、湿地工艺说明本工程采用潜流型人工湿地,具体工艺包括垂直流和水平流,具有多种组合,包括复合垂直流湿地、水平流+上行流湿地。
复合垂直流人工湿地系统由下向流池和上向流池串联组成,两池中间设有隔墙,底部连通。
垂直流人工湿地计算参考书一、什么是垂直流人工湿地呢?垂直流人工湿地是一种超级有趣又很环保的污水处理系统哦。
它就像是一个小小的自然净化工厂,通过湿地里的植物、土壤还有微生物的共同努力,把污水变得干干净净的。
这里面的水流可不是随随便便流动的,而是垂直方向流动的呢。
这种特殊的流动方式让污水在湿地里的净化过程变得更加独特和高效。
比如说,污水会在重力的作用下,缓缓地从湿地的上层渗透到下层,在这个过程中,不同的物质就开始发生各种奇妙的反应啦。
二、计算垂直流人工湿地为什么这么重要呀?这可太重要啦。
如果不进行准确的计算,就像厨师做菜不知道放多少调料一样,整个湿地的运行可能就会乱套哦。
准确的计算可以帮助我们确定湿地的面积大小。
要是面积算小了,污水可能得不到充分的净化,那可就白忙活啦。
而且还能确定水流的速度呢,水流太快,污水和湿地里的各种净化元素接触时间太短,净化效果肯定不好;水流太慢,又会影响整个处理污水的效率。
另外,计算还关系到我们要种多少植物,选择什么样的植物。
不同的植物在净化污水的能力上可是有很大差别的哟。
三、关于垂直流人工湿地计算的参考书籍。
这本书简直就是垂直流人工湿地计算的宝藏书籍呀。
它从很基础的原理开始讲起,就像一个耐心的老师。
书里详细地介绍了垂直流人工湿地的各种数学模型,这些模型可是帮助我们计算湿地的关键哦。
比如说,有关于水力停留时间的计算模型,这个时间可是很重要的参数呢。
它用很通俗易懂的例子来解释这些复杂的模型,让我们这些读者不会被那些密密麻麻的公式吓跑。
而且书里还有很多实际案例的分析,我们可以看到在不同的地区、不同的污水类型下,人家是怎么根据这些计算来建造和运营垂直流人工湿地的。
可别小看这本书哦。
虽然它不是专门讲垂直流人工湿地计算的,但它给我们提供了很多关于湿地生态系统的基础知识。
了解湿地的生态系统,对我们进行垂直流人工湿地计算是非常有帮助的。
比如说,我们要计算湿地里植物的数量和种类,那就得知道湿地的生态环境适合哪些植物生长呀。
深圳市XXXXX区水环境整治工程项目——垂直潜流湿地工程施工方案编制人:审核人:编制单位:编制日期:年月日一、工程概况1.工程简介深圳市XX区水环境整治工程项目潜流湿地工程,本项目垂直流人工湿地工程位于污水处理厂绿地。
经原地面实际复测,测湿地填料底标高为1m,每单元长8m,宽5m.本工程建设内容,湿地每单元占地面积为40m²,总有效面积240m²,划分为6标准单元,每个单元净体积为40m³,湿地内部种植水生植物,湿地的水生植物由再生水厂供水,通过地埋PVC布水管进行连接供水,然后再由碎石、陶粒回填料进行过滤,最后由PVC放空管收集通过表流湿地进入泵站。
2.参建单位工程名称:深圳市XX区水环境整治工程项目建设单位:XXX有限公司监理单位:XXX有限公司设计单位:XXXX设计有限公司施工单位:XXXX电有限公司二、编制依据1.招标技术资料深圳市XX区水环境整治工程部分施工图纸;深圳市XX区水环境整治工程部分招标文件;深圳市XX区水环境整治工程部分岩SBS防水卷程勘察报告。
2.现场实地调查我单位针对本标段施工现场的具体情况进行了实地踏勘,另结合我单位自身的资源情况和实际施工能力、承担类似工程的施工经历、经验等编制了细致的材料。
3.采用技术规范及标准和相关法律、法规《关于在基本建设工程中加强地下文物保护管理的通知》;《深圳市地方环境保护法规》;《消防条例》;《关于在基本建设工程中加强地下通讯电缆保护管理条例》;《建设工程施工现场管理规定》;《工程测量规范》GB50026-2007;《水利水电工程施工测量规范》SL52-93;《水利水电工程施工质量验收规程》(SL223-2008);《SBS防水卷材材料应用技术规范》GB50108—2008;《建筑工程施工质量验收统一标准》GB50300—2013;《SBS防水卷试验规程》SL237-1999;《碾压式土石坝施工技术规范》DL/T5129-2001;《工程建设标准强制性条文》(水利工程部颁发);深圳市施工现场管理有关文件和标准;深圳市建筑工程施工企业安全责任制;我单位制定《质量手册》及质量保证体系的程序文件;我单位制定的《施工组织设计编制控制程序》,市有关法律、法规和技术标准。
垂直流人工湿地1 引言垂直流人工湿地因具有较高的水力负荷、污染物去除效率高、占地小等优点,越来越得到大面积的应用.近年来,垂直流湿地多用于不同污染负荷生活污水的处理,其净化效果主要受湿地类型构造本身、填料、植物类型、进水C/N比与启动季节等因素的影响,而关于进水C/N比对不同植物类型处理生活污水效果的影响研究相对较少.污水C/N比是反映湿地系统内部碳氮循环的主要指标,综合了湿地生态系统功能的变异性,容易测量,是确定废水碳氮平衡特征的一个重要参数.湿地系统的进水C/N比特征直接影响着微生物的群落结构,从而影响污水处理效果.另外,不同湿地植物、不同环境条件下及不同生长时期对N、P的需求量也不同.植物对N、P吸收量及比例的变化,也会间接影响其在不同季节对污水去除效率的贡献.本研究针对垂直流型人工湿地系统,研究水葱(Scirpus tabernaemontani),香蒲(Typha orientalis,)菖蒲(Acorus calamus)和千屈菜(Lythrum salicaria)4种植物湿地在不同进水C/N比条件下的污水净化能力,探讨其可能的影响机制.2 材料和方法2.1 人工湿地的构建人工湿地污水处理系统于2014年1月建于复旦大学生态学实验基地温室大棚内,为垂直潜流型人工湿地(图 1),各湿地尺寸均为1.0 m×0.6 m×0.9 m(长×宽×高),在长边15 cm处分别用隔板隔开,靠近进水端15 cm的隔板底部以尺寸为0.80 m×0.15 m的矩形开口相通.布水区填料上层为粒径约12 mm的炉渣,厚度为45 cm,炉渣在使用前经过5次冲洗,以避免其会产生高碱度的环境,从而危害植物和根系间微生物的生长;下层为粒径约15 mm的砾石,厚度为20 cm,进出水隔板之间10 cm的高度差使得水流可以从布水区自行流入出水端.进水区采用穿孔(15 mm的孔,间距为100 mm)PVC管均匀布水,试验于2014年1—3月先进行湿地驯化,2014年4月到2015年1月为污水处理正式运行阶段,采用连续进水方式,水力负荷为0.67 m3 · m-2 · d-1,HRT为1.5 d,填料层的孔隙率约为43%.3种不同的C/N比进水条件,每种植物湿地均为4个平行处理,共计48个湿地单元.图1 垂直流型人工湿地2.2 模拟生活污水的配制及进水水质特征对4种植物类型湿地进行碳源不同污染梯度水平的添加处理,碳源添加浓度分别为100、200、400 mg · L-1(污染负荷分别为322.64、645.35、1280.06 mg · m-3 · d-1),N素添加浓度为40 mg · L-1(污染负荷为107.75 mg · m-3 · d-1),P素添加浓度为5 mg · L-1(污染负荷为16.58 mg · m-3 · d-1).模拟污水的配方为 100、200、400 g · m-3 葡萄糖,80g · m-3 尿素,15 g · m-3 NaH2PO4,1.5 g · m-3 KH2PO4,4 g · m-3 CaCl2,2 g · m-3 MgSO4.3种不同C/N比进水条件分别为C1N(2.5 ∶ 1)、C2N(5 ∶ 1)和C3N(10 ∶ 1).每种湿地植物在相同进水条件下的处理均为4个平行组.模拟生活污水的进水水质特征见表 1和表 2.表1 不同进水C/N比条件下主要理化指标的进出水特征表2 不同进水C/N比条件下主要污染物的进水浓度与去除率及湿地植物收获后生物量2.3 实验步骤本研究选取本实验室前期筛选出的具有较好污染物降解效果的水葱、香蒲、菖蒲和千屈菜,均为挺水植物.2014年的2月1日每个湿地单元分别种植水葱(Scirpus tabernaemontani)、香蒲(Typha orientalis)菖蒲(Acorus calamus)和千屈菜(Lythrum salicaria),上述4种湿地植物种植时单个湿地平均鲜重分别为0.28、0.34、0.21和0.41 kg,种植密度为 5~8 株· m-2.前期湿地用模拟生活污水灌水2个月,该阶段为湿地的驯化期.实验运行周期为10个月,时间为2014年的4月1日至2015年的1月31日,模拟污水以0.21 m3 · m-2 · d-1的水力负荷进入人工湿地单元,配水装置是一个直径5 cm的塑料管,其上分布着直径1.5 mm的小圆孔.每周通过一个200 L的大水箱向人工湿地供水5 d,另外2 d为停歇时间.2.4 水样、植物样采集与测定每周采集进出水样一次,每月测定的4个周的平均值作为该月处理水样的月平均值.COD 采用重铬酸钾法测定,TP 采用AQ2全自动间断化学分析仪(Automated Chemistry Analyzer ,England )测定,TN 采用德国产Liquor TOC 分析仪测定.物理化学指标的测试包括氧化还原电位(Eh)、pH 值、溶解氧(DO),均是在现场实地测量,其中,DO 采用Orion Dissolved OxygenProbe(Model 862Aplus ,USA)测量,Eh 采用Orion 250Aplus ORP Field Kit 测量,pH 值采用Orion Portable pH Meter(Model 250Aplus ,USA)测量.分别采集和测定各湿地植物实验前后的生物量,本研究采用种植前与实验结束收获后湿地植物鲜重表示生物量.2.5 数据分析污染物去除率R 的计算公式如下:式中,Ci 和Ce 分别表示进水和出水的浓度(mg · L -1).1个月中每周测量值的平均值用来表示1个月中污染物的去除效果.2.6 统计分析所有的数据都采用SPSS 软件进行分析.一阶方差分析用来分析4种不同植物垂直潜流式人工湿地各种参数条件下的出水状况.二阶方差分析用来分析测试不同的碳元素添加、人工湿地植物类型、季节变化,以及其两两或者3个一起的综合影响作用.Duncan 多倍范围检验用来进一步评价方差分析中的差异显著性.3 结果3.1 主要物理化学指标的变化pH 值、氧化还原电位(Eh)和溶解氧(DO)值见表 1.对于pH 值,3种C/N 比进水条件下,4种植物湿地均表现为出水值(6.38~6.81)低于进水值(7.23~7.56),但不同处理条件下,不同植物间差异不显著(p>0.05).对于DO 值,C1N 和C2N 处理要显著高于C3N 处理(p<0.05),但相同处理不同植物类型间差异不显著(p>0.05).对于4种植物湿地类型,Eh 值在C1N 、 C2N 和C3N 处理中差异也不显著(p>0.05).3.2 主要污染物去除率随时间的变化主要污染物去除率在处理过程中各个月份中的变化明显,3种进水负荷下,COD 去除率在香蒲和菖蒲湿地均优于水葱和千屈菜湿地(图 2,表 2).如图 2a 所示,C1N 处理中,4种植物湿地中COD 去除率在秋末和冬初波动相对较大.在C2N 和C3N 处理中,4种植物湿地均表现出在7月和10月COD 去除率较高(图 2b 和2c).到实验结束(1月),3种处理条件下,不同植物湿地对COD 去除率均下降到最低值,受季节影响显著.由表 3的方差分析发现,季节、植物类型与季节的交互作用对COD 的去除率影响显著(p<0.05).图2 实验期间COD去除率变化(a.C/N=2.5 ∶ 1; b.C/N=5 ∶ 1; c.C/N=10 ∶ 1)表3 湿地植物类型、碳添加、季节变化参数的方差分析如图 3所示,4种植物湿地中TN去除率在所有进水条件下均出现了较为明显的波动.在C1N 和C2N处理中,水葱湿地的TN去除率低于其他3种植物湿地(图 3a,3b),而香蒲湿地在整个实验阶段TN去除率均较高.在C2N和C3N处理中,4种植物湿地类型在10月TN去除率明显较高,冬初(11—12月)也表现出了相对较高的去除能力(图 3b和3c),然而到翌年1月均呈明显下降趋势,TN去除率较低.在整个实验启动期间,TN去除率受季节变化影响明显,波动时间相对较长.研究发现,季节对TN的净化效果具有显著影响(p<0.05)(表 3).图3 实验期间TN去除率变化(a.C/N=2.5 ∶ 1; b.C/N=5 ∶ 1; c.C/N=10 ∶ 1)对于TP去除率,其在所有进水负荷条件下都表现出在香蒲和水葱湿地稍高于菖蒲和千屈菜湿地(图 4).表 3分析发现,季节对TP去除率的影响明显(p<0.05).较高的TP去除率出现在4—5月,但最低值大都出现在冬季(12月,C/N=10 ∶ 1情况下最低值出现在6月)(图 4).TP去除率在菖蒲湿地总是相对较低,且受季节变化影响显著.图4 实验期间TP去除率变化(a.C/N=2.5 ∶ 1; b.C/N=5 ∶ 1; c.C/N=10 ∶ 1)4 讨论不同进水C/N比处理条件下,湿地去除能力有明显差别.很多研究结果表明,进水的污染物负荷的C/N比对污水的净化效果有较大的影响.赵永军等研究发现,微生物在不同生长阶段会根据自身需要调节所需要的C/N和P/C比,较高的生长速率不仅仅会出现在较高的C/N和P/C比下,也会出现在较低的N/P比的情况下,如细菌.合理控制C源和N源,以及进水污染物的C/N比,对于提高COD的去除率具有积极意义.本研究COD去除率达63%~78%,与在水平潜流型湿地的处理效果接近(60%),而略低于Poach等)的研究结果.COD的去除率在香蒲湿地中相对高于其他3种湿地,其机理可能是香蒲植物向根区输氧能力更强,在植物根区的还原态介质中形成氧化态微环境,使有氧区域和无氧区域共同存在,有利于充分发挥微生物降解有机污染物的作用.利用菖蒲湿地处理生活污水时COD的去除率约为76%,与本研究进水C/N=5 ∶ 1时结果基本相同.另外,4种植物湿地均受到了进水负荷和季节变化的较大影响.COD在污染物进水负荷为C/N=5 ∶ 1时的去除率达到最大.C/N=10 ∶ 1时的结果显示,在较高的C/N负荷中,有机污染物的降解率相对较低.此结果与赵永军等的研究结果基本一致.垂直潜流人工湿地对于氮的去除主要是依靠硝化和反硝化过程实现的.当C/N=5 ∶ 1时,TN去除率比C1N和C3N处理高,而香蒲湿地也略高于其他3种植物湿地.这说明在适合的C/N比条件下,可使得硝化反应和反硝化反应达到最佳状态,适量的碳源保证了湿地反硝化过程的顺利进行.而植物的合理选择也在一定程度上提高了TN的去除效果.在不同的进水负荷条件下,平均TN去除率在香蒲湿地中达到了38%~49%,与Seo等(2008)在水平流湿地中48%的去除率接近.比较了水葱、香蒲和千屈菜等湿地植物对生活污水的TN去除率,发现香蒲的去除效果高于千屈菜,这与本实验的研究结果基本一致.另外,该研究结果表明,季节变化对于TN的去除则是有非常显著的影响,特别是在6—7月间,TN去除率达到最高值.TN在夏季有较高的去除率,其原因可能是植物在较高温度下良好生长,根系充分发育,为植物根系间微生物提供了良好的新陈代谢环境所致.人工湿地中TP的去除主要是通过湿地基质填料的吸附作用和沉降作用来实现的.为了可以达到较好的除磷效果,本研究以炉渣作为湿地填料的上层填充物,在不同进水条件下4种植物湿地均表现出了较高的TP去除率.Tanner等研的究结果表明,P在人工湿地中的吸附沉淀降解是一种有限的过程,经过一段时间以后湿地填料必须要更新或者冲洗以后才能再用,否则TP去除效果会下降.因此,人工湿地填料的选择对于TP的去除是一个非常重要的影响因素研究发现,水葱对总氮的净化效率可达到85%,好于其他挺水植物湿地.但本试验中水葱湿地虽去除率高于其他3种湿地,但仅为70%左右.这可能与研究的人工湿地类型与进水浓度不同有关.本研究发现,不同植物类型湿地间TP的去除率差异不大,可能的原因是植物对于磷元素的吸收对于整个TP去除的贡献率较小,湿地基质的吸附降解作用是其主要途径.不同C/N比处理下,TP的去除效果也差异明显,当C/N=5 ∶ 1时,具有最大值(63%~73%).这说明进水的C/N比也是影响人工湿地TP去除效果的重要因素.合理设计人工湿地进水C/N比例,有利于取得理想的TP净化效果。
垂直潜流人工湿地施工工法垂直潜流人工湿地施工工法一、前言随着环境保护意识的增强,人工湿地在水污染治理领域的应用越来越广泛。
垂直潜流人工湿地作为一种常用的水污染治理工法,其施工工法对于实际工程具有重要指导意义。
本文将对垂直潜流人工湿地施工工法进行全面的介绍和分析,以使读者理解其理论依据和实际应用。
二、工法特点垂直潜流人工湿地工法是一种将废水通过人工湿地自上而下垂直流动的水污染治理技术。
其特点包括:施工简单方便、占地面积小、运行成本低等。
此外,垂直潜流人工湿地具有处理效果好、处理效率高、处理稳定等优点。
因此,垂直潜流人工湿地广泛应用于市区生活污水、农业污水和工业废水等领域。
三、适应范围垂直潜流人工湿地适用于市区生活污水、农村污水和农业污水的处理。
它可以针对不同的水质特点进行调整,具有较强的适应能力。
四、工艺原理垂直潜流人工湿地的工艺原理是通过调整废水入口与出口的高差来产生水流动力,使废水通过填料层被处理。
在实际工程施工中,根据具体情况采取了许多技术措施。
首先,根据废水水质和处理效果要求,选择合适的填料层材料。
其次,在施工过程中,需要根据设计图纸的要求进行填料层的浇筑和固定,确保填料层的稳定性。
同时,还需要根据工程的实际情况,选择合适的填充材料和保护层。
五、施工工艺垂直潜流人工湿地的施工过程包括:坑槽开挖、基础处理、填料层浇筑、排水管道布设和水流调整等。
具体来说,施工前需要按照设计要求进行坑槽开挖和基础处理,以确保湿地的稳定性。
然后,在基础处理完成后,进行填料层的浇筑和固定。
同时还需进行排水管道的布设和与填料层相连接。
最后进行水流调整,确保湿地的处理效果和运行稳定性。
六、劳动组织垂直潜流人工湿地的施工需要组织有效的劳动力。
在施工过程中,需要进行合理的劳动力分配,确保各个施工工序的顺利进行。
同时,还需要指定专人负责监督和协调施工进度,确保施工工艺的正确执行。
七、机具设备在垂直潜流人工湿地施工过程中,需要使用一些机具设备,包括挖掘机、运输车辆、混凝土搅拌机等。
人工湿地的分类及结构目录1人工湿地的定义 (1)2 人工湿地的分类及结构 (1)2.1按湿地植物种类 (1)2.2按湿地功能定位和用途 (2)2.2.1 水质处理型人工湿地 (2)2.2.2 生境支持型人工湿地 (3)2.2.3 景观游憩型人工湿地 (3)2.2.4 雨洪调蓄型人工湿地 (4)2.3按水的流动状态 (4)2.3.1 表面流湿地 (4)2.3.2 水平潜流湿地 (5)2.3.3 垂直潜流湿地 (6)人工湿地的分类及结构1人工湿地的定义湿地是一种具有多功能的生态系统,被誉为“地球之肾”,具有保持水源、净化水质、蓄洪防早、调节气候和维护生物多样性等重要作用。
《湿地公约》将其定义为:不问其为天然或人工长久或暂时性的沼泽地、泥炭地水域地带,静止或流动的淡水、半咸水、咸水体,包括低潮时水深不超过6 m的水域。
自然湿地和人工湿地是自然界中常见的两类湿地。
美国湿地专家博士Hammer等将人工湿地定义为:“一个为了人类利用和利益,通过模拟自然湿地,人为设计与建造的由饱和基质、挺水与沉水植被、动物和水体组成的复合体”。
具体地,人工湿地就是通过模拟天然湿地的结构与功能,选择适宜的地理位置、地形,根据人们的需要人工建造和监督控制的湿地。
因此,人工湿地的概念有广义和狭义之分。
广义的人工湿地是指人类为满足生产、生活、防灾、污水处理等目的人工修的湿地(如塘坝、鱼塘、水景、稻田、水库、潜流湿地等)。
它以人类利益为主要目标,以社会服务为主要功能,不仅可以用于污水处理,还可以用于营造景观、恢复自然湿地等,因此可称为“功能性人工湿地”。
其中,主要用于实现水质改善功能的人工湿地,可以称为水净化人工湿地。
它可以分为水生植物系统(包括浮水植物系统、沉水植物系统、挺水植物系统)和湿生(耐湿)植物系统。
本文所指的人工湿地是狭义的人工湿地,即人工湿地污水处理系统。
人工湿地污水处理系统是人工建造的、可控制的和人工化的湿地系统,其设计和建造是通过对湿地自然生态系统中的物理、化学和生物作用的优化组合来进行污水处理。
《垂直潜流人工湿地中污染物去除机理研究》篇一一、引言随着工业化和城市化的快速发展,水体污染问题日益严重,如何有效处理和净化污水成为当前环境治理的重大课题。
垂直潜流人工湿地作为一种新兴的污水处理技术,因其投资成本低、维护简单、生态友好等优点,受到广泛关注。
本文将就垂直潜流人工湿地中污染物的去除机理进行深入研究。
二、垂直潜流人工湿地概述垂直潜流人工湿地是一种特殊的湿地生态系统,其基本原理是利用植物、介质和微生物的共同作用,对污水进行物理、化学和生物三重处理。
与传统的水平潜流人工湿地相比,垂直潜流人工湿地具有更高的处理效率和更强的抗冲击负荷能力。
三、污染物去除机理研究1. 物理去除垂直潜流人工湿地通过介质过滤、吸附和沉淀等物理作用去除污水中的悬浮物、胶体等污染物。
介质中的颗粒物能够吸附和截留污水中的污染物,从而达到净化水质的目的。
此外,湿地中的植物根系也能截留部分颗粒物,进一步增强物理去除效果。
2. 化学去除在垂直潜流人工湿地中,化学作用主要表现在介质与污染物之间的化学反应。
例如,湿地中的氧化还原反应可以降低重金属的毒性,使其从污染物质中解离出来。
此外,湿地中的pH值也可以通过缓冲作用影响污染物的化学形态和活性。
3. 生物去除生物去除是垂直潜流人工湿地中最为重要的污染物去除机制。
湿地中的微生物通过生物膜、生物膜内部的微生物群落等作用,将有机物、氮、磷等污染物转化为无害物质。
具体来说,有机物被微生物分解为二氧化碳和水等无机物;氮通过氨化、硝化、反硝化等过程转化为氮气;磷则被微生物吸收或与介质中的钙离子结合形成难溶性的磷酸盐沉淀。
四、结论通过对垂直潜流人工湿地中污染物的去除机理进行研究,我们可以发现,该技术利用了物理、化学和生物的协同作用来净化污水。
物理去除主要依靠介质的过滤、吸附和沉淀作用;化学去除则通过氧化还原反应等过程改变污染物的化学形态和活性;生物去除则是通过微生物的分解、转化和吸收作用来实现对污染物的有效去除。
垂直流人工湿地1 引言垂直流人工湿地因具有较高的水力负荷、污染物去除效率高、占地小等优点,越来越得到大面积的应用.近年来,垂直流湿地多用于不同污染负荷生活污水的处理,其净化效果主要受湿地类型构造本身、填料、植物类型、进水C/N比与启动季节等因素的影响,而关于进水C/N比对不同植物类型处理生活污水效果的影响研究相对较少.污水C/N比是反映湿地系统内部碳氮循环的主要指标,综合了湿地生态系统功能的变异性,容易测量,是确定废水碳氮平衡特征的一个重要参数.湿地系统的进水C/N比特征直接影响着微生物的群落结构,从而影响污水处理效果.另外,不同湿地植物、不同环境条件下及不同生长时期对N、P的需求量也不同.植物对N、P吸收量及比例的变化,也会间接影响其在不同季节对污水去除效率的贡献.本研究针对垂直流型人工湿地系统,研究水葱(Scirpus tabernaemontani),香蒲(Typha orientalis,)菖蒲(Acorus calamus)和千屈菜(Lythrum salicaria)4种植物湿地在不同进水C/N比条件下的污水净化能力,探讨其可能的影响机制.2 材料和方法2.1 人工湿地的构建人工湿地污水处理系统于2014年1月建于复旦大学生态学实验基地温室大棚内,为垂直潜流型人工湿地(图 1),各湿地尺寸均为1.0 m×0.6 m×0.9 m(长×宽×高),在长边15 cm处分别用隔板隔开,靠近进水端15 cm的隔板底部以尺寸为0.80 m×0.15 m的矩形开口相通.布水区填料上层为粒径约12 mm的炉渣,厚度为45 cm,炉渣在使用前经过5次冲洗,以避免其会产生高碱度的环境,从而危害植物和根系间微生物的生长;下层为粒径约15 mm的砾石,厚度为20 cm,进出水隔板之间10 cm的高度差使得水流可以从布水区自行流入出水端.进水区采用穿孔(15 mm的孔,间距为100 mm)PVC管均匀布水,试验于2014年1—3月先进行湿地驯化,2014年4月到2015年1月为污水处理正式运行阶段,采用连续进水方式,水力负荷为0.67 m3 · m-2 · d-1,HRT为1.5 d,填料层的孔隙率约为43%.3种不同的C/N比进水条件,每种植物湿地均为4个平行处理,共计48个湿地单元.图1 垂直流型人工湿地2.2 模拟生活污水的配制及进水水质特征对4种植物类型湿地进行碳源不同污染梯度水平的添加处理,碳源添加浓度分别为100、200、400 mg · L-1(污染负荷分别为322.64、645.35、1280.06 mg · m-3 · d-1),N素添加浓度为40 mg · L-1(污染负荷为107.75 mg · m-3 · d-1),P素添加浓度为5 mg · L-1(污染负荷为16.58 mg · m-3 · d-1).模拟污水的配方为 100、200、400 g · m-3 葡萄糖,80g · m-3 尿素,15 g · m-3 NaH2PO4,1.5 g · m-3 KH2PO4,4 g · m-3 CaCl2,2 g · m-3 MgSO4.3种不同C/N比进水条件分别为C1N(2.5 ∶ 1)、C2N(5 ∶ 1)和C3N(10 ∶ 1).每种湿地植物在相同进水条件下的处理均为4个平行组.模拟生活污水的进水水质特征见表 1和表 2.表1 不同进水C/N比条件下主要理化指标的进出水特征表2 不同进水C/N比条件下主要污染物的进水浓度与去除率及湿地植物收获后生物量2.3 实验步骤本研究选取本实验室前期筛选出的具有较好污染物降解效果的水葱、香蒲、菖蒲和千屈菜,均为挺水植物.2014年的2月1日每个湿地单元分别种植水葱(Scirpus tabernaemontani)、香蒲(Typha orientalis)菖蒲(Acorus calamus)和千屈菜(Lythrum salicaria),上述4种湿地植物种植时单个湿地平均鲜重分别为0.28、0.34、0.21和0.41 kg,种植密度为 5~8 株· m-2.前期湿地用模拟生活污水灌水2个月,该阶段为湿地的驯化期.实验运行周期为10个月,时间为2014年的4月1日至2015年的1月31日,模拟污水以0.21 m3 · m-2 · d-1的水力负荷进入人工湿地单元,配水装置是一个直径5 cm的塑料管,其上分布着直径1.5 mm的小圆孔.每周通过一个200 L的大水箱向人工湿地供水5 d,另外2 d为停歇时间.2.4 水样、植物样采集与测定每周采集进出水样一次,每月测定的4个周的平均值作为该月处理水样的月平均值.COD 采用重铬酸钾法测定,TP 采用AQ2全自动间断化学分析仪(Automated Chemistry Analyzer ,England )测定,TN 采用德国产Liquor TOC 分析仪测定.物理化学指标的测试包括氧化还原电位(Eh)、pH 值、溶解氧(DO),均是在现场实地测量,其中,DO 采用Orion Dissolved OxygenProbe(Model 862Aplus ,USA)测量,Eh 采用Orion 250Aplus ORP Field Kit 测量,pH 值采用Orion Portable pH Meter(Model 250Aplus ,USA)测量.分别采集和测定各湿地植物实验前后的生物量,本研究采用种植前与实验结束收获后湿地植物鲜重表示生物量.2.5 数据分析污染物去除率R 的计算公式如下:式中,Ci 和Ce 分别表示进水和出水的浓度(mg · L -1).1个月中每周测量值的平均值用来表示1个月中污染物的去除效果.2.6 统计分析所有的数据都采用SPSS 软件进行分析.一阶方差分析用来分析4种不同植物垂直潜流式人工湿地各种参数条件下的出水状况.二阶方差分析用来分析测试不同的碳元素添加、人工湿地植物类型、季节变化,以及其两两或者3个一起的综合影响作用.Duncan 多倍范围检验用来进一步评价方差分析中的差异显著性.3 结果3.1 主要物理化学指标的变化pH 值、氧化还原电位(Eh)和溶解氧(DO)值见表 1.对于pH 值,3种C/N 比进水条件下,4种植物湿地均表现为出水值(6.38~6.81)低于进水值(7.23~7.56),但不同处理条件下,不同植物间差异不显著(p>0.05).对于DO 值,C1N 和C2N 处理要显著高于C3N 处理(p<0.05),但相同处理不同植物类型间差异不显著(p>0.05).对于4种植物湿地类型,Eh 值在C1N 、 C2N 和C3N 处理中差异也不显著(p>0.05).3.2 主要污染物去除率随时间的变化主要污染物去除率在处理过程中各个月份中的变化明显,3种进水负荷下,COD 去除率在香蒲和菖蒲湿地均优于水葱和千屈菜湿地(图 2,表 2).如图 2a 所示,C1N 处理中,4种植物湿地中COD 去除率在秋末和冬初波动相对较大.在C2N 和C3N 处理中,4种植物湿地均表现出在7月和10月COD 去除率较高(图 2b 和2c).到实验结束(1月),3种处理条件下,不同植物湿地对COD 去除率均下降到最低值,受季节影响显著.由表 3的方差分析发现,季节、植物类型与季节的交互作用对COD 的去除率影响显著(p<0.05).图2 实验期间COD去除率变化(a.C/N=2.5 ∶ 1; b.C/N=5 ∶ 1; c.C/N=10 ∶ 1)表3 湿地植物类型、碳添加、季节变化参数的方差分析如图 3所示,4种植物湿地中TN去除率在所有进水条件下均出现了较为明显的波动.在C1N 和C2N处理中,水葱湿地的TN去除率低于其他3种植物湿地(图 3a,3b),而香蒲湿地在整个实验阶段TN去除率均较高.在C2N和C3N处理中,4种植物湿地类型在10月TN去除率明显较高,冬初(11—12月)也表现出了相对较高的去除能力(图 3b和3c),然而到翌年1月均呈明显下降趋势,TN去除率较低.在整个实验启动期间,TN去除率受季节变化影响明显,波动时间相对较长.研究发现,季节对TN的净化效果具有显著影响(p<0.05)(表 3).图3 实验期间TN去除率变化(a.C/N=2.5 ∶ 1; b.C/N=5 ∶ 1; c.C/N=10 ∶ 1)对于TP去除率,其在所有进水负荷条件下都表现出在香蒲和水葱湿地稍高于菖蒲和千屈菜湿地(图 4).表 3分析发现,季节对TP去除率的影响明显(p<0.05).较高的TP去除率出现在4—5月,但最低值大都出现在冬季(12月,C/N=10 ∶ 1情况下最低值出现在6月)(图 4).TP去除率在菖蒲湿地总是相对较低,且受季节变化影响显著.图4 实验期间TP去除率变化(a.C/N=2.5 ∶ 1; b.C/N=5 ∶ 1; c.C/N=10 ∶ 1)4 讨论不同进水C/N比处理条件下,湿地去除能力有明显差别.很多研究结果表明,进水的污染物负荷的C/N比对污水的净化效果有较大的影响.赵永军等研究发现,微生物在不同生长阶段会根据自身需要调节所需要的C/N和P/C比,较高的生长速率不仅仅会出现在较高的C/N和P/C比下,也会出现在较低的N/P比的情况下,如细菌.合理控制C源和N源,以及进水污染物的C/N比,对于提高COD的去除率具有积极意义.本研究COD去除率达63%~78%,与在水平潜流型湿地的处理效果接近(60%),而略低于Poach等)的研究结果.COD的去除率在香蒲湿地中相对高于其他3种湿地,其机理可能是香蒲植物向根区输氧能力更强,在植物根区的还原态介质中形成氧化态微环境,使有氧区域和无氧区域共同存在,有利于充分发挥微生物降解有机污染物的作用.利用菖蒲湿地处理生活污水时COD的去除率约为76%,与本研究进水C/N=5 ∶ 1时结果基本相同.另外,4种植物湿地均受到了进水负荷和季节变化的较大影响.COD在污染物进水负荷为C/N=5 ∶ 1时的去除率达到最大.C/N=10 ∶ 1时的结果显示,在较高的C/N负荷中,有机污染物的降解率相对较低.此结果与赵永军等的研究结果基本一致.垂直潜流人工湿地对于氮的去除主要是依靠硝化和反硝化过程实现的.当C/N=5 ∶ 1时,TN去除率比C1N和C3N处理高,而香蒲湿地也略高于其他3种植物湿地.这说明在适合的C/N比条件下,可使得硝化反应和反硝化反应达到最佳状态,适量的碳源保证了湿地反硝化过程的顺利进行.而植物的合理选择也在一定程度上提高了TN的去除效果.在不同的进水负荷条件下,平均TN去除率在香蒲湿地中达到了38%~49%,与Seo等(2008)在水平流湿地中48%的去除率接近.比较了水葱、香蒲和千屈菜等湿地植物对生活污水的TN去除率,发现香蒲的去除效果高于千屈菜,这与本实验的研究结果基本一致.另外,该研究结果表明,季节变化对于TN的去除则是有非常显著的影响,特别是在6—7月间,TN去除率达到最高值.TN在夏季有较高的去除率,其原因可能是植物在较高温度下良好生长,根系充分发育,为植物根系间微生物提供了良好的新陈代谢环境所致.人工湿地中TP的去除主要是通过湿地基质填料的吸附作用和沉降作用来实现的.为了可以达到较好的除磷效果,本研究以炉渣作为湿地填料的上层填充物,在不同进水条件下4种植物湿地均表现出了较高的TP去除率.Tanner等研的究结果表明,P在人工湿地中的吸附沉淀降解是一种有限的过程,经过一段时间以后湿地填料必须要更新或者冲洗以后才能再用,否则TP去除效果会下降.因此,人工湿地填料的选择对于TP的去除是一个非常重要的影响因素研究发现,水葱对总氮的净化效率可达到85%,好于其他挺水植物湿地.但本试验中水葱湿地虽去除率高于其他3种湿地,但仅为70%左右.这可能与研究的人工湿地类型与进水浓度不同有关.本研究发现,不同植物类型湿地间TP的去除率差异不大,可能的原因是植物对于磷元素的吸收对于整个TP去除的贡献率较小,湿地基质的吸附降解作用是其主要途径.不同C/N比处理下,TP的去除效果也差异明显,当C/N=5 ∶ 1时,具有最大值(63%~73%).这说明进水的C/N比也是影响人工湿地TP去除效果的重要因素.合理设计人工湿地进水C/N比例,有利于取得理想的TP净化效果。