三角形中线与面积问题教案
- 格式:docx
- 大小:138.14 KB
- 文档页数:7
三角形的高、中线、角平分线的教案一、教学目标:1. 让学生理解三角形的高、中线、角平分线的概念。
2. 让学生掌握三角形的高、中线、角平分线的性质。
3. 培养学生运用三角形的高、中线、角平分线解决问题的能力。
二、教学内容:1. 三角形的高:从三角形的一个顶点向对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高。
2. 三角形的中线:连接三角形的一个顶点和它对边中点的线段叫做三角形的中线。
3. 三角形的角平分线:从三角形的一个顶点出发,把这个顶点的角平分成两个相等的角的线段叫做这个角的角平分线。
三、教学重点与难点:1. 教学重点:三角形的高、中线、角平分线的概念及性质。
2. 教学难点:三角形的高、中线、角平分线的画法及运用。
四、教学方法:1. 采用直观演示法,让学生通过观察实物和图形,理解三角形的高、中线、角平分线的概念。
2. 采用讲解法,讲解三角形的高、中线、角平分线的性质和画法。
3. 采用练习法,让学生通过练习巩固所学知识。
五、教学过程:1. 导入:通过展示三角形的高、中线、角平分线的实物模型,引导学生思考三角形的高、中线、角平分线的概念。
2. 讲解:讲解三角形的高、中线、角平分线的定义和性质,让学生理解并掌握。
3. 演示:教师演示如何画三角形的高、中线、角平分线,并讲解画法的注意事项。
4. 练习:学生分组练习,画出给定三角形的的高、中线、角平分线,并互相检查。
5. 总结:教师引导学生总结三角形的高、中线、角平分线的性质和画法,巩固所学知识。
六、教学拓展:1. 引导学生思考:在三角形中,高、中线、角平分线有何联系和区别?2. 讲解三角形的高、中线、角平分线在几何中的应用,如:解直角三角形、证明线段相等等。
七、课堂小结:1. 让学生回顾本节课所学内容,总结三角形的高、中线、角平分线的概念和性质。
2. 强调三角形的高、中线、角平分线在几何问题中的重要性。
八、课后作业:1. 画出给定三角形的的高、中线、角平分线,并标注出来。
《13.1.3三角形中几条重要线段》教学设计教学内容分析本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段——中线、角平分线。
本节内容是日后学习等腰三角形等特殊三角形的基础。
故学好本节内容是十分必要的。
因此,对三角的高、中线、角平分线定义的理解及画法的掌握是本节教学的重点,而三角形的高由于三角形的形状改变而使其位置呈现多样性,学生难以掌握,故在各类三角形中作出它们是本课的难点。
学习者分析学生对于三角形的高有一定的了解,但对于三角形的角平分线、中线还没有接触,因此及本课讲解时需要设计一些实际操作,让学生对这三条线的定义有清晰的印象.教学目标 1.了解并掌握三角形的高、中线和角平分线的概念,会用直尺、量角器等工具作出三角形的高、中线与角平分线;2.通过作图了解三角形的三条高、三条中线与三条角平分线分别交于一点的性质;3.明确重心的概念;4.经历作图的实践过程,认识三角形的高、中线与角平分线,帮助学生养成实事求是、具体问题具体分析的习惯;5.发展学生合情推理的能力,提高学生学习数学的兴趣,形成合作交流的意识。
教学重点理解三角形的高、中线与角平分线的概念及其画法.教学难点钝角三角形高线的画法.学习活动设计教师活动学生活动环节一:新知导入教师活动1:如图,在△ABC中,一动点D在BC边上移动,从点B沿着BC边移动到点C,观察移动过程中形学生活动1:学生观察图片,动脑思考,并积极回答.成的无数条线段中,有没有特殊位置的线段?今天,我们一起来认识三角形中几条特殊的线段!活动意图说明:通过展示图片,引发学生思考,引出这节课要学的内容,调动学生学习的积极性. 环节二:三角形中的特殊线段教师活动2:角平分线:三角形中,一个角的平分线与这个角对边相交,顶点与交点之间的线段叫做三角形的角平分线.如图,△ABC 中,∠1=∠2,线段AD就是△ABC一条角平分线中线:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线.如图,△ABC中,点E是BC的中点,线段AE 就是△ABC的一条中线.高线:学生活动2:学生听教师讲解,理解三角形中的特殊线段。
中线交于一点面积法
中线交于一点是指一个三角形的中线(即连接顶点和对边中点
的线段)与三角形内部的一点相交。
面积法是一种计算几何中三角
形面积的方法,通常利用三角形的底和高来计算。
当中线交于一点时,我们可以利用面积法来计算三角形的面积。
首先,我们可以利用中线将三角形分割成两个全等的三角形。
然后,我们可以计算这两个全等三角形的面积,最后将它们的面积相加就
得到原始三角形的面积。
另外,我们还可以利用中线交于一点的性质来推导出一些有趣
的几何定理。
比如,当中线交于一点时,这个点到三角形三个顶点
的距离之和等于这个点到对边中点的距离。
这个定理可以用来解决
一些与中线和距离相关的几何问题。
总的来说,中线交于一点与面积法是计算几何中常见的概念和
方法,它们可以帮助我们更好地理解和解决与三角形相关的问题。
希望这些信息能够帮助你更好地理解这个问题。
三角形的中线与面积的三个重要结论三角形的中线与三角形的面积有着密切的关系,下面就来探讨一下这个话题.一、三角形的中线与面积1、三角形的一条中线与面积如图1,AD 是三角形ABC 的中线,则ABD S 三角形=ACD S 三角形=21ABC S 三角形.证明:因为AD 是三角形的中线,所以BD=CD ,过点A 作AE ⊥BC ,垂足为E ,则ABD S 三角形=21×BD ×AE,ACD S 三角形=21×CD ×AE ,所以ABD S 三角形=ACD S 三角形, 所以ABD S 三角形=ACD S 三角形=21ABC S 三角形. 由此得到如下结论:1、等底同高的两个三角形面积相等.2、三角形的一条中线分原来三角形所成的两个三角形面积相等.2、三角形的二条中线与面积如图2,AD ,BE 是三角形ABC 的中线,则①BDF S 三角形=AEF S 三角形;②ABF S 三角形=CDFE S 四边形; ③ABF S 三角形=CDFE S 四边形=2BDF S 三角形=2AEF S 三角形=31ABC S 三角形.证明:因为AD 、BE 是三角形的中线,所以ABD S 三角形=ACD S 三角形,ABE S 三角形=BCE S 三角形, 所以BDF S 三角形+ABF S 三角形=AEF S 三角形+CDFE S 四边形---(1),AEF S 三角形+ABF S 三角形=BDF S 三角形+CDFE S 四边形——-(2),(1)—(2)得 BDF S 三角形-AEF S 三角形=AEF S 三角形-BDF S 三角形,所以BDF S 三角形=AEF S 三角形; 因为BDF S 三角形+ABF S 三角形=AEF S 三角形+CDFE S 四边形,所以ABF S 三角形=CDFE S 四边形;如图2,连接CF ,易得BDF S 三角形=CDF S 三角形=AEF S 三角形=CEF S 三角形,所以ABF S 三角形=CDFE S 四边形=2BDF S 三角形=2AEF S 三角形=31ABC S 三角形. 由此得到如下结论:1、三角形的两条中线分原来三角形所成的四个图形中,对顶的两个图形面积相等.2、三角形的两条中线分原来三角形所成的四个图形中,四边形的面积等于不对顶三角形面积的2倍.3、三角形的三条中线与面积如图3,AD ,BE,CF 是三角形ABC 的中线,设△BGD 的面积为1S ,△BGF 的面积为2S ,△AGF 的面积为3S ,△AGE 的面积为4S ,△CGE 的面积为5S ,△CGD 的面积为6S ,△ABC 的面积为S.则1S =2S =3S =4S =5S =6S =61S.证明:因为AD 是三角形ABC 的中线,所以BD=CD ,因为三角形ABD 和三角形ACD 的高相同,所以三角形ABD 的面积和三角形ACD 的面积相等,即1S +2S +3S =4S +5S +6S .因为三角形BGD 和三角形CGD 的高也是相同的,所以两个三角形的面积相等即1S =6S .所以2S +3S =4S +5S .因为三角形BGF 和三角形AGF 的高相同,BF=AF ,所以AFh BFh 2121 ,其中h 是点G 到AB 的距离,所以2S =3S ,同理可证4S =5S ,所以23S =24S ,所以3S =4S , 所以2S =3S =4S =5S ,同理可证1S =2S =3S =6S .所以1S =2S =3S =4S =5S =6S .因为三角形ABC 的面积为S ,所以1S =2S =3S =4S =5S =6S =61S. 由此我们得到如下结论:三角形的三条中线分三角形成六个小三角形,则六个小三角形的面积相等,等于三角形面积的六分之一.二、结论在解题中的应用例1 (2015•广东省)如图4,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若三角形ABC 的面积为12,则图中阴影部分面积是 .分析:这是三条中线分割三角形的情形,每一个小三角形的面积是相等,且等于原来三角形面积的61,2个就是面积的31. 解:因为三角形ABC 的面积为12,所以阴影部分的面积为31×12=4. 例2 三角形的一条中线把其面积等分,试用这条规律完成下面问题:(1)把一个三角形分成面积相等的4块(至少给出两种方法);(2)在一块均匀的三角形草地上,恰好可放养84只羊,如图5,现被两条中线分成4块, 则四边形的一块(阴影部分)恰好可放养几只羊?分析:抓住等底同高的两个三角形面积相等,依托三角形的中线性质,完成求解.解:(1)此题的答案不是唯一的,只要分割的方法合理就可以,下面给出了几种分割方法,供同学们学习时,参考.(2)根据中线分割图形与原来三角形面积之间关系知道,四边形的面积是整个图形面积的三分之一,因为是均匀分布,所以这块面积应该有 31×84=28(只)羊. 例3 如图6 所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且ABC S =42cm ,则S 阴影等于________.解:因为点D 是BC 的中点,所以ACD ABD S S =12ABC S =12×4=2. 因为点E 是AD 的中点,所以BED S S 12ABD S =12×2=1. 所以ED S S 12ACD S =12×2=1. 所以BEC S =BED S +ED S =1+1=2,因为点F 是EC 的中点,所以S =12BEC S =12×2=1. 所以S 阴影等于1. 例4 已知三角形ABC 的面积为a ,请边阅读,边完成问题的解答:1、如图7,延长BC 到D ,使得CD=BC ,则阴影部分的面积为 .2、如图8,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,则阴影部分的面积为 .3、如图9,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,延长AB 到F ,使得AB=FB ,则阴影部分的面积为 .4、如图10,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,延长AB 到F ,使得AB=FB ,,连接DF ,则阴影部分的面积为 ;三角形DEF 的面积是 .分析:依据条件,结合三个结论,认真分析,就能轻松完成解答.解:1、如图7,AC是三角形ABD的中线,所以阴影面积与三角形ABC的面积相等,所以应该填a;2、如图8,当我们连接AD时,不难发现三角形ACD的面积与三角形AED的面积相等,所以阴影部分的面积为2a;3、如图9,三角形AEF的面积与三角形CDE的面积是相等,所以阴影部分的面积是4a;4、如图10,三角形BFD的面积等于三角形CDE的面积,所以阴影部分的面积为6a;三角形DEF的面积为阴影部分的面积加三角形ABC的面积,所以是7a,也就是说此时三角形的面积是原来三角形ABC面积的7倍.我们不妨把得到的三角形DEF叫做三角形ABC的膨胀三角形,当CD=BC 时,膨胀三角形的面积是原来三角形面积的7倍,这个数字7我们不妨叫做三角形DEF的膨胀系数,感兴趣的读者,可以思考当延长线段是已知边长的2倍时,膨胀三角形的面积多大,膨胀系数多大?其中一般性的规律是什么?。
本课在整个单元中,属于比较重要的环节。
除了起到承接上个课时、转接下课时的作用之外,还有一些重点的计算知识和转化相应的课时。
本单元在学科核心素养中,具体体现出非常重要的一环,就是在高效课堂的设计和转化过程中,注意学生主体意识的培养和学生学习兴趣的提高。
学习兴趣之于学生,是非常重要而且更加有意义的教学活动。
对于不同层次的学生来讲,环节上的应用更加大了不同学生之间互相弥合的意义。
三角形的高中线角平分线教学目标(1)知识与技能目标:通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的高线、角平分线、中线;会画出任意三角形的高线、角平分线、中线,通过画图、折纸了解三角形的三条高线、三条角平分线、三条中线会交于一点.(2)过程与方法目标:经历画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力.(3)情感与态度目标:通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心.教学重点能够正确地画出三角形的“高”、“角平分线”和“中线”,并理解它们概念的含义、联系和区别.教学难点在钝角三角形中作高.教学过程本节课按照“创设情境,引入新课”——“合作交流,探求新知”——“拓展创新,挑战自我”——“课堂小结,感悟反思”——“走出课堂,应用数学”的流程展开.二、合作交流探究新知活动1(一)探究三角形的高1.三角形高的定义:(你能描述三角形的高吗?)三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,在△ABC 中,AD⊥BC , 点D 是垂足,AD是△ABC的一条高.2.做一做:(每一个同学准备一个锐角三角形的纸片)你能画出这个三角形的三条高吗?你能用折纸的方法得到它们吗?从这三条高中你发现了什么?(这三条高之间有怎样的位置关系)((可以反过来画好高后,找哪条边上高))3.议一议:(使折痕过顶点,,顶点的对边边缘重合)如果用直角三角形和钝角三角形纸片,你能通过折或画的方法找到它的高吗?它们的高有几条?它们又有什么样的位置关系?4.练一练:(1)AD为ABC∆的高,则ADB∠=∠=(2)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形(3)在下图中,正确画出△ABC中BC边上高的是().借助学生对问题的解决,唤醒学生对三角形的高的认识与确认,有助于新知的解决,并且发展学生的观察力与语言表述能力.通过折或画出三角形的高,提高学生的基本作图能力,发展其空间观念.小组合作交流,并通过观察、猜想经历知识的发展形成过程,体验了“发现”知识的快乐,变被动接受为主动探究.设计练习,使学生对三角形高的的有关知识加以巩固,让学生从运用所学知识解决问题的过程,获得成功的体验,从而激发他们学习的积极性.教学环节教学过程设计意图二、合作交流探究新知活动2(二)探究三角形的中线问题1:你能将ABC分为面积相等的两个三角形吗?(引出三角形中线)1.三角形中线的定义:三角形的中线:在三角形中,连接一个顶点与它对边的中点的线段,叫做这个三角形的中线.)如图,D是BC的中点,则线段AD是△ABC的中线,此时有BD=DC=21BC.2.做一做:你能画出三角形的所有中线吗?观察你们所作的图形,你又有哪些发现?与同伴交流.(分组合作交流)3.练一练:如图,AD、BE为△ABC的中线交于点G,连结CG,并延长交AB于点F.(1)则AC= AE= EC,CD= , AF= AB.(2)若S△ABC=12cm2,则S△ABD= .通过解决面积问题,由三角形高自然引入三角形的中线,培养学生动脑、动手能力,语言表达能力.让学生继续动手、实验,亲历知识的发生、发展过程,并且在这个过程中学会与人合作.重点考察:①学生对三角形中线定义的理解及运用;②学生对图形的观察能力及数形结合的能力活动3(三)探究三角形的角平分线问题:准备一个三角形纸片ABC ,按图所示的方法折叠,展开后,折痕BD把∠ABC分成∠1和∠2两部分.观察∠1和∠2有什么关系?(由学生动手操作,观察思考,引出三角形的角平分线)1.三角形角平分线定义:三角形的角平分线:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.如图,BD是∠BAC的角平分线,那么有∠ABD=∠DBC=21∠ABC2.做一做:(分组合作,交流讨论)(准备三个三角形)(1) 你能分别画出或折出这三个三角形的角平分线吗?(2) 在每个三角形中,这三条角平分线之间有怎样的位置关系?3.练一练:如图,AD、BE、CF是△ABC的三条角平分线,则∠1= ,∠3=21,∠ACB=2从学生熟悉的折纸入手,为三角形的角平分线的学习作铺垫。
相似三角形的中线和面积比较相似三角形是指具有相同形状但不一定相等的三角形。
在相似三角形中,中线和面积是两个重要的性质,它们之间存在一定的关系。
本文将探讨相似三角形的中线和面积的比较。
一、相似三角形的定义和性质相似三角形是指两个三角形的对应角相等,并且对应边成比例。
具体而言,若三角形ABC与三角形DEF相似,则有以下关系成立:1. 角的对应关系:∠A = ∠D,∠B = ∠E,∠C = ∠F。
2. 边的成比例关系:AB/DE = BC/EF = AC/DF。
相似三角形具有许多重要的性质,其中包括中线和面积的特点。
二、相似三角形中线的比较在相似三角形中,中线与对边之间也存在一定的比例关系。
设三角形ABC与三角形DEF相似,比例系数为k(即AB/DE = BC/EF = AC/DF = k)。
1. 中线比较:若AD和DF分别为三角形ABC和三角形DEF的中线,则它们的长度比为k/2。
即AD/DF = k/2。
证明:根据相似三角形的性质,有AB/DE = BC/EF = AC/DF = k。
由于AD是三角形ABC的中线,因此AD = (1/2)AC。
同理,DF = (1/2)EF。
代入比例关系式中,得到AD/DF = (1/2)AC/(1/2)EF = AC/EF = k。
由此可知,在相似三角形中,中线的长度比是对应边长度比的一半。
2. 比较示例:举例说明中线比较的关系。
设有相似三角形ABC和三角形DEF,比例系数为k = 2。
则根据中线比较的结论,三角形ABC 的中线AD和三角形DEF的中线DF的长度比为2/2=1。
即AD/DF = 1。
三、相似三角形面积的比较在相似三角形中,面积与边长的关系是二次的比例关系。
设三角形ABC与三角形DEF相似,比例系数为k(即AB/DE = BC/EF = AC/DF = k)。
1. 面积比较:若S1和S2分别为三角形ABC和三角形DEF的面积,则它们的面积比为k^2。