低压配电系统保护的选择性和设备选择
- 格式:docx
- 大小:98.15 KB
- 文档页数:10
低压配电线路保护断路器的选择及定值设置摘要:低压断路器也是高低压配电线路最常用的保护设备,设置好断路器可保障低压电力输送相对安全。
伴随我们国家城市文化程度的不断深入发展,新建高档住宅区、工业区、商业区街道等项目对低压用户的供电设备可靠性要求变得更加苛刻严格,需客户正确合理选择产品并妥善设置低压断路器。
断路器的保护隔离装置也是为了规避线路故障、隔离电气故障发生的最重要电气设备,如果断路器选择和设置不当会导致低压电网运行面临多方面的安全隐患,导致相关企业承担过高的经济成本压力。
文章详细分析如何正确选择低压断路器、设置好各项参数。
关键词:380/220V;低压断路器;选择性;灵敏性;过负荷保护;短路保护低压断路器通常用作保护电网低压线路的常用辅助设备。
它的精心选择和使用以及科学的线路整定在整个低压线路电力保护工程中也起着非常重要和积极的作用。
随着我国现代智能城市网络的发展,正确、可靠地选择和安装低压断路器变得越来越重要。
如果断路器及其保护电路设置正确,则可以实现有效和安全的低压保护以及绝缘和线路故障,而其准确的安全选择判断和线路设置,则对电气设备线路的持续安全及稳定正常运行来说,就会是存在一定严重的故障隐患并可造成许多重大经济上的浪费。
因此如何正确科学的合理选择使用低压断路器类型并对进行恰当正确线路的设置,则对实现低压线路有效保护将起着相当重要的作用。
1低压配电线路保护的一般要求在当低压配电线路两端发生相间接的故障或发生相间的短路故障,为能防止无关人员或因相间接地接触到带电体短路而可能导致的人身事故伤害或者避免因低压线路短路和发热可能导致高压线路两端绝缘的损坏,甚至导致发生的火灾,低压配电线路两侧应及时装设间接地接触过电压防护措施(故障防护)、过电负荷接地保护系统和相短路过电压保护,及时隔离线路故障的发生或发出报警。
过电流负载短路保护装置应能够在流过电路导体的负载电流突然升高线性导体表面的局部温度并对绝缘、端子、连接等造成永久性损坏之前切断短路电流。
论低压配电系统的保护与选择[摘要]配电系统是指工厂所需电能的供应和分配,良好的供电系统有利于提高生产效率,节约生产成本,更有利于实现生产过程的自动化,由于电器制造技术的不断进步,断路器选择性保护技术的提高,各种选择性技术的推出,使得我们得以重新认识讨论这一课题。
系统保护的选择形式是连续供电的重要保证,低压配电用保护电器在低压配电系统中占有重要的地位,它是在配电系统发生故障时实现保护的关键器件。
但是如果选用的保护电器不当,或者整定数据不正确,将导致不能按要求切断电路,而扩大事故,或者是扩大停电区域。
所以,分析配电系统的特点,了解保护电器的特性,给予正确选用和整定,是配电系统的正常运行和安全用电的重要保证。
[关键词]配电系统、保护、设备、选择中图分类号:tm 文献标识码:a 文章编号:1009-914x(2013)05-0230-011.配电系统的保护1.1短路保护短路保护应在短路电流产生的热作用和机械作用对被保护对象造成危害之前切断短路电流。
在民用建筑的低压配电系统中,大多数的短路保护,均可以采用断路器来实现。
采用断路器来实现短路保护,首先应使断路器的短路分断能力≥线路的预期短路电流。
断路器一般有三个指标来表示其分断能力,即极限短路分断能力、运行短路分断能力和短时耐受电流。
各个指标的含义如下:极限短路分断能力(icu),是指在一定的试验参数(电压,短路电流、功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。
1.2过载保护配电线路过载保护,应在过载电流引起导体温升对导体绝缘造成损害前能切断过载电流,但对突然切断电路会导致更大损失时,应发出报警而不切断电路。
过载保护的保护电器的整定电流和动作特性应符合下列两式要求:ⅲ≤in≤iz____(m)12≤1.45 iz____(n)式中ib-线路计算电流(a);in-熔断器熔体额定电流或断路器长延时整定电流(a);iz-导体允许持续载流量(a);i2-保证保护电器可靠动作的电流,对断路器,i2为约定时间的约定动作电流,对熔断器,12为约定时间的约定熔断电流。
低压配电中存在的问题及改进措施摘要:随着社会经济的快速发展,我国的城乡用电量在不断的增加,这就使低压配电的要求不断提升。
在城乡配电网的快速发展当中同样也存在着很多的问题,例如低压配电技术相对落后、管理中存在着很多问题等等。
这就需要电力企业充分分析低压配电中存在的问题,采取针对性的措施进行改进,这对于促进我国电力行业的发展、提升人们生活质量具有非常重要的意义。
基于此,本文对低压配电中存在的问题及改进措施进行了详细地分析与探究。
关键词:低压配电;问题;改进措施1、低压配电存在的问题1.1 低压供配电系统技术层面的问题低压供配电系统中设备以及线路的正常工作直接决定了系统能否可以正常运行,但是一些系统中的设备或者是配电线路发生了老化现象,使得配电系统中产生了大量的热,线路受到严重的损坏,并且变压器因为超负荷运转导致线路中的热量过大,电压极不稳定。
这些问题也许暂时不会对系统造成很大的影响,但是积少成多,再细小的问题积累起来就会变成很大的问题,再解决起来就会更难。
这些问题的存在一方面使得设备受到损坏,低压供配电系统不能够正常运转;另一方面也使得整个供电系统的安全性受到影响。
1.2 低压供配电系统管理层面的问题低压供配电系统对于我们现在的社会是非常重要的,因此对低压供配电系统的管理也就显得十分重要了,处理好低压供配电系统的管理问题就能在很大程度上保证供电系统的安全可靠性能得以实现。
从目前的我国低压供配电系统管理来看,管理过程中存在着一些问题,例如配电系统中线路和设备老化现象严重,设备以及线路的更新不够及时,这样设备或者线路就不能够满足要求,安全性能就得不到保障;线损工作不符合配电系统管理规范要求也是存在的一个问题,此外,低压供配电系统的管理制度不完善也是导致系统不达标的一个重要原因,由于缺乏强有力的管理制度,所以管理人员的责任不够明确,在发生一些事故的时候,不能够及时确定责任来源,做不到有法可依,对工作人员的工作无法形成一种约束。
选择型低压断路器的技术发展 2010年01月28日由于低压配电系统的用电设备和分支回路的增多,为了保证低压配电线路供电的连续性和可靠性,选择性保护变得越来越重要。
本文介绍近期低压选择型断路器发展的动态,包括:局部选择性提升到全局选择性;低压配电系统的选择性保护范围从电源侧向终端侧延伸;采用机械式短延时的选择性小型断路器。
1 低压配电系统的选择性保护国际电工委员会的IEC标准和我国国家标准按使用类别把断路器分成A类和B类两种类型,其中A类断路器在短路情况下,无明确指明其有选择性保护功能,而B类断路器则明确指明有选择性保护功能,图1表示低压配电系统前后级断路器安装位置(图a)及其保护特性配合(图b)。
选择性保护是指当支路1发生短路时,仅下级支路断路器Q2开断短路电流,而上级开关不动作,这就不会影响其它支路如支路2和3的正常供电,因而选择性保护对提高低压配电系统的工作可靠性有重要作用,当前供电的连续性和可靠性日趋重要,无论是公共场所、生产企业和家庭电气设备,瞬间的断电会造成巨大的损失和生活上的不便,因而低压配电系统的选择性保护技术近年来有很大的进展。
如何实现配电系统上下级断路顺的选择性匹配,这主要决定于两者保护特性的配合,一般上级断路器采用有三段保护特性的选择型B 类断路器。
图1b)为上下级断路器保护特性配合,其中上级主开关Q1具有三段保护特性,即作为线路过载保护的长延时,短路情况下的短延时和瞬时三段保护,而断路器Q2作为下级支路开关,仅具有长延时和短路瞬时两段保护特性。
当支路1短路时,若短路电流为I1,则从图1b)的特性配合来看,短路电流使断路器Q2首先动作,而主开关Q1由于短延时而没有动作,这就保证了其它支路,如支路2和3的可靠供电。
a 两种断路器的按装位置b) 保护特性配合图1 选择性保护的特性配合生产发展和人民生活的提高,低压配电系统的用电设备和分支回路日益增多,选择性保护变得越来越受到人们关注,当前选择性断路器的技术向以下几方面发展:(1)局部选择性提升到全局选择性;(2)低压配电系统的选择性保护范围从电源侧向终端侧延伸;(3)采用机械式短延时脱扣器的选择性小型断路器。
探析低压配电系统的选择性保护技术摘要:选择性保护就是指在特殊情况下,配电系统发生故障,两个或两个以上装置协作配合,消除故障,让电路系统正常运转,在这个过程中别的装置自己运行不参与。
也指低压配电系统一个坏了,配电设备有序断开,而不是无序的进行保护。
这种保护措施对配电系统作用非常大,就是指配电系统出现故障短路时,配电设备自己解除故障,减少损失。
关键词:低压配电系统;选择性保护;实施要点一、系统性保护技术配电短路时,系统出现故障,单纯依靠低压配电系统解决不了问题,要通过各项设备整体完成。
1.1机会选择性当配电系统短路时,由于电流非常大,要根据实际情况,找到好的时机进行选择性保护,这种方法叫做机会性选择。
在实际情况下可以这样操作:当电路发生故障,出现短路,这个脱扣器会通过系统自动解扣,不用人工去解扣,这样断路器的触头就会在操作过程中自动断开,电弧经也会在这个过程中根据装置系统熄灭,从而完成断路器切断电源工作。
在发生故障时,需要解扣,但不能立刻去解扣,需要了解电路状况,看短路的严重程度,这些准备好,才能去解扣,这个时间段一定要把握好;电路发生故障以后,查看好故障问题,找到解决方案,再去把断路器断路这个时间叫全分段时间。
所以说机会时机选择很关键,一定要做到稳准。
不能麻痹大意。
在处理故障过程中,要分类处理,对不同的断路器要求用不同方法,这样才能保证安全处理,保证电路的畅通运行。
还有就是按照不同断路器的特点,进行选择,灵活应用,使两种断路器不和重合交叉。
1.2电流选择性因为很多情况下,配电系统容易发生故障,如何处理就要灵活处理,具体情况具体处理。
这样的保护措施是依据脱扣器的的使用分值来判断的,这种方法简单实用,应用于很多断路器,像常见的A类塑壳断路器、B类塑壳断路器等等,要是用这种方法,断路器的数值必须严格要求,数值一定不能错,要不会造成严重后果,不堪设想。
1.3逻辑选择性逻辑选择性,在生活中称之为片区域选择性关联。
低压配电保护电器的选择与整定[摘要]本文简要述及低压配电用保护电器的保护性能及产品状况,介绍了现行国家标准——《低压配电设计规范》关于配电线路保护的主要规定;着重论述了对保护电器的合理选择和正确整定是实施规范要求的关键;本文系统地分析了保护电器选择和整定要考虑的几个问题及其计算方法;分析了故障时应可靠切断故障电路和选择性动作的对立统一。
对配电系统设计、运行维护单位以及产品制造厂具有指导作用和实际应用价值。
[关键词]保护电器短路保护过载保护接地故障保护熔断器的过电流选择比非选择型断路器选择型断路器选择性动作一概述低压配电用保护电器在低压配电系统中占有重要的地位,它是在配电系统发生故障时实现保护的关键器件。
但是如果选用的保护电器不当,或者整定数据不正确,将导致不能按要求切断电路,而扩大事故,或者是扩大停电区域。
所以,分析配电系统的特点,了解保护电器的特性,给予正确选用和整定,是配电系统的正常运行和安全用电的重要保证。
二保护电器的类别和保护性能低压保护电器包括两种类型,即低压熔断器和低压断路器,现分别就其在配电线路中常用的类型、保护特性及其他性能简述如下。
(一)低压熔断器熔断器应符合现行国家标准《低压熔断器基本要求》(GB13539.1-92)和《低压熔断器专职人员使用的熔断器的补充要求》(GB13539.2-92),该国标是参照采用同名称国际标准IEC269-1和IEC269-2、IEC269-2-1而编制。
1.分类(1)按结构分:熔断器的结构型式与使用人员有关,主要分为:①专职人员使用的熔断器,其结构型式又有:(a)刀型触头熔断器;(b)螺栓连接熔断器;(c)圆筒帽形熔断器。
②非熟练人员使用的熔断器。
(2)按分断范围分为:①“g”熔断体—能分断使熔体熔化之电流至额定分断能力之间的所有电流的限流熔断体;②“a”熔断体—能分断使熔体“熔断时间—电流特性曲线”上的最小电流至额定分断能力之间的所有电流的熔断体。
低压配电系统保护的选择性和设备选择摘要:系统保护的选择性是连续供电的重要保证,本文对实现系统保护选择性的条件,确定保护选择性的方式,正确选择断路器和负荷开关等间题进行了探讨。
关键词:“自然的”选择性 , 准延时选择性 , 能量选择性 ,具有隔离开关功能的负荷开关(Switch disconnector)1 系统保护选择性的现状保护的选择性是配电系统质量的一个重要标准。
现在如果看看工程的设计图纸,不难看到许多配电系统保护的选择性是不合格的。
这是有其历史原因的。
以前低压配电系统的保护电器以采用熔断器为主的时期,系统保护选择性的设计是比较容易的。
核算两级间的熔体额定电流比是否合格就可以了。
以后,配电系统的保护电器广泛采用了断路器,由于客观条件的限制,当时我国断路器的制造水平有限,具有选择性的断路器品种很少。
要满足保护选择性要求,只有靠有短路短延时保护的断路器。
在这种情况下,全系统要实现选择性保护是困难的。
因此只好重点保证重要负荷的连续供电,实现部分环节的保护选择性了。
从低压配电设计规范及大众广为使用的低压配电各级间应选择性分护选择性就可以了。
长期以来,大家习惯了这种模式。
对配电系统的保护选择性间题未作深究。
也无人要求必须保证系统的选择性。
因此表现在配电系统设计图纸上保护选择性不合格就是自然的事了。
现在,由于电器制造技术不断进步,断路器保护选择性技术的提高,各种选择性型技术的推出,使得我们可以重新认识讨论这一间题。
目前我们可以说,采用断路器的配电系统实现保护选择性已具备条件了。
本文拟就这一间题提出一些建议,以供有关人士研究讨论。
2 现代断路器与各型保护选择性技术现代电器制造技术的发展,断路器不断更新,保护选择性技术不断改进,推出了各种保护选择性技术。
2.1 准延时选择性(pseudo—time discrimnation,另有译为虚拟时间选择性)当上下两级均为断路器级联时,大的短路电流受到了下级限流型断路器的限流。
实际的短路电流和持续时间大大地减小。
上级断路器脱扣器检测到的电流比没有限流型下级断路器值小得多。
将此实际的短路电流在上、下两断路器的时间/电流曲线上进行比较,相当于在两断路器之间具有一等效的短的时间差。
使得下级断路器快速跳闸,而上级断路器保持闭合,上下级断路器之间达到保护选择性配合。
此时间差随预期短路电流增大而大大减小。
它不是人为有意设置的延时时间,这个时间称为准延时(pseudo—time)。
当上、下两级均采用限流型断路器时,由于上级断路器限流对下级断路器限流的增强作用,提高了下级断路器的分断能力。
下级断路器的分断电流比其原所规定的分断电流要大。
这种做法是符合IEC364—4—434.1条规定的。
对于选择性来说,由于级联,提高了选择极限电流值,相应于增大了选择性的准延时,提高了保护选择性。
2 2逻辑选择性(亦称为ZSI区域选择性联锁)上下级断路器之间设置逻辑联锁。
当下级断路器保护区发生故障,电流大于脱扣器整定值时,给上级断路器发出逻辑等待命令,使上级脱扣器延迟脱扣,而下级断路器立即脱扣跳闸,切除故障。
当上级断路器保护区内发生故障时,不会接收到等待命令,断路器立即跳闸,迅速切除故障。
这就可保证各级间保护的选择性。
ZSI也可附加于时间选择性系统,用以减少或消除故障的时间,有利于减小故障电流热应力和电动应力造成的损害。
2 3 能量选择性(Ener——based disc discrimination)若上、下级均采用普通断路器,当短路电流超过两断路器脱扣器的整定值时,断路器同时动作,保护无选择性。
如果断路器设了能反映短路电流能量(fR尚t)的脱扣器,而且下级断路器的额定电流小于上级断路器,启动下级断路器脱扣器所需的能量也小于上级断路器。
凶此在故障时两断路器都检测到短路电流,下级断路器限流非常快,上级断路器产生的能量使脱扣器动作所需的时间大于下级断路器,故下级断路器迅速先行跳闸,上级断路器保持闭合,两断路器的保护得到了配合。
施耐德公司开发的Compact Ns 100~630 A塑壳断路器就实现了这一目标。
断路器采用双旋转触头,当短路电流达到某值时,由于磁斥力使触头在外壳内转动,并产生强大电弧能量,使壳内气体膨胀产生很大压力,推动活塞以极快的速度使断路器瞬动脱扣。
在触头斥开大约3ms就将断路器分断:这就是能量脱扣。
它有很强的限流能力,例如Compac t Ns l00A塑壳断路器的分断能力可达150kA。
这种断路器非常有利于保护选择性的配合。
2 4“自然的”选择性断路器间的保护选择性是比较复杂的。
为了使用方便,施耐德公司推出了断路器“自然的”选择性概念,以便用户使用。
它是在Compact Ns100~630A塑壳断路器间,将过载、时间及能量等选择性方式,通过试验规定了脱扣器间整定电流的比值。
组合构成了断路器的“自然的”选择性。
粗略地说,只要上级断路器的额定电流大于下级断路器2.5倍,断路器间就可获得完全选择性。
即在下级断路器保护区发生故障短路的电流一直大到下级断路器的极限分断电流值的范围内。
断路器都能有选择性的切除故障,这就保证了完全选择性。
这好像与在采用熔断器保护的配电系统内,只要上下级熔体电流的比值大于某值,就可获得选择性是相似的。
所以说这是一种简单的“自然的”选择性概念。
只要考虑满足电流配合比的要求,而不需再依赖人为故意的在脱扣器上另加延时时间或采取逻辑联锁等其他措施来保证选择性。
但是,在具体设计配电系统时,仍要进行一些核算选择性工作,要根据脱扣器的类型与其所在的位置核算断路器脱扣器的整定电流比。
例如上下两级断路器均采用Compact Ns塑壳断路器时,当上级脱扣器为热磁式,对下级为热磁(TM)或电子式(STR)的过载脱扣整定电流I,的比值应≥1.6;而对下级热磁式短路脱扣整定电流Im的比值应≥2,对下级电子式短路脱扣整定电流Im的比值应≥1.5。
当上级脱扣器为电子式(STR)时;对下级为热磁式或电子式的短路脱扣整定电流Im的比值应≥1.5;而对下级热磁式的过载脱扣整定电流Ir的比值应≥2.5,对下级电子式的过载脱扣整定电流Ir的比值应≥1.6。
如果上下级断路器为其他类型的断路器,其相互配合则为其他比值。
从以上叙述,“自然的”选择性是很简便,对配电系统设计配置方案是很有用的。
但在具体设计时,核算选择性的工作也是烦琐的。
最实用的方法是制造厂按照试验结果,提供断路器保护选择性配合表,设计时按表查用就可以了。
例如施耐德公司提供的Compact NS塑壳断路器应用技术资料就是实例。
2.5 选择型断路器(selective type circuit-breaker)性能不断完善IEC947-2(GB14048.2)中选择断路器的定义是:“在短路情况下,明确用作负载侧另一短路保护电器的选择性保护的断路器,有人为的延时”。
它是实现系统选择性保护的主要手段。
随着制造技术的进步,选择型断路器较之老产品已有不少改进,例如,短时耐受电流提高;短路延时保护精度提高;断路器瞬动保护可便利地根据需要投入或解除;超过耐受电流阈值自保护脱扣动作等。
这些都是有利于选择保护的完善。
确定选择型断路器上下两级的延时级差是很重要的。
它与断路器性能有关,可要求制造厂提供。
如果具有产品有关的技术数据,可按下式求得。
式中:td(两级间时间差)≥tc+tr+2△t;tc——断路器的分断时间,s;tr——断路器恢复到静止状态的时间,s;△ t——定时限的延时容差,s。
3 系统选择性保护的实施要点3.1 精心设计配电系统,合理分配负荷设计时适当分配负荷,使上下级负荷的比值加大,满足选择性所需的保护器额定电流比的要求。
而且比值越大,越容易满足选择性要求。
无论是采用熔断器或者是断路器保护,都需要上下级保护器额定电流比大于某一比值,才能达到选择性保护配合要求。
因此在进行配电系统设计时,不要听其自然随意分配,而要有意地调整分配负荷,以便给选择性保护提供便利,尽量采用“自然的”选择性保护来满足要求。
否则要采取其他选择性保护方式才能满足选择性保护要求,既麻烦费事又不经济。
3.2 关于完全选择性与部分选择性的确定完全选择性的定义是,在上下级断路器间,下级断路器保护范围内,产生从大于过载整定值电流一直到三相短路电流(不超过断路器的极限分断电流)的故障,都由下级断路器切除,而上级断路器保持闭合,达到了保护选择性的配合。
这就称为完全选择性。
部分选择性的定义是,如果上述的完全选择性得不到满足,而在某一较低的故障电流值(选择性极限值)以下,上下级间能达到选择性配合,则称这种选择性为部分选择性。
如果按3.1节所述配电系统配置的断路器,上下级间能获得完全选择性,这是最理想的。
如果不能获得完全选择性,只能得到部分选择性的配合。
这时我们选择与调整配电线路路径、结构和截面,并计算短路故障电流,若是小于选择性极限电流值(为保护选择性所允许的最大故障电流值),则全系统也是具有选择性的。
若短路电流大于选择性极限电流值,则上级断路器将无选择性跳闸。
这时若其所供电负荷不允许断电,则应重新配置,以保证其选择性;但若对其所供电负荷影响不大,这种无选择断电是在可接受范围之内的,则表明部分选择性系统,在一定条件下也是可行的。
3.3 断路器保护的选择性方式的一般要求断路器保护选择性的方式与配电网特性、供电负荷容量及断路器配置等因素有关。
较大的配电系统,一般可按三级配电来说明。
电源端:无论向工厂厂房或民用建筑供电,一般都设置总(主)配电盘。
其特点是额定电流大,要求断路器分断能力高。
因为是控制总电源,任何分支配出回路发生故障,不应无选择性地切断总电源,必然保证选择性。
一般选用具有短路短延时保护的选择性断路器。
当有特殊要求,或与中压侧保护连锁,也可采用逻辑选择性方式。
常采用框架式的空气断路器(ACB)。
符合功能要求的大电流塑壳断路器(MCCB)也可采用。
末端配电:因处于末梢,短路电流一般较小。
最末端直接接用电设备的断路器,无需选择性。
保护可瞬时脱扣切断保障。
与最末端上级配电断路器间的配合,宜采用具有限流特性的准延时选择性方式配合。
末端多采用小型短路器(MCB)基本上属限流性。
中间级配电:从总配电盘至末端配电之间,均为中间级配电。
中间级配电可多于1级,但以少为佳。
其配电断路器以采用塑壳断路器为主,各种选择性方式均可应用,其中以准延时选择性、能量选择性和短路短延时选择性方式使用最多。
下面列出法国Jean-pierre提出的断路器各种选择性方式组合使用表,(本文将其中准延时选择性方式的使用延伸到末端配电)。
以供参改。
断路器各种选择性方式组合使用表:空白部分参照下表一般说来,全系统都采用短路短延时选择性方式,或是全系统都采用“自然的”选择性方式,都是少见的。