PLC梯形图基础
- 格式:pdf
- 大小:1.44 MB
- 文档页数:58
零基础学plc梯形图学PLC时要明确学习目标,了解这个型号PLC的输入输出点数、接线方法等。
再下载安装PLC的编程软件,熟悉软件的操作和常用指令的使用。
再把继电器控制电路转成梯形图,转换后就可以在软件上编写梯形图,这个过程和接继电器的线路一样,只不过是把电线换成了软件里的连接线。
程序写好后,下载到PLC里,接上外部的电路就可以运行了。
PLC技术是一门实践性非常强的技术,如果你想学好,那么你就必须要去实践。
在学习PLC 书本知识的过程中,肯定会对许多指令不是很了解,如果看不懂指令的话,那么这将是学习PLC的最大障碍。
因此进行实际应用,逐一攻破,这样,你的PLC知识不但会学得牢固,而且在学习的过程中你掌握了实际使用。
学习plc编程首先需要从理论基础开始。
1)学习PLC的基本原理。
硬件:搞清楚输入和输出端的基本结构,熟悉端口的基本电气要求。
软件:对于PLC系统,必须搞清楚什么是I/O刷新,这是编程的基础,知道PLC的工作循环。
2)2)学习基本指令可以先从梯形图语言开始,先练习基本的逻辑指令;学些各种逻辑指令块。
3)3)实践可以在模拟器上模拟练习:(一般plc编程软件都有模拟的功能)编写PLC程序,编译运行,手动输入一些信号,观看输出端口的信号变化是否满足程序的要求。
最后实战。
初学者必须掌握的三点:❶必备基础知识学习PLC,必须具备初级电工知识,同时最好具备计算机方面的基础知识,这样学起来会更容易掌握。
❷学习目标学习完初级入门方面的课程后需要掌握以下几个方面:能够知道PLC的工作原理,结构掌握编程软件,仿真软件的使用掌握基本的逻辑指令,能够利用这些指令进行编写简单的逻辑控制程序掌握如何把程序下载到PLC里面。
把PLC的程序上载电脑❸学习步骤学习PLC的学员可选择自己想学的品牌的PLC来进行学习对于学PLC的学员来说,最好要用继电器方面的知识,这些是跟PLC梯形图编程有着紧密的联系的,所以需要了解这方面的东西。
P L C梯形图基础知识(总2页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除PLC梯形图基础知识PLC是专为工业控制而开发的装置,其主要使用者是工厂广大电气技术人员,为了适应他们的传统习惯和掌握能力,通常PLC不采用微机的编程语言,而常常采用面向控制过程、面向问题的“自然语言”编程。
国际电工委员会(IEC)1994年5月公布的IEC1131-3(可编程控制器语言标准)详细地说明了句法、语义和下述5种编程语言:功能表图(sequential function chart)、梯形图(Ladder diagram)、功能块图(Function black diagram)、指令表(Instruction list)、结构文本(structured text)。
梯形图和功能块图为图形语言,指令表和结构文本为文字语言,功能表图是一种结构块控制流程图。
梯形图是使用得最多的图形编程语言,被称为PLC的第一编程语言。
梯形图与电器控制系统的电路图很相似,具有直观易懂的优点,很容易被工厂电气人员掌握,特别适用于开关量逻辑控制。
梯形图常被称为电路或程序,梯形图的设计称为编程。
梯形图编程中,用到以下四个基本概念:1.软继电器PLC梯形图中的某些编程元件沿用了继电器这一名称,如输入继电器、输出继电器、内部辅助继电器等,但是它们不是真实的物理继电器,而是一些存储单元(软继电器),每一软继电器与PLC存储器中映像寄存器的一个存储单元相对应。
该存储单元如果为“1”状态,则表示梯形图中对应软继电器的线圈“通电”,其常开触点接通,常闭触点断开,称这种状态是该软继电器的“1”或“ON”状态。
如果该存储单元为“0”状态,对应软继电器的线圈和触点的状态与上述的相反,称该软继电器为“0”或“OFF”状态。
使用中也常将这些“软继电器”称为编程元件。
2.能流如图5-1所示触点1、2接通时,有一个假想的“概念电流”或“能流”(Power Flow)从左向右流动,这一方向与执行用户程序时的逻辑运算的顺序是一致的。
电气自动化技术网-电气技术-PLC-学习PLC基本梯形图1。
启动、保持、停止电路x1 x2|--||---|/|-----(y1)| || y1 ||--||-|2.三相异步电机正反转控制电路|| x0 x2 x1 y1 |--||--------|/|------|/|-------|/|-------(y0) 正转| || y0 ||--||------|| x1 x2 x0 y0 |--||--------|/|------|/|-------|/|-------(y1) 反转| || y1 ||--||------|3.闪烁电路x0 T1|--||---|/|-----(To)k20|| T0|--||-----------(T1)k30| ||-----(y0)4.延时接通/断开电路x0|--||-----------------(T0)k90|| y1 x0|--||--------|/|------(T1)k30|| t0 t1|--||--------|/|------(y1)| || y1 ||--||------|5. DF上升沿微分,DFI下降沿微分概述DF:当检测到输入触发信号的上升沿时,仅将触点闭合一个扫描周期。
DFI:当检测到输入触发信号的下降沿时,仅将触点闭合一个扫描周期。
程序示例示例说明在检测到 X0的上升沿(OFF→ON)时,Y0仅为 ON一个扫描周期。
在检测到 X1的下降沿(ON→OFF)时,Y1仅为 ON一个扫描周期。
描述当触发信号状态从 OFF 状态到 ON状态变化时,DF 指令才执行并且输出仅接通一个扫描周期。
当触发信号状态从 ON状态到 OFF 状态变化时,DFI 指令才执行并且输出仅接通一个扫描周期。
若执行条件最初即为闭合,则PLC接通电源,则不会产生输出。
编程时的注意事项DF 和 DFI 指令的使用次数有限制,CX1-16R使用这两个指令的次数之和最多为 128 次。
1 / 25前言、PLC 的发展背景及其功能概述PLC ,(Programmable Logic Controller),乃是一种电子装置,早期称为顺序控制器“Sequence Controller”,1978 NEMA(National Electrical Manufacture Association)美国国家电气协会正式命名为Programmable Logic Controller ,PLC),其定义为一种电子装置,主要将外部的输入装置如:按键、感应器、开关及脉冲等的状态读取后,依据这些输入信号的状态或数值并根据内部储存预先编写的程序,以微处理机执行逻辑、顺序、定时、计数及算式运算,产生相对应的输出信号到输出装置如:继电器(Relay)的开关、电磁阀及电机驱动器,控制机械或程序的操作,达到机械控制自动化或加工程序的目的。
并藉由其外围的装置(个人计算机/程序书写器)轻易地编辑/修改程序及监控装置状态,进行现场程序的维护及试机调整。
而普遍使用于PLC 程序设计的语言,即是梯形图(Ladder Diagram)程序语言。
而随着电子科技的发展及产业应用的需要,PLC 的功能也日益强大,例如位置控制及网络功能等,输出/入信号也包含了DI (Digital Input)、AI (Analog Input)、PI (Pulse Input)及NI (Numerical Input),DO (Digital Output)、AO (Analog Output)、PO (Pulse Output)及NO (Numerical Output),因此PLC 在未来的工业控制中,仍将扮演举足轻重的角色。
1.1 梯形图工作原理梯形图为二次世界大战期间所发展出来的自动控制图形语言,是历史最久、使用最广的自动控制语言,最初只有A (常开)接点、B (常闭)接点、输出线圈、定时器、计数器等基本机构装置(今日仍在使用的配电盘即是),直到可程控器PLC 出现后,梯形图之中可表示的装置,除上述外,另增加了诸如微分接点、保持线圈等装置以及传统配电盘无法达成的应用指令,如加、减、乘及除等数值运算功能。
PLC程序详解和初学者必须掌握的几个梯形图一、时间继电器:TON使能=1计数,计数到设定值时(一直计数到32767),定时器位=1。
使能=0复位(定时器位=0)。
TOF使能=1,定时器位=1,计数器复位(清零)。
使能由1到0负跳变,计数器开始计数,到设定值时(停止计数),定时器位=0。
如下图:图1:使能=1时,TOF(T38)的触点动作图图2:使能断开后,计数到设定值后,TOF(T38)的触点动作图(其中T38常开触点是在使能由1到0负跳变后计数器计时到设定值后变为0的)TONR使能=1,计数器开始计数,计数到设定值时,计数器位=1。
使能断开,计数器停止计数,计数器位仍为1,使能位再为1时,计数器在原来的计数基础上计数。
以上三种计数器可以通过复位指令复位。
正交计数器A相超前B相90度,增计数B相超前A相90度,减计数当要改变计数方向时(增计数或减计数),只要A相和B相的接线交换一下就可以了。
二、译码指令和编码指令:译码指令和编码指令执行结果如图所示:DECO是将VW2000的第十位置零(为十进制的1024),ENCO输入IN最低位为1的是第3位,把3写入VB10(二进制11)。
三、填表指令(ATT)S7-200填表指令(ATT)的使能端(EN)必须使用一个上升沿或下降沿指令(即在下图的I0.1后加一个上升沿或下降沿),若单纯使用一个常开触点,就会出现以下错误:这一点在编程手册中也没有说明,需要注意。
其他的表格指令也同样。
四、数据转换指令使用数据转换指令时,一定要注意数据的范围,数据范围大的转换为数据范围小的发注意不要超过范围。
如下图所示为数据的大小及其范围。
(1)BCD码转化为整数(BCD_I)关于什么是BCD码,请参看《关于BCD码》。
BCD码转化为整数,我是这样理解的:把BCD码的数值看成为十进制数,然后把BCD到整数的转化看成是十进制数到十六进制数的转化。
如下图所示,BCD码为54,转化为整数后为36。
1、启动、保持、停止电路
2.三相异步电机正反转控制电路
3.闪烁电路
4.延时接通/断开电路
5. DF上升沿微分,DFI下降沿微分
DF:当检测到输入触发信号的上升沿时,仅将触点闭合一个扫描周期。
DFI:当检测到输入触发信号的下降沿时,仅将触点闭合一个扫描周期。
示例说明
在检测到X0的上升沿(OFF→ON)时,Y0仅为ON一个扫描周期。
在检测到X1的下降沿(ON→OFF)时,Y1仅为ON一个扫描周期。
描述
当触发信号状态从OFF 状态到ON状态变化时,DF 指令才执行并且输出仅接通一个扫描周期。
当触发信号状态从ON状态到OFF 状态变化时,DFI 指令才执行并且输出仅接通一个扫描周期。
若执行条件最初即为闭合,则PLC接通电源,则不会产生输出。
编程时的注意事项
DF 和DFI 指令的使用次数有限制,CX1-16R使用这两个指令的次数之和最多为128 次。
6、微分指令的应用示例
如果采用微分指令编程,可以使程序调试更加简单。
自保持回路应用示例
使用微分指令可以保持输入信号。
7、交替回路应用示例
使用微分指令也可以构成一个交替变化回路,实现利用同一个输入信号切换进行保持或释放。
控制线路与梯形图的基础知识详解一、起动、自锁和停止控制的PLC线路与梯形图起动、自锁和停止控制能使用驱动指令(OUT),也能够使用置位指令(SET、RST)来实现。
1、采用线圈驱动指令实现起动、自锁和停止控制线路与梯形图说明:点击起动按钮SB1时,PLC内部梯形图程序中的起动触点X000闭合,输出线圈Y000得电,输出端子Y0内部硬触点闭合,Y0端子与COM端子之间内部接通,接触器线圈KM得电,主电路中的KM主触点闭合,电动机得电起动。
点击停止按钮SB2时,PLC内部梯形图程序中的停止触点X001断开,输出线圈Y000失电,Y0、COM端子之间的内部硬触点断开,接触器线圈KM失电,主电路中的KM主触点断开,电动机失电停转。
2、采用置位复位指令实现起动、自锁和停止控制其PLC接线图与上面类似。
线路与梯形图说明:点击起动按钮SB1时,梯形图中的起动触点X000闭合,[SET Y000]指令执行,指令执行结果将输出继电器线圈Y000置1,相当于线圈Y000得电,使Y0、COM 端子之间的内部硬触点接通,接触器线圈KM得电,主电路中的KM主触点闭合,电动机得电起动。
点击停止按钮SB2时,梯形图程序中的停止触点X001闭合,[RST Y000]指令被执行,指令执行结果将输出线圈Y000复位,相当于线圈Y000失电,Y0、COM 端子之间的内部硬触点断开,接触器线圈KM失电,主电路中的KM主触点断开,电动机失电停转。
二、正、反转联锁控制的PLC线路与梯形图线路与梯形图说明如下:1)、正转联锁控制点击正转按钮SB1→梯形图程序中的正转触点X000闭合→线圈Y000得电→Y000自锁触点闭合,Y000联锁触点断开,Y0端子与COM端子间的内部硬触点闭合→Y000自锁触点闭合,使线圈Y000在X000触点断开后仍可得电;Y000联锁触点断开,使线圈Y001即使在X001触点闭合(误操作SB2引起)时也无法得电,实现联锁控制;Y0端子与COM端子间的内部硬触点闭合,接触器KM1线圈得电,主电路中的KM1主触点闭合,电动机得电正转。
本节讲述一些最基本的PLC梯形图,高楼大厦平地起,一砖一瓦少不了。
<1>
单个条件决定输出:
X10有输入,Y10就输出,X10无输入,Y0不输出
下面的刚好相反,X11无输入时,Y11有输出,X11有输入时,Y11不输出<2>
多个条件决定输出:
根据2个输入点不同的搭配情况,决定是否输出
<3>
2个输入点中有一个有输入,Y0则输出;如果2个输入点都无输入,不输出<4>
1个输入点有输入,2个输出点都有输出,反之无输出。
<5>
<1>
开关与自锁:
X1按下后,Y1由于自锁的缘故,一直有输出;按下X2后,Y1停止输出。
<2>
单按钮启停:
第一按X0,Y0开启;再按一次,Y0关闭;反复按X0,Y0反复启动停止。
<3>
置位,复位:
按一下X3,Y2保持开启;按一下X4,Y2保持关闭。
<4>
互锁:
先按X10,Y6输出,再按X12,Y7无法输出;先启动的Y有主动权。
<5>
PLS Y0:X0输入为开后,Y0有瞬间输出(时间为一个扫描周期)
PLF Y1:X0输入为关后,Y1有瞬间输出(时间为一个扫描周期)。
PLC接线入门及梯形图基础学习,经典必懂(含交通信号灯程序)案例一、喷泉控制
1、控制要求
系统要求用两个按钮来控制A、B、C三组喷头工作(通过控制三组喷头的泵电动机来实现)当按下启动按钮后,A组喷头先喷5s后停止,然后B、C两组喷头同时喷,5s 后,B组喷头停止、C组喷头继续喷5s再停止,而后A、B两组喷头喷7s,C组喷头在这7s的前2s内停止,后5s内喷水,接着A、B、C三组喷头同时停止3s,以后重复上述过程。
按下停止按钮后,三组喷头同时停止喷水。
2、确定输入/输出设备,并为其分配合适的I/O端子
喷泉控制用到的输入/输出设备和连接端子
3、绘制喷泉控制电路图
4、PLC控制程序
案例二、交通信号灯控制
1、控制要求
当按下启动按钮后,南北红灯亮25s,在南北红灯亮258的时间里,东西绿灯先亮20s再以1次s的频率闪烁3次,接着东西黄灯亮2s,25s后南北红灯熄灭,熄灭时间维持30s,在这30s时间里,东西红灯一直亮,南北绿灯先亮25s,然后以1次s频率闪烁3次,接着南北黄灯亮2s。
以后重复该过程。
按下停止按钮后,所有的灯都熄灭。
2、确定输入/输出设备,并为其分配合适的I/O端子交通信号灯控制用到的输入/输出设备和连接端子
3、绘制交通信号灯控制电路图
4、PLC控制程序
案例三、用西门子S7-200 PLC控制电动机正、反转
1、控制要求
要求通过3个按钮分别控制电动机连续正转、反转和停止,采用热继电器对电动机过载保护,另外要求正、反转控制联锁。
2、确定输入/输出设备,并为其分配合适的I/O端子
系统用到的输入/输出设备及对应的PLC端子
3、绘制电路图
4、编写程序。
PLC梯形图编程基础知识详解初学PLC梯形图编程,应要遵循一定的规则,并养成良好的习惯。
下面以三菱FX系列PLC为例,简单介绍一下PLC梯形图编程时需要遵循的规则,希望对大家有所帮助。
有一点需要说明的是,本文虽以三菱PLC为例,但这些规则在其它PLC编程时也可同样遵守。
一,梯形阶梯都是始于左母线,终于右母线(通常可以省掉不画,仅画左母线)。
每行的左边是接点组合,表示驱动逻辑线圈的条件,而表示结果的逻辑线圈只能接在右边的母线上。
接点不能出现在线圈右边。
如下图(a)应改为(b):二,接点应画在水平线上,不应画在垂直线上,如下图(a)中的接点X005与其它接点间的关系不能识别。
对此类桥式电路,应按从左到右,从上到下的单向性原则,单独画出所有的去路。
如图(b)所示:三,并联块串联时,应将接点多的去路放在梯形图左方(左重右轻原则);串联块并联时,应将接点多的并联去路放在梯形图的上方(上重下轻的原则)。
这样做,程序简洁,从而减少指令的扫描时间,这对于一些大型的程序尤为重要。
如下图所示:四,不宜使用双线圈输出。
若在同一梯形图中,同一组件的线圈使用两次或两次以上,则称为双线圈输出或线圈的重复利用。
双线圈输出一般梯形图初学者容易犯的毛病之一。
在双线圈输出时,只有最后一次的线圈才有效,而前面的线圈是无效的。
这是由PLC的扫描特性所决定的。
PLC的CPU采用循环扫描的工作方式。
一般包括五个阶段(如图所示):内部诊断与处理,与外设进行通讯,输入采样,用户程序执行和输出刷新。
当方式开关处于STOP时,只执行前两个阶段:内部诊断与处理,与外设进行通讯。
1,输入采样阶段PLC顺序读取每个输入端的状态,并将其存入到我们称之为输入映像寄存器的内在单元中。
当进入程序执行阶段, 如输入端状态发生改变.输入映象区相应的单元信息并不会跟着改变,只有在下一个扫描周期的输入采样阶段,输入映象区相应的单元信息才会改变。
因此,PLC 会忽视掉小于扫描周期的输入端的开关量的脉冲变化。
梯形图程序的基本规则和基本编程方法。
掌握了plc的基本编程指令之后,就可以根据控制要求编写简单的应用程序了。
为了提高编程质量和编程效率,必须首先了解编写梯形图程序的基本规则和基本编程方法。
1、基本编程规则①梯形图中的每一行都是从左侧母线开始画起,线圈或指令画在最右边,线圈或指令右边只能画右母线(OMRON PLC 梯形图的右母线省略)。
②线圈或指令不能直接与左侧母线连接(除极少数没有执行条件的指令,如END 等)。
如果必须时,可以通过特殊辅助继电器 25313 (常ON )的触点连接,如图1所示。
图1③用OUT 指令输出时,同一编号的继电器线圈在同一程序中使用两次以上,称为双线圈输出。
双线圈输出容易引起误动作或逻辑混乱,因此一般要避免出现这种情况。
例如,在图2( a )中,设00000 为ON 、00005 为OFF 。
由于PLC是按扫描方式执行程序的,执行第一行时01000 为ON ,而执行第二行时01000 为OFF 。
在I/O 刷新阶段01000 的输出状态只能是OFF 。
显然前面的输出无效,最后一次输出才是有效的图2又如,在图2 ( b )中,设00000 为ON 、00001 为OFF 。
在执行第一行程序后01000为ON ,执行第一行后01001 为ON ,执行第三行后01000 为OFF 。
因此在I/O刷新阶段,01001为ON , 01000 为OFF 。
但从第二行看,01000 和01001 的状态应该一致。
这就是双线圈输出造成的逻辑混乱。
④梯形图必须遵循从左到右、从仁到下的顺序编写,不允许在两行之间垂直连接触点。
如果不符合上述顺序,就要进行转换。
如图3( a )若转换成(b )图就符合顺序要求了。
⑤程序结束时一定要安排 END 指令,否则程序不被执行。
图32、基本编程方法:①两个或两个以上的线圈或指令可以并联输出。
②触点组与单个触点相并联时,应将单个触点放在下面。
例如图4( a )变成图(b ) 从语句表看出节省了一个OR LD 语句。
PLC编程:梯形图程序设计基础梯形图仿真继电器控制电路电动机启、停控制电路电动机启、停控制梯形图S7-200所接输⼊/输出设备图与S7-200梯形图关系的图⽰PLC控制的基本电路1 单输出⾃锁控制电路启动信号I0.0和停⽌信号I0.1持续为ON的时间般都短。
该电路最主要的特点是具有“记忆”功能。
多地控制2 多输出⾃锁控制电路(置位、复位)多输出⾃锁控制即多个负载⾃锁输出,有多种编程⽅法,可⽤置位、复位指令3 单向顺序启\停控制电路1. 单向顺序启动控制电路是按照⽣产⼯艺预先规定的顺序,在各个输⼊信号的作⽤下,⽣产过程中的各个执⾏机构⾃动有序动作。
只有Q0.0启动后,Q0.1⽅可启动,Q0.2必须在Q0.1启动完成后才可以启动。
2. 单向顺序停⽌控制电路就是要求按⼀定顺序停⽌已经执⾏的各机构。
只有Q0.2被停⽌后才可以停⽌Q0.1,若想停⽌Q0.0,则必须先停⽌Q0.1。
I0.4为急停按钮。
4 延时启\停控制电路1.延时启动控制设计延时启动程序,要利⽤中间继电器(内部存储器M)的⾃锁状态使定时器能连续计时。
定时时间到,其常开触点动作,使Q0.0动作。
2.延时停⽌控制定时时间到,延时停⽌。
I0.0为启动按钮、I0.1为停⽌按钮。
3.延时启\停控制电路该电路要求有输⼊信号后,停⼀段时间输出信号才为ON;⽽输⼊信号0FF后,输出信号延时⼀段时间才OFF。
T37延时3 s作为Q0.0的启动条件,T38延时5 s作为Q0.0的关断条件。
5 超长定时控制电路S7-200 PLC中的定时器最长定时时间不到1 h,但在⼀些实际应⽤中,往往需要⼏⼩时甚⾄⼏天或更长时间的定时控制,这样仅⽤⼀个定时器就不能完成该任务。
下例表⽰在输⼊信号I0.0有效后,经过10 h 30 min 后将输出Q0.0置位。
T37每分钟产⽣⼀个脉冲,所以是分钟计时器。
C21每⼩时产⽣⼀个脉冲,故C21为⼩时计时器。
当10 h计时到时,C22为ON,这时C23再计时30 min,则总的定时时间为10 h 30 min,Q0.0置位成ON。