第三章热力学第二定律
- 格式:doc
- 大小:121.50 KB
- 文档页数:7
第三章热力学第二定律热力学第一定律过程的能量守恒热力学第二定律过程的方向和限度§3.1 热力学第二定律(1)过程的方向和限度自发过程:体系在没有外力作用下自动发生的变化过程,其有方向和限度。
例如:水位差、温度差、压力差等引起的变化过程。
自发过程,有做功能力方向:始态终态反自发过程,需消耗外力平衡状态限度:始态终态无做功能力自发过程的共同特征:不可逆性(2)热力学第二定律的表达式经典表述:人们不能制造一种机器(第二类永动机),这种机器能循环不断地工作,它仅仅从单一热源吸取热量均变为功,而没有任何其它变化。
一般表述:第二类永动机不能实现。
§3.2 卡诺循环1824年,法国工程师卡诺(Carnot)使一个理想热机在两个热源之间,通过一个特殊的可逆循环完成了热→功转换,给出了热机效率表达式。
这个循环称卡诺循环。
(1)卡诺循环过程设热源温度T1 > T2,工作物质为理想气体。
卡诺循环1. 恒温可逆膨胀(A → B ):0U 1=∆ 12111V V lnnRT W Q == 2. 绝热可逆膨胀(B → C ):0q =, )T T (nC U W 21V 22-=∆-=3. 恒温可逆压缩(C → D ):0U 3=∆, 342322V V lnnRT W q Q ==-= 4. 绝热可逆压缩(D → A ):0q =, )T T (nC U W 12V 44-=∆-=整个循环过程的总功为:34212112V 34221V 1214321V Vln nRT V V lnnRT )T T (nC V Vln nRT )T T (nC V V ln nRT W W W W W +=-++-+=+++= 热机循环一周有:0U =∆, W q Q Q Q Q 2121=-=+=热机效率:1213421211V V ln nRT V Vln nRT V V lnnRT Q W+==η对于绝热可逆膨胀:k12312V V T T -⎪⎪⎭⎫ ⎝⎛=对于绝热可逆压缩: k14121V V T T-⎪⎪⎭⎫ ⎝⎛=比较得:1423V V V V =或 4312V V V V = 则: 121121Q Q Q T T T +=-=η η— 卡诺热机效率(2) 卡诺定理卡诺定理:一切工作于高温热源T 1与低温热源T 2之间的热机效率,以可逆热机的效率为最大。
第三章热力学第二定律热力学第二定律的提出背景热力学第一定律以能量守恒定律为根据,引入U、H两个热力学函数,经W、Q、ΔU 及ΔH的计算,解决变化中的能量转换。
除此而外,另一被无机、有机、化学工程等领域共同关心的问题:几种放在一起的物质间是否可能发生化学反应?●若可能,变化的方向为何,在哪里停下来?●方向问题:C(石墨) →C(金刚石)的变化极具价值,但历史上的无数次试验均告失败。
应用热二律计算表明,常温实现这一转化所需压力为大于1500MPa(~15000atm)。
即常温常压下该变化正向是非自发的。
反向?事实表明:一定条件下,并非任何变化都能朝着人们预期的方向进行。
提出的问题:确定条件下的方向为何?预期方向的实现需要何种条件?●限度问题:在高炉炼铁Fe3O4+4CO →3Fe+4CO2事实表明:一定条件下,变化是有限度的。
提出的问题:确定条件下某变化的限度如何?平衡位置在哪?影响平衡位置的因素有哪些,怎样影响?如何控制条件来控制平衡位置及转化率?▪方向和限度两个问题是热一律所不能解决的。
▪热力学第二定律将引入新的热力学函数S、G、A,解决这两个问题。
学习要求及重点:深入理解熵、赫姆霍兹函数、吉布斯函数等概念;了解热力学能和熵的本质;掌握封闭系统PVT变化、相变化及化学变化三类过程ΔS、ΔA、ΔG的计算;理解热力学重要关系式及其应用。
3.1 热力学第二定律1.自发过程的特征(1)明显的自发变化:中和反应、置换反应如:铁在潮湿空气中自动生锈(2)经引发明显自发:2H2(g) +O2(g) →H2O(g)H2(g) +Cl2(g) →2HCl(g)(3)难以觉察的自发:C(金刚石) →C(石墨)(4)非自发:C(石墨) →C(金刚石)N2+O2→2NO6CO2+6H2O →C6H12O6+6O2C+H2→汽油自发过程的共同特征:⑴都具明显的单向自发倾向,逆过程需借助外力做功,且系统和环境不可同时复原;⑵都具一推动力,推动力消失为限度——平衡态;⑶加以控制和利用时,可获得功;⑷都向着孤立体系中能量发散的方向自发进行。
第三章热力学第二定律
一、选择题
1.理想气体与温度为T 的大热源接触,做等温膨胀吸热Q,而所做的功是变到相同终态最大功的20%,则体系的熵变为()
A.ΔS = 5Q /T
B.ΔS = Q /T
CΔS= Q/5T D.ΔS =T/Q A
2.下列过程哪一种是等熵过程()
A. 1mol 某液体在正常沸点下发生相变
B. 1mol 氢气经一恒温可逆过程
C. 1mol 氮气经一绝热可逆膨胀或压缩过程
D. 1mol 氧气经一恒温不可逆过程
C
= −S d T+V d p 适用的条件是()
A.只做膨胀功的单组分,单相体系
B. 理想气体
C. 定温、定压
D. 封闭体系A 4.熵变△S 是
(1) 不可逆过程热温商之和(2) 可逆过程热温商之和
(3) 与过程无关的状态函数(4) 与过程有关的状态函数
以上正确的是:()
,2 B. 2,3 C. 2 C
5.体系经历一个不可逆循环后()
A.体系的熵增加
B.体系吸热大于对外做功
C.环境的熵一定增加C环境内能减少C 6.理想气体在绝热可逆膨胀中,对体系的ΔH 和ΔS 下列表示正确的是()A. ΔH > 0, ΔS > 0 B. ΔH = 0, ΔS = 0
C. ΔH < 0, ΔS = 0
D.ΔH < 0, ΔS < 0B
7.非理想气体绝热可逆压缩过程的△S()
A.=0
B.>0
C.<0
D.不能确定A
8.一定条件下,一定量的纯铁与碳钢相比,其熵值是()
(纯铁)>S(碳钢)(纯铁)<S(碳钢)
(纯铁)=S(碳钢) D.不能确定B
9. n mol 某理想气体在恒容下由T1加热到T2,其熵变为△S1,相同量的该气体在
恒压下由T1 加热到T2,其熵变为△S2,则△S1与△S2的关系()
A.△S1 >△S2
B. △S1 = △S2
C. △S1 < △S2
D. △S1 = △S2 = 0 C
10.理想气体绝热向真空膨胀,则:()
A.△S = 0,W = 0
B.△H = 0,△U = 0
C.△G = 0,△H = 0
D.△U = 0,△G = 0 B
11.系统经历一个不可逆循环后:()
A.系统的熵增加
B.系统吸热大于对外作的功
C.环境的熵一定增加
D.环境的内能减少C
12.下列四种表述:
(1) 等温等压下的可逆相变过程中,系统的熵变△S =△H 相变/T 相变
(2) 系统经历一自发过程总有d S > 0
(3) 自发过程的方向就是混乱度增加的方向
(4) 在绝热可逆过程中,系统的熵变为零
两者都不正确者为:()
A.(1)、(2)
B.(3)、(4)
C.(2)、(3)
D.(1)、(4) C
13.理想气体经可逆与不可逆两种绝热过程:()
A.可以从同一始态出发达到同一终态
B.不可以达到同一终态
C.不能断定A、B 中哪一种正确
D.可以达到同一终态,视绝热膨胀还是绝热压缩而定B
14.恒温恒压条件下,某化学反应若在电池中可逆进行时吸热,据此可以判断下列热力学量中何者一定大于零()
A.△U
B.△H
C.△S
D.△G C
15.在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为:()
A.大于零
B.等于零
C.小于零
D.不能确定A
16.在绝热恒容的反应器中,H2和Cl2化合成HCl,此过程中下列各状态函数的变化值哪个为零()
A.△rUm
B.△rHm
C.△rSm
D.△rGm A
二、填空题
1.标准压力、时,水凝结为冰,可以判断系统的下列热力学量
△G= 。
(0)2.在恒熵、恒容、不做非膨胀功的封闭体系中,当热力学函数到达最值的状态为平衡状态。
(U,小)
理想气体向真空膨胀,若其体积增加到原来的10 倍,则系统、环境和孤立系统的熵变应分别为:、、(J/K, 0 , J/K)
单原子理想气体从p1V1T1等容冷却到p2V1T2,则该过程的△U 0,△S 0,W 0(填>、<、=)。
(<、<、=)
晶体的标准摩尔残余熵S= 。
(K·mol)
6. 1 mol Ag(s) 在等容下由加热到, 已知在该温度区间内Ag(s) 的
Cv,m/J·K-1·mol-1=,则其熵变为: 。
(J/K)7. 当反应进度ξ= 1mol 时,可能做的最大非膨胀功为:。
(66 kJ)
8. 范德华气体绝热向真空膨胀后,气体的温度将。
(下降)
9.单原子理想气体的Cv,m =,温度由T1变到T2时,等压过程系统的熵变△Sp 与等容过程熵变△SV 之比是。
(5:3)10.固体碘化银(AgI)有α和β两种晶型,这两种晶型的平衡转化温度为,由α型转化为β型时,转化热等于6462J·mol-1,由α型转化为β型时的△S 应为:。
()
四、判断题
1. 自然界中存在温度降低,但熵值增加的过程。
正确
2. 熵值不可能为负值。
正确
3. 体系达平衡时熵值最大,吉布斯自由能最小。
不正确
4. 不可逆过程的熵不会减少。
不正确
5. 在绝热体系中,发生一个从状态A到状态B的不可逆过程,不论用什么方法,体系再也回不到原来的状态了。
正确
6.可逆热机的效率最高,在其他条件相同的情况下,由可逆热机牵引火车,其速度将最慢。
正确
7.对于绝热体系,可以用△S≥0判断过程的方向和限度。
不正确8.第二类永动机是不可能制造出来的。
正确
9. 把热从低温物体传到高温物体,不引起其它变化是可能的。
不正确
10.在,385K 的水变为同温下的水蒸气,对该变化过程,△S(系统)+△S(环境>0 正确
四、计算题
1. 卡诺热机在的高温热源和的低温热源间工作。
求
(1)热机效率;
(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为
根据定义
2.卡诺热机在的高温热源和的低温热源间工作,求:
(1)热机效率;
(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热
解:(1) 由卡诺循环的热机效率得出
(2)
3. 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义
因此,上面三种过程的总熵变分别为。
4. 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
(3)系统先与40℃,70℃的热源接触至热平衡,再与100℃的热源接触。
解:熵为状态函数,在三种情况下系统的熵变相同
在过程中系统所得到的热为热源所放出的热,因此
5. 始态为,的某双原子理想气体1 mol,经下列不同途径变化到
,的末态。
求各步骤及途径的。
(1)恒温可逆膨胀;
(2)先恒容冷却至使压力降至100 kPa,再恒压加热至;
(3)先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至。
解:(1)对理想气体恒温可逆膨胀,△U = 0,因此
(2)先计算恒容冷却至使压力降至100 kPa,系统的温度T:
(3)同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T:根据理想气体绝热过程状态方程,
各热力学量计算如下。