在abaqus中如何模拟3D 裂纹
- 格式:pdf
- 大小:784.59 KB
- 文档页数:7
关键字:crack,裂纹,断裂,cohesive,XFEM这个问题不大好总结,比较复杂,我能想到什么就说些什么吧,这个任务已经托了很长时间了,抱歉!有新的想法我会更新。
求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
俩者不是一个概念,断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等;损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这个就是基于断裂力学的方法,大家可以参考敦诚版主做的这个例子(一个简单的裂纹模拟例子:/thread-858322-1-1.html),这种方法可以计算裂纹的应力强度因子,J积分及T-应力等,详细情况可以参考下这个帖子:/thread-821531-1-1.html考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等,详细情况可参看yaooay的这个帖子,总结的相当不错!/thread-853029-1-1.html除VCCT(虚拟裂纹闭合技术)和低周疲劳判据外,其他debond技术只能适用于二维模型,所以应用范围受到很大的限制。
VCCT是基于线弹性断裂力学的应变能释放率判据,适用于模拟脆性断裂扩展,且只能沿着事先确定的扩展面扩展,分析前需指定初始裂纹(缺陷),详细信息请查看分析手册11.4.3。
abaqus cae中的mmc断裂设置
在ABAQUS CAE中,可以使用MMC断裂设置来模拟材料的断裂行为。
具体的设置方法可能因模型的不同而有所差异,但通常包括以下步骤:
1. 创建断裂部件:进入草图模式,创建一个矩形板,然后退出草图模式。
点击PartitionFace:Sketch,再次进入草图模式,创建一条seam。
在草图模式下,创建4个半圆,为定义裂纹及mesh做准备。
2. 设置材料属性:创建材料,并为断裂部件分配相应的材料属性。
3. 定义断裂准则:选择合适的断裂准则,如最大应力、应变能密度等。
4. 设置断裂参数:设置断裂韧性、临界张开位移等参数,以控制断裂行为。
5. 划分网格:对断裂部件进行网格划分,确保断裂区域的网格足够细。
6. 求解:进行静态分析,观察断裂过程和结果。
请注意,上述步骤仅为一般性指导,具体的设置方法可能因模型的不同而有所差异。
如果你需要关于MMC断裂设置的更详细信息,请提供相关的模型和问题描述,我将尽力为你提供帮助。
ABAQUS平台的扩展有限元方法模拟裂纹实现1.1 扩展有限元方法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。
在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。
针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。
另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。
除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。
ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。
由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度;3.自适应的网格是不被支持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。
2016新编abaqus 断裂图文实例在abaqus中创建裂纹1. create part,如图1所示:图12. 进入草图模式,创建一矩形板,点鼠标中键2次退出草图模式,点击Partition Face: Sketch,再次进入草图模式,创建一条seam,如图2所示:图2 13. 在草图模式下,创建4个半圆(为以后定义裂纹及mesh 做准备),如图3所示:图34. 退出part模块,进入property模块,create material,create section,assign section,此过程不再细述。
(材料定义为线弹性即可)5. 进入assembly模块,create instance;进入step模块,create step,默认选择即可,不需要改动。
d6. 进入interaction模块,点击special——crack——assign seam,按住shift键,选择3段直线段作为seam(见图4),然后点击special——crack——create,给裂纹起名,continue,选择内部小圆区域作为first contour region,选择圆心作为crack tip region,用向量q表示裂纹扩展方向(需输入向量起点和终点坐标),进入edit crack菜单,定义裂尖奇异性,见图5所示,相关内容请参考abaqus manual,定义完成的裂纹见图6所示。
图4 2图5图67. 进入step模块,点击history output manager,点击edit,进入edit history output request菜单,设置见图7所示,详细内容请参考abaqus manual。
8. 进入load模块,定义外力及边界条件,定义好后见图8所示,此过程不再细述。
3图7图849. 进入mesh模块,设置边种子(根据建模情况考虑),最内部用三角形单元,外层用四边形单元,最后效果如图9所示,此过程不再细述。
也许要暂别simwe一段时间了,在论坛获益良多,作为回报把自己这段时间在ABAQUS断裂方面的一些断断续续的心得整理如下,希望对打算研究断裂的新手有一点帮助,大牛请直接跳过。
本贴所有内容均为原创,转贴请注明,谢谢。
引言:我们知道从1914年Ingless和1921年Griffith提出断裂力学开始,一直到60年代都停留在线弹性断裂力学(LEFM)的层次。
后来由於发现在裂纹尖端进入塑性区后用LEF仍然无法解决stress singularity的问题。
1960年由Barenblatt 和Dugdale率先提出了nonlinear/plastic fracture mechnics的概念,在裂纹前端引入了plastic zone,这也就是我们现在用的cohesive fracture mechnics的前身。
当时这个概念还没引起学术界的轰动。
直到1966年Rice发现J-integral及随后发现在LEFM中J-integral是等于energy release rate的关系。
随后在工程中发现了越来越多的LEFM无法解释的问题。
cohesive fracture mechnics开始引起更多的关注。
在研究以混凝土为代表的quassi-brittle material时,cohesive fracture mechnics提供了非常好的结果,所以在70年代到90年代,cohesive fracture mechnics被大量应用于混凝土研究中。
目前比较常用的方法主要是fictitious crack approach和effective-elastic crack approach或是称为equivalent-elastic crack approach. 其中fictitious crack approach只考虑了Dugdale-Barenblatt energymechanism而effective-elastic crack approach只考虑了基於LEFM的Griffith-Irwinenergy dissipation mechanism,但作了一些修正。
裂纹扩展分析体验热分析中的热物性参数:材料密度,热导率,比热容,电阻率,弹性模量,融化潜热的焓、泊松比、散热系数。
在ABAQUS模型中,需用3D的deformable、shell、exctrusion方式建立一个初始裂纹,长短适宜,初始裂纹要从开始起裂的点设置。
由于计算方法目前还不稳定,参数要适当调整。
设置网格划分参数的时候,应该对称设置,否则网格不对称。
断裂应力的大小要和断裂能量的设置相应,能量太大、太小导致不易收敛,断裂区域的网格要规则,各个方向尺寸要差不多,整个厚度方向单元数量一致,且越少越好,即使裂纹起始点两侧单元未参与裂纹,也要尽可能均匀规则,裂纹扩展的区域不能被PARTION开,应该是一体的。
冲击动载荷时,载荷步时间应尽可能小,maxps damage应力应大于ductile damage应力。
初始裂纹不能在单元界限扩展,否则导致不收敛。
裂纹可在两种弹性金属界面上。
适用于弹性材料、两种弹性材料界面裂纹和幂硬化材料。
我建立的弹塑性材料模型不容易收敛,把塑性去掉后反而容易收敛。
建立ductile manage模型时,需要材料的塑性行为,但必须同时有traction manage模型,否则就提示某些单元的fracture damage模型未能建立?。
traction manage模型和ductile manage模型中的damage evolution中的类型和数值要相同。
初始屈服应力和断裂应力不能差太多。
动力学的冲击裂纹分析,不能有塑性(当然也不能有ductile damage),可能是因为increment time 太大了?(或者是先分析一下不带塑性材料的,通过了才分析有塑性材料的?)断裂能量要和断裂应力相适应,否则可能因为能量太高,还未达到,但应力达到了,导致裂纹不开裂、计算不收敛。
能量太低,很容易就满足了能量开裂原则,但应力未达到,裂纹不能开裂、计算不收敛。
能量的高低也影响到稳定扩展裂纹的长短:能量低的时候,由于需要很少的能量即可实现裂纹扩展,因此稳定扩展的裂纹在不长的时候即会失稳扩展;能量太高的时候,在裂纹稳定扩展的过程中试样积累了相当的能量,因此稳定扩张一段时间后,试样内部的能量和外加能量就可以实现裂纹的失稳扩展,稳定扩展段也不会很长。
ABAQUS XFEM Tutorial: 3D Edge Crack Written By: Matthew Jon Pais, University of Florida (2010)Website: Email: mpais@, matthewjpais@Creating the Uncracked Domain1. Open ABAQUS/CAE 6.9 or later.2. Double click on Parts. Enter name as Solid, Modeling Space is 3D, Type is Deformable, Base Feature is Solid and Approximate Size is 5. Click Continue.3. Use the rectangle tool to draw a square from (-2,-2) to (2,2). Click Done. Enter 4 for the depth. Click Ok.4. Double click on Materials. Enter name as Aluminum. Click on Mechanical, then Elasticity, then Elastic. Enter Young's modulus as 70 GPa and Poisson's ratio as 0.33. Click on Mechanical, then Damage for Traction Separation laws, then Maxps Damage. Enter a value of 500 MPa. From the Suboptions menu click on Damage Evolution. Enter Displacement at Failure as 1. Click Ok. Click Ok.5. Double click on Sections. Name as Main. Accept default settings by clicking Continue. Select Aluminum as material. Click Ok.6. Expand Parts then expand Solid. Double click on Section Assignments. Select the domain. Click Done. Accept default settings. Click Ok.7. Expand Solid. Double click on Mesh. From the top menu select Seed, then Edge By Number. Select the Domain. Click Done. Enter 21 as Number of elements along the edges. Hit Enter. Click Done.8. From the top menu select Mesh, then Controls. Select Hex, Structured. Click Ok. From the top menu select Mesh, then Part. Click Yes.9. Expand Assembly. Double click on Instances. Select Solid. Accept default settings by clicking Ok.Creating the Cracked Domain1. Double click on Parts. Enter name as Crack, Modeling Space is 3D, Type is Deformable, Base Feature is Shell, Type is Extrusion and Approximate Size is 5. Click Continue.2. Draw a line from (-2,0) to (-1,0). Click Done. Enter 4 for depth. Click Ok.3. Expand Assembly, then double click on Instances. Select Crack. Accept default settings by clicking Ok.4. Double click on Interactions. Click Cancel. From top menu click Special, then Crack, then Create. Name as EdgeCrack, Type is XFEM. Click Continue. Select the uncracked domain as the Crack Domain. On the menu which appears, Specify the Crack Location by clicking on the line signifying the crack. Click Ok.5. Double click on Interactions. Enter name as Growth. Select Initial Step and Types for Selected Step as XFEM Crack Growth. Click Continue. XFEM Crack should have EdgeCrack. Click Ok.Create the Boundary Conditions and Loads1. Double click on Steps. Enter Name as Loading. Accept default setting and click Continue. Accept default settings and click Ok.2. Double click on Loads. Enter name as TopPressure, Category is Mechanical, Type is Pressure. Click Continue. Select the top edge of the domain. Click Done. Enter -1 as Magnitude, other settings are default. Click Ok.3. Repeat step 2 for the bottom edge of the domain, entering the name as BottomPressure.4. Double click on BCs. Enter name as FixedBREdge, Step is Initial, Category is Mechanical, Types for Selected Step is Displacement/Rotation. Click on the bottom right edge through the thickness of the domain. Click Done. Set U1, U2 and UR3 to zero. Click Ok.5. Repeat step 4 for the top right corner of the domain. Enter name as RollerTRC. Set U1 and UR3 to zero.6. Expand Field Output Requests, double click on F-Output-1. Expand the Failure/Fracture options and check the box next to PHILSM, Level set value phi. Click Ok. This will allow you to view the level set function defining the crack.Solving the System of Equations1. Double click on Jobs. Enter name as EdgeCrack3D. Click Continue. Accept default settings by clicking Ok.2. Expand Jobs. Right click on EdgeCrack3D and click Submit.3. Right click on EdgeCrack3D, click Results to view results.。