《运筹学》第四章习题及答案
- 格式:docx
- 大小:35.86 KB
- 文档页数:11
运筹学第四章习题答案4.1若用以下表达式作为目标规划的目标函数,其逻辑是否正确?为什么? (1)max {-d -+d } (2)max {-d ++d } (3)min {-d ++d } (4)min {-d -+d }(1)合理,令f (x )+-d -+d =b,当f (x )取最小值时,-d -+d 取最大值合理。
(2)不合理,+d 取最大值时,f (x )取最大值,-d 取最大值时,f (x )应取最小值 (3)合理,恰好达到目标值时,-d 和+d 都要尽可能的小。
(4)合理,令f (x )+-d -+d =b,当f (x )取最大值时,-d -+d 取最小值合理。
4.2用图解法和单纯形法解下列目标规划问题(1)min {P 13+d ,P 2-2d ,P 3(-1d ++1d )}24261121=-+++-d d x x 52221=-+++-d d x x155331=-++-d d x3,2,1,0,,,21=≥+-i d d x x i i(2)min{P 1(+++43d d ),P 2+1d ,P 3-2d ,P 4(--+435.1d d )} 401121=-+++-d d x x1002221=-++--d d x x30331=-++-d d x 15442=-++-d d x4,3,2,1,0,,,21=≥+-i d d x x i i(1)图解法0 A B C X 1由图可知,满足域为线段EG,这就是目标规划方程的解,可求得:E,G 的坐标分别为(0,12),(3,3) 故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a(2)图解法 21由图可知,满足域为线段AB A(25,15),B(30,10)故该问题的解可表示为)1015,3025()10,30()15,25(212121a a a a a a ++=+ )1,0(212,1=+≥a a a a(1)单纯形法0 0 P1 0 0 P2 P3 P3CB XB x1 x2 bP3 P2 06 2 0 0 0 0 -1 1 245152 1 0 0 -1 1 0 05 0 -1 1 0 0 0 0P1P2P30 0 1 0 0 0 0 0-1 -1 0 0 1 0 0 0-6 -2 0 0 0 0 2 0P3P20 x1 0 2 1.2 -1.2 0 0 -1 1 6230 1 0.2 0.2 -1 1 0 01 0 -0.2 0.2 0 0 0 0P1 P2 P3 0 0 1 0 0 0 0 0 0 -1 -0.2 0.2 1 0 0 0 0 -2 -1.2 1.2 0 0 2 0P30 0x2x10 0 0.8 -0.8 2 -2 -1 1 2230 1 0.2 -0.2 -1 1 0 01 0 -0.2 0.2 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 -0.8 0.8 -2 2 2 00 0x2x10 0 0.4 -0.4 1 -1 -0.5 -0.5 1330 1 0.6 -0.6 0 0 0.5 0.51 0 -0.2 0.2 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 10 0 x22 0 0 0 1 -1 -0.5 -0.5 71253 1 0 0 0 0 0.5 0.55 0 -1 1 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 1故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a(2)P2P3P1P4P11.5P4CB XB x1 x2b 0 1 1 -1 1 00 0 0 0 0 401 1 0 0 -1 1 0 0 0 0 100 1 0 0 0 0 0 -1 1 00 301-1115P1 0 0 0 0 0 0 1 0 1 0P21P3 -1 -11 00 0 P4-11.5 0 0 1 0 -1 1 0 0 0 0 1 -1 251 0 0 0 -1 1 0 0 1 -1 85 1 0 0 0 0 0 -1 1 0 0 30 0x2 0 115P1 0 0 00 0 0 1 0 1 0P20 0-1 0P3 -1 01-1 1 P4 -1 00 51 0 x110 -1 1 0 0 0 0 1 -11-1-110 0 1 -1 0 0 -1 1 -1 1 30 0 x2 0 1 0 0 0 0 0 0 0 0 P1 0 0 0 0 0 0 1 0 1 0 P2 0 0 1 0 0 0 0 0 0 0 P3 0 0 -1 1 1 0 0 0 0 0P4-1111.54.3某商标的酒是用三种等级的酒兑制而成。
运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
第4章训练题实践能力训练1.某工厂生产A 、B 两种产品,产品A 每件利润为$10,而产品B 每件利润为$8,产品A 每件需3小时装配时间,而B 为2小时,每周总装配有效时间为120小时。
工厂允许加班,但加班生产出来的产品的利润得减去1美元,根据最近合同,厂商每天至少得向用户提供两种产品各30件。
通过与厂商经理交谈,确认如下事实:(1)与用户签定的合同必须遵守,且工厂正常工作时间只有120小时; (2)尽可能不加班;(3)求利润最大; 试建立此问题的数学模型。
1.设正常生产A 产品1x 件,B 产品3x 件,加班生产A 产品2x 件,B 产品4x 件。
则},,{m in 5443321ηρ-ηρ-η+η+η=a lex30..1121=ρ-η++x x t s 302243=ρ-η++x x 120233331=ρ-η++x x0234442=ρ-η++x x54078910554321=ρ-η++++x x x x0,,41≥x x 且为整数2.考虑双A 牌啤酒的混合问题。
D 厂用三种级别的白兰地(一,二,三)来生产三种混合酒(DT ,DTA ,QL ),三种级别的白兰地酒供应量受到严格限制,他们的供应量和成本如下: 一级 1,500加仑/日 $6.00 /加仑 二级 2,100加仑/日 $4.50 /加仑 三级 950 加仑/日 $3.00 /加仑双A 牌酒的信誉很高,为了保证质量,其生产配方受到严格控制,其配方如右表所示。
在此题中,把日供应量和混合比例设为硬约束,其余按其优先顺序表示如下:(1)求利润极大;(2)每日至少生产2,000加仑DT 酒。
试建立此问题的数学模型。
2.变量假设如表:},,{m in 1110987654321ηηη+ρ+η+ρ+η+ρ+ρ+ρ+ρ=a lex 1500..11312111=ρ-η+++x x x t s 210022322212=ρ-η+++x x x 95033332313=ρ-η+++x x x1.04413121112=ρ-η+++x x x x5.05513121111=ρ-η+++x x x x6.06623222123=ρ-η+++x x x x2.07723222121=ρ-η+++x x x x5.08833323133=ρ-η+++x x x x1.09933323131=ρ-η+++x x x x13650)(3)(5.4)(6)(5)(5.5)(61010332313322212312111333231232221131211=ρ-η+++-++-++-++++++++x x x x x x x x x x x x x x x x x x20001111131211=ρ-η+++x x x .3,2,1,,0=≥j i x ij3.动力公司生产单一类型的机动自行车(即小型汽油机动摩托车),称为美洲神风,这家公司同时也进口意大利的安全牌机器摩托车,神风牌每辆售价为$650,安全牌$725,需求情况是厂家生产或进口摩托车都能轻易地卖出去。
判断题判断正误,如果错误请更正第四章目标规划1.正偏差变量大于等于0,负偏差变量小于等于0。
2.系统约束中最多含有一个正或负的偏差变量。
3.目标约束一定是等式约束。
4.一对正负偏差变量至少一个大于0。
5.一对正负偏差变量至少一个等于0。
6.要求至少到达目标值的目标函数是maxZ=d+。
7.要求不超过目标值的目标函数是minZ=d+。
8.目标规划没有系统约束时,不一定存在满意解。
9.超过目标的差值称为正偏差。
10.未达到目标的差值称为负偏差。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第四章目标规划1.要求不超过第一目标值,恰好完成第二目标值,目标函数是A minZ=P1d1-+P2(d2-+d2+)B minZ= P1d1++P2(d2-+d2+)C minZ=P1(d1-+d1+)+P2(d2-+d2-)D minZ=P1(d1-+d1+)+ P2d2-2.下列正确的目标规划的目标函数是 A minZ=P1d1-- P2d2- B maxZ= P1d1-+P2d2- CminZ=P1d1--+P2(d2--d2+) D minZ=P1(d1-+d1+)+P2(d2-+d2-) E minZ=P1d1- +P2d2+3.下列线性规划与目标规划之间正确的关系是A线性规划的目标函数由决策变量构成,目标规划的目标函数由偏差变量构成 B 线性规划模型不包含目标约束,目标规划模型不包含系统约束C线性规划求最优解,目标规划求满意解。
D 线性规划模型只有系统约束,目标规划模型可以有系统约束和目标约束 E 线性规划求最大值和最小值,目标规划只求最小值4.目标函数minZ= P1(d1-+d2-)+ P2d3- 的含义是A第一和第二目标恰好达到目标值,第三目标不超过目标值。
B第一、第二和第三目标同时不超过目标值。
C首先第一和第二同时不超过目标值,然后第三目标不超过目标值。
问题。
运筹学》 第四章习题及 答案、思考题1.运输问题的数学模型具有什么特征?为什么其约束方程的系数矩阵的秩最多等于 m ,n,1 ?2. 用左上角法确定运输问题的初始基本可行解的基本步骤是什么? 小元素法的基本思想是什么?为什么在一般情况下不可能用它直接得到运输问题的最优方案?4. 沃格尔法( Vogel 法)的基本思想是什么?它和最小元素法相比给出的运 输问题的 初始基本可行解哪一个更接近于最优解?为什么?5. 试述用闭回路法检验给定的调运方案是否最优的原理,其检验数的经济意 义是什 么?6. 用闭回路法检验给定的调运方案时,如何从任意空格出发去寻找一条闭回 路?这闭 回路是否是唯一的?如何把一个产销不平衡的运输问题(产大于销或销大于产)转化为产销平 衡的运输 10.一般线性规划问题应具备什么特征才可以转化为运输问题的数学模型?11.试述在表上作业法中出现退化解的涵义及处理退化解的方法。
7. 试述用位势法求检验数的原理、步骤和方法。
8. 试给出运输问题的对偶问题(对产销平衡问题)。
9.、判断下列说法是否正确1.运输问题模型是一种特殊的线性规划模型,所以运输问题也可以用单纯形方法求解。
2 .因为运输问题是一种特殊的线性规划模型,因而求其解也可能出现 下列四种情况:有唯一最优解;有无穷多个最优解;无界解;无可行解。
3 .在运输问题中, 只要给出一组( ,,xijm ,n,1 )个非零的,且满足nm,,就可以作为一个基本可行解。
4 .表上作业法实质上就是求解运输问题的单纯形法。
5.按最小元素法或元素差额法给出的初始基本可行解,从每一空格出发都可以找到一闭回路,且此闭回路是唯一的。
6.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数 k,最优 调运方案将不会发生变化。
7.如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数 k,最优调运方案将不会发生变化。
8.用位势法计算检验数时,先从某一行(或列)开始,给出第一个位势的值,这个先给出的位势值必须是正的。
9.用位势法计算检验数时,每一行(或列)的位势的值是唯一的,所以每个空格的检验数是唯一的。
■ ■ ■ I ■ ■ ■ ■ Jt ■ Jt x,aijix,b,,ijjj,1 i,11 7 9 52 172 3 5 8 6 153 4 3 10 4 2310.当所有产地的产量和销地的销量都是整数时,运输问题的最优解也是整数。
三、求解下列产销平衡的运输问题,下表中列出的为产地到销地之间的运 价。
(1 )用左上角法、最小元素法、沃格尔法求初始基本可行解; 所得的初始方案出发,应用表上作业法求最优方案,并比较初始方案需要的迭代次数。
销地产地BBBB 产量12341 3 11 3 12 73 74 105 9销 量 3 6 5 6 20四、用表上作业法求下列产销平衡的运输问题的最优解:(表上数字为产地到销地的运价, M 为任意大的正数,表示不可能有运输通道)1)1 10 5 6 7 252 8 2 7 6 253 9 34 8 50销 量 15 20 30 35 1002)由上面 销地甲乙丙丁产 量产地销地甲乙丙丁产 量产地销量10 15 20 10 45 3)销地甲乙丙丁戊产量产地1 2 5 4 5 3 302 3 4 1 7 5 203 2 1 9 8 7 204 5 4 3 6 8 30销量10 15 25 20 30 100 4) 产地甲乙丙丁戊销量销地1 72 1 6 7 202 4 6 7 M 6 203 5 7 M 3 7 104 8 8 6 2 6 15产量10 15 12 10 18 65 5) 产地甲乙丙丁戊销量销地1 10 12 11 12 7 102 6 10 9 11 10 113 5 9 12 12 11 10产量5 6 5 7 8 31 (6)产地甲乙丙丁戊销量销地1 8 6 3 7 5 302 6 M 8 4 7 403 10 3 19 6 8 30产量25 25 20 10 20 31五、用表上作业法求下列产销不平衡的运输问题的最优解:(表上数字为产地到销地的里程,M为任意大的正数,表示不可能有运输通道)。
产地甲乙丙丁戊销量销地1 10 16 23 17 22 1002 13 M 18 14 16 1203 0 3 19 16 M 1404 9 11 23 8 19 805 24 28 36 30 34 60产量100 120 100 60 80 31 2)产地甲乙丙丁戊销量销地1 10 4 10 7 5 802 7 M 4 4 7 403 8 5 12 6 8 60产量50 40 30 60 20产地甲乙丙丁戊量销地1 M 21 14 11 28 13 1002 3 6 11 3 12 M 1203 9 11 M 18 19 24 160产量90 70 80 50 70 60产地甲乙丙丁戊销量销地1 7 3 9 4 11 302 4 2 5 6 10 243 6 8 12 2 5 36产量12 18 21 14 15六、某农民承包了5 块土地共206 亩,打算小麦、玉米和蔬菜三种农作物,各种农作物的计划播种面积(亩)以及每块土地种植各种不同的农作物的亩产数量(公斤)见下表,试问怎样安排种植计划可使总产量达到最高?土地块别计划播甲乙丙丁戊作物种类种面积1 500 600 650 1050 800 862 850 800 700 900 950 703 1000 950 850 550 700 50土地亩数36 48 44 32 46、(1) ? (2) X (3) X (4) ?(5) ? (6) ? (7) X (8) X (9) X (10) ?三、解:( 1)西北角法:运费为Z = 135销地产量BBBB1234 产地销量3 6 5 6 20 ( 2)最小元素法:运费为Z = 92销地B产量BBB产地12342 3 1 43 6 3 9销量3 6 5 6 20 (3)沃格尔法:运费Z = 85销地BBB盯量产地1234销量3 6 5 6 20 (4)最优调运方案:最少运费Z = 85 销地BBBB^量产地1234销量3 6 5 6 20 四、各题的最优调运方案如下:1 )最少运费为:535 。
销地甲乙丙丁产量产地1 25 252 15 10 253 15 5 30 50销量15 20 30 35 1002)最少运费为:226销地甲乙丙丁产量产地1 152 172 10 5 153 15 8 23销量10 15 20 10 45 3)最少运费为:295销地甲乙丙丁戊产量产地1 30 302 5 15 203 5 15 204 10 20 0 30销量10 15 25 20 30 1004)最少运费为:248产地甲乙丙丁戊销销地1 8 12 202 10 10 203 7 3 104 105 15产量10 15 12 10 185)最少运费为:260产地甲乙丙丁戊销销地1 2 8 102 1 5 5 113 5 5 10产量5 6 5 7 8 31(6)最少运费为:4501 20 10 302 25 10 5 40销量10 15 20 10 45 3)最少运费为:295产地甲乙丙丁戊销销地1 21 10 302 25 10 5 403 0 25 5 30产量25 25 20 10 20 31五、解:各题的最优调运方案如下:1)最短运程为:5240产地甲乙丙丁戊己销量销地1 60 40 1002 40 80 1203 40 100 1404 20 60 805 20 40 60 产量100 120 100 60 80 312)最短运程为:980产地甲乙丙丁戊销量销地1 40 20 20 802 30 10 403 30 30 604 20 产量50 40 30 60 203)最短运程为:3870产地甲乙丙丁戊己销量销地1 40 60 1002 40 50 30 1203 90 70 1604 40 产量90 70 80 50 70 604)最短运程为:330产地甲乙丙丁戊己销量销地1 2 18 10 302 3 21 243 7 14 15 36 产量12 18 21 14 15六、解:最优种植计划为:最高总产量为180900 公斤。
土地块别计划播甲乙丙丁戊作物种类种面积1 44 32 10 862 34 36 703 36 14 50土地亩数36 48 44 32 46。