11大学物理--光的粒子性
- 格式:ppt
- 大小:1.68 MB
- 文档页数:45
专题二光的波动性和粒子性考情动态分析该专题内容,以对光的本性的认识过程为线索,介绍了近代物理光学的一些初步理论,以及建立这些理论的实验基础和一些重要的物理现象.由于该部分知识和大学物理内容有千丝万缕的联系,且涉及较多物理学的研究方法,因此该部分知识是高考必考内容之一.难度适中.常见的题型是选择题,其中命题率最高的是光的干涉和光电效应,其次是波长、波速和频率.有时与几何光学中的折射现象、原子物理中的玻尔理论相结合,考查学生的分析综合能力.此外对光的偏振降低了要求,不必在知识的深度上去挖掘.考点核心整合1.光的波动性光的干涉、衍射现象说明光具有波动性,光的偏振现象说明光波为横波,光的电磁说则揭示了光波的本质——光是电磁波.(1)光的干涉①光的干涉及条件由频率相同(相差恒定)的两光源——相干光源发出的光在空间相遇,才会发生干涉,形成稳定的干涉图样.由于发光过程的量子特性,任何两个独立的光源发出的光都不可能发生干涉现象.只有采用特殊的“分光”方法——将一束光分为两束,才能获得相干光.如双缝干涉中通过双缝将一束光分为两束,薄膜干涉中通过薄膜两个表面的反射将一束光分为两束而形成相干光.②双缝干涉在双缝干涉中,若用单色光,则在屏上形成等间距的、明暗相间的干涉条纹,条纹间距L Δx和光波的波长λ成正比,和屏到双缝的距离L成正比,和双缝间距d成反比,即Δx=d λ.若用白光做双缝干涉实验,除中央亮条纹为白色外,两侧为彩色条纹,它是不同波长的光干涉条纹的间距不同而形成的.③薄膜干涉在薄膜干涉中,薄膜的两个表面反射光的路程差(严格地说应为光程差)与膜的厚度有关,故同一级明条纹(或暗条纹)应出现在膜的厚度相同的地方.利用这一特点可以检测平面的平整度.另外适当调整薄膜厚度.可使反射光干涉相消,增强透射光,即得增透膜.(2)光的衍射①条件光在传播过程中遇到障碍物时,偏离原来的直线传播路径,绕到障碍物后面继续传播的现象叫光的衍射.在任何情况下,光的衍射现象都是存在的,但发生明显的衍射现象的条件应是障碍物或孔的尺寸与光波的波长相差不多.②特点在单缝衍射现象中,若入射光为单色光,则中央为亮且宽的条纹,两侧为亮度逐渐衰减的明暗相间条纹;若入射光为白光,则除中央出现亮且宽的白色条纹外,两侧出现亮度逐渐衰减的彩色条纹.(3)光的偏振在与光波传播方向垂直的平面内,光振动沿各个方向均匀分布的光称为自然光,光振动沿着特定方向的光即为偏振光.自然光通过偏振片(起偏器)之后就成为偏振光.光以特定的入射角射到两种介质界面上时,反射光和折射光也都是偏振光.偏振现象是横波特有的现象,所以光的偏振现象表明光波为横波.(4)光的电磁本性麦克斯韦的电磁理论预见了电磁波的存在,赫兹用实验证明了电磁波理论的正确性.由于光波和电磁波都为横波、传播都不需要介质、在真空中传播速度相同(皆以光速c=3×108 m/s的速度传播),人们很自然地认为光波为电磁波.电磁波的频率范围很广,光波只是电磁波的一个小小的分支,不同电磁波的产生机理不同,且有不同的作用效果.将电磁波按一定的顺序排列即形成电磁波谱.其中的光谱,按成因可分为发射光谱和吸收光谱,发射光谱又分为连续光谱和明线光谱.可用于光谱分析的是原子特征谱线——明线光谱和吸收光谱.2.光的粒子性(1)光电效应及其规律金属在光照射下发射电子的现象叫光电效应现象,其实验规律如下:①任何金属都存在极限频率,只有用高于极限频率的光照射金属,才会发生光电效应现象.②在入射光的频率大于金属极限频率的情况下,从光照射到逸出光电子,几乎是瞬时的,时间不超过10-9s.③光电子的最大初动能随入射光频率的增大而增大,与光强无关.④单位时间内逸出的光电子数与入射光的强度成正比.(2)光子说因光电效应的规律无法用光的波动理论解释,为解释光电效应规律,爱因斯坦提出了光量子说:光是一份一份的,每一份叫一个光量子,每个光量子的能量为E=hv.并给出光电效应方程:E k m=hv-W.3.光的波粒二象性光在某些现象中显示波动性,在另外的现象中又显示粒子性,为说明光的全部性能,只能说光具有波粒二象性.大量光子的行为往往显示波动性,少数光子的行为往往显示粒子性;频率越低的光子波动性越强,频率越高的光子粒子性越强.链接·提示我们现在所说的光具有波粒二象性,与17世纪惠更斯的光的波动说和牛顿的光的微粒说有本质的区别:惠更斯的光的波动说和牛顿的光的微粒说是截然对立的、互不相容的两种学说,而我们现在所说的光的波粒二象性是既对立又统一的,如表征光的粒子性的光子说中,光的能量E=hv中v为光的频率,就是描述光的波动性的物理量;同样光的波动性实质是大量光子运动所表现出来的几率波.考题名师诠释【例1】如图4-2-1,当电键S断开时,用光子能量为2.5 eV的一束光照射阴极P,发现电流表读数不为零.合上电键,调节滑线变阻器,发现当电压表读数小于0.60 V时,电流表读数仍不为零.当电压表读数大于或等于0.60 V时,电流表读数为零.由此可知阴极材料的逸出功为()图4-2-1A.1.9 eVB.0.6 eVC.2.5 eVD.3.1 eV解析:S断开时电流表示数不为零,说明光电管在光照射下已经发生了光电效应现象.合上开关S后,光电管的两极间加上了一定的电压,两极间形成一定强弱的电场,但该电场是阻碍光电子向光电管的阴极运动的.当电压不够高、电场不够强的情况下,具有初动能的光电子仍可到达阳极而在电路中形成光电流,但当电压增大到一定数值后,若具有最大初动能的光电子不能到达阳极时,则电路中即不能形成光电流.由题设解得,具有最大初动能的光电子恰好克服0.60 V的电压做功后能到达阳极,即光电子的最大初动能E km=0.60 eV.由爱因斯坦光电效应方程E km=hv-W得:W=hv-E k m=(2.5-0.60) eV=1.9 eV.即选项A正确.答案:A点评:本题考查的就是对光电效应规律的理解,具有一定的难度,因为题目中给光电管加的已不是课本上常见的正向电压,而是反向电压.只有看懂电路图并真正理解了光电效应的规律,才有可能给出正确的解答.所以对各物理规律,一定要在理解上下工夫,真正弄懂弄通. 链接·思考若让你设计一个实验,测定某光电效应现象中逸出的光电子的最大初动能,应如何进行? 答案:实际上,该例题就提供了一个测定光电子最大初动能的方法:给光电管两极加一反向电压——光电管阳极接低电势、阴极接高电势,逐渐增大反向电压的大小,并观察串联于电路中的微安表,当电压增大至某一值时,电路中光电流恰为零,该反向电压即称为截止电压.由动能定理知,E km=eU止.可见,只要测出了截止电压v止,即可求出光电子的最大初动能E km.【例2】(经典回放)劈尖干涉是一种薄膜干涉,其装置如图4-2-2(1)所示.将一块平板玻璃放置在另一平板玻璃之上,在一端夹入两张纸片,从而在两玻璃表面之间形成一个劈形空气薄膜.当光垂直入射后,从上往下看到干涉条纹如图(2)所示.干涉条纹有如下特点: ①任意一条明条纹或暗条纹所在位置下面的薄膜厚度相等;②任意相邻明条纹或暗条纹所对应的薄膜厚度差恒定.现若在图(1)装置中抽去一张纸片,则当光垂直入射到新的劈形空气薄膜后,从上往下看到的干涉条纹()A.变疏B.变密C.不变D.消失图4-2-2解析:由薄膜干涉的原理和特点可知:干涉条纹是由膜的上、下表面反射的光叠加干涉而形成的,某一明条纹或暗条纹的位置就由上、下表面反射光的路程差决定,且相邻明条纹或暗条纹对应的该路程差是恒定的,而该路程差又决定于条纹下对应膜的厚度差,即相邻明条纹或暗条纹下面对应的膜的厚度差也是恒定的.当抽去一纸片后,劈形空气膜的劈尖角——上、下表面所夹的角变小,相同的厚度差对应的水平间距离变大,所以相邻的明条纹或暗条纹间距变大,即条纹变疏.选项A正确.答案:A点评:此题的难度实际已超出课本要求的难度,但在题干中对劈形薄膜的干涉特点作了必要的补充说明,属“信息给予”类题型.对此类题的解答,关键在于对题给信息的全面正确理解.此种题型可以考查考生的阅读能力、提取有用信息的能力、理解能力等多种能力,可能代表一种命题倾向,平时做些此类练习,还是有一定好处的.链接·拓展我们观察漂浮在水面上的油膜时,也会观察到彩色的干涉条纹,但水面上的油膜厚度基本上是等厚的,干涉条纹又是如何形成的呢?答案:水面上油膜产生的干涉现象是与劈尖干涉不同的另一种干涉现象,发生干涉的两列光仍是油膜上、下表面的反射光.尽管各处膜的厚度相同,但对同一处膜的上、下表面反射的两列光的路程差除了与膜的厚度有关外,还与观察的角度有关,即在不同角度观察,会产生不同的路程差而出现或明或暗的干涉条纹.仔细观察油膜干涉现象,你会发现:当你改换观察角度时,油膜上彩色条纹的位置(分布情况)也发生相应的变化.为把这两种干涉现象加以区别,通常把劈尖干涉称为等厚干涉,而把后一种干涉称为等倾干涉.【例3】假设一个沿着一定方向运动的光子和一个静止的自由电子相互碰撞后,电子向某一方向运动.光子将偏离原运动方向,这种现象称为光子的散射,散射后的光子跟原来相比()A.光子将从电子处获得能量,因而频率增大B.散射后的光子运动方向将与电子运动方向在同一直线上,但方向相反C.由于电子受到碰撞,散射光子的频率低于入射光子的频率D.散射光子虽改变原来的运动方向,但频率不变解析:由能的转化和守恒定律知,光子与电子碰撞后能量将减少,由光子能量E=hv知,碰后光子频率低于碰前光子频率,即选项C正确.答案:C点评:动量守恒定律和能的转化和守恒定律是自然界中普遍适用的两大主要定律,因此,在讨论任何问题时(无论是宏观问题还是微观问题),一定要注意这两个定律的应用.。
129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。
· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。
· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。
该式称维恩位移定律。
3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。
该结果称斯忒藩—玻尔兹曼定律。
· 对于一般的物体4T M εσ=ε称发射率。
4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。
这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。
· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。
由普朗克公式可以很好地解释黑体辐射现象。
· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。
一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。
第11章 波动光学一、填空题易:1、光学仪器的分辨率R= 。
(R= a 1.22λ) 易:2、若波长为625nm 的单色光垂直入射到一个每毫米有800条刻线的光栅上时,则第一级谱线的衍射角为 。
(6π) 易:3、在单缝的夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波面可划分为 个半波带。
(6)易:4、在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射在宽度为a=2λ的单缝上,对应于衍射角为30°方向,单缝处的波面可分成的半波带数目为 个。
(2)易:5、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。
(偶数)易:6、如图(6题)所示,1S 和2S ,是初相和振幅均相同的相干波源,相距4.5λ,设两波沿1S 2S 连线传播的强度不随距离变化,则在连线上1S 左侧各点和2S 右侧各点是 (填相长或相消)。
(相消)易:7、在麦克耳逊干涉仪的一条光路中,插入一块折射率为n ,厚度为d 的透明薄片,插入薄片使这条光路的光程改变了 ;[ 2(n-1)d ]易:8、波长为λ的单色光垂直照射在由两块平玻璃板构成的空气劈尖上,测得相邻明条纹间距为L 若将劈尖角增大至原来的2倍,则相邻条纹的间距变为 。
(2L ) 易:9、单缝衍射中狭缝愈窄,条纹间距愈 。
(宽)易:10、在单缝夫琅和费衍射实验中,第一级暗纹发生在衍射角300的方向上,所用单色光波长为500nm λ=,则缝宽为: 。
(1000nm )易:11、用波长为λ的单色光垂直照射置于空气中的厚度为e 的折射率为1.5的透明薄膜,两束反射光的光程差为 ;(23λ+e )易:12、光学仪器的分辨率与 和 有关,且 越小,仪器的分辨率越高。
(入射波长λ,透光孔经a ,λ)易:13、由马吕斯定律,当一束自然光通过两片偏振化方向成30o 的偏振片后,其出射光与入射光的光强之比为 。
(3:8)易:14、当光由光疏介质进入光密介质时,在交界面处的反射光与入射光有相位相反的现象,这种现象我们称之为 。
大学物理试题及答案一、单项选择题(每题3分,共30分)1. 光年是天文学中用来表示距离的单位,它表示的是()。
A. 时间单位B. 光在一年内传播的距离C. 光在真空中一年内传播的距离D. 光在一年内传播的距离,但与介质有关答案:C2. 根据相对论,当物体的速度接近光速时,其质量会()。
A. 保持不变B. 增加C. 减少D. 先增加后减少答案:B3. 在理想气体状态方程 PV=nRT 中,P、V、n、R、T 分别代表()。
A. 压强、体积、摩尔数、气体常数、温度B. 功率、速度、质量、加速度、时间C. 动量、位置、质量、力、时间D. 电流、电压、电荷、电阻、电势答案:A4. 根据麦克斯韦方程组,电场和磁场的关系是()。
A. 电场是磁场的源头B. 磁场是电场的源头C. 电场和磁场相互独立D. 电场和磁场相互产生答案:D5. 以下哪种现象不属于量子力学范畴()。
A. 光电效应B. 原子光谱C. 布朗运动D. 超导现象答案:C6. 根据热力学第一定律,系统内能的变化等于系统吸收的热量与对外做的功之差,即()。
A. ΔU = Q - WB. ΔU = Q + WC. ΔU = W - QD. ΔU = Q/W答案:A7. 以下哪种波是横波()。
B. 电磁波C. 光波D. 以上都是答案:D8. 根据牛顿第三定律,作用力和反作用力的关系是()。
A. 方向相同,大小相等B. 方向相反,大小相等C. 方向相同,大小不等D. 方向相反,大小不等答案:B9. 在电路中,欧姆定律描述了电压、电流和电阻之间的关系,其公式为()。
A. V = IRC. R = VID. V = RI答案:A10. 根据能量守恒定律,能量在转化和传递过程中()。
A. 可以被创造B. 可以被消灭C. 总量保持不变D. 总量不断增加答案:C二、填空题(每题4分,共20分)11. 光在真空中的传播速度是_______m/s。
答案:3×10^812. 根据普朗克关系式,E=hv,其中E代表能量,h代表普朗克常数,v代表频率,普朗克常数的值是______。
习题1111-1.测量星体表面温度的方法之一是将其看作黑体,测量它的峰值波长m λ,利用维恩定律便可求出T 。
已知太阳、北极星和天狼星的m λ分别为60.5010m -⨯,60.4310m -⨯和60.2910m -⨯,试计算它们的表面温度。
解:由维恩定律:m T b λ=,其中:310898.2-⨯=b ,那么:太阳:362.8981057960.510m bT K λ--⨯===⨯; 北极星:362.8981067400.4310m bT K λ--⨯===⨯;天狼星:362.8981099930.2910m bT K λ--⨯===⨯。
11-2.宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于温度为K 3的黑体辐射,试计算: (1)此辐射的单色辐出度的峰值波长; (2)地球表面接收到此辐射的功率。
解:(1)由m T b λ=,有342.898109.66103m b m T λ--⨯===⨯; (2)由4M T σ=,有:424P T R σπ=⨯地,那么:328494(637010) 5.67103 2.3410P W π-=⨯⨯⨯⨯⨯=⨯。
11-3.在加热黑体过程中,其单色辐出度对应的峰值波长由0.69μm 变化到0.50μm ,求总辐出度改变为原来的多少倍?解:由 b T m =λ 和 4T M σ=可得,63.3)5.069.0()()(440400====m m T T M M λλ11-4.已知000K 2时钨的辐出度与黑体的辐出度之比为259.0。
设灯泡的钨丝面积为2cm 10,其他能量损失不计,求维持灯丝温度所消耗的电功率。
解:∵4P T S σ=⋅黑体,消耗的功率等于钨丝的幅出度,所以,44840.2591010 5.67102000235P S T W ησ--==⨯⨯⨯⨯⨯=。
11-5.天文学中常用热辐射定律估算恒星的半径。
现观测到某恒星热辐射的峰值波长为m λ;辐射到地面上单位面积的功率为W 。
大学物理之光的波动性与粒子性简述Light, a fundamental aspect of our universe, exhibits both wave-like and particle-like properties. This dual nature of light has been a subject of intense debate and exploration since the dawn of modern physics.Firstly, the wave nature of light is evidenced by its ability to undergo interference and diffraction. These phenomena occur whenlight waves encounter obstacles or pass through apertures, resultingin patterns that can only be explained by treating light as a wave. The wavelength of light determines its color and plays a crucial role in optics and electromagnetic radiation.On the other hand, the particle nature of light is demonstrated bythe photoelectric effect. This phenomenon occurs when light hits a metal surface and ejects electrons, which can be measured as a current. The energy of the ejected electrons is dependent on the frequency of the incident light, rather than its intensity, as would be expected if light were a mere wave. This observation led to the quantum theory of light, in which light is treated as a stream of particles, known as photons.The wave-particle duality of light remains a fascinating and elusive aspect of physics. It challenges our intuitive understanding of the world and continues to inspire new research and experiments in the field of quantum physics. As we delve deeper into the mysteries of light, we gain insights into the fundamental nature of reality itself.。
大学物理光学考研题库及答案大学物理光学考研题库及答案光学是物理学的重要分支之一,研究光的传播、反射、折射、干涉、衍射等现象。
在大学物理考研中,光学是一个重要的考察内容。
为了帮助考生更好地备考,以下是一些光学考研题库及答案,供考生参考。
1. 下列哪个现象不能用光的波动性解释?A. 光的衍射B. 光的反射C. 光的折射D. 光的干涉答案:B. 光的反射解析:光的反射是一种粒子性现象,可以用光的粒子性解释。
光的波动性可以解释光的衍射、折射和干涉现象。
2. 当光从真空中垂直入射到介质中,下列哪个选项是正确的?A. 光速变快,折射角大于入射角B. 光速变慢,折射角小于入射角C. 光速不变,折射角等于入射角D. 光速不变,折射角大于入射角答案:B. 光速变慢,折射角小于入射角解析:根据斯涅尔定律,光从真空中入射到介质中时,光速减小,折射角小于入射角。
3. 干涉实验中,两束光的相干条件是什么?A. 光的波长相同B. 光的频率相同C. 光的振幅相同D. 光的相位相同答案:D. 光的相位相同解析:干涉实验中,两束光的相干条件是光的相位相同。
只有在相位相同的情况下,才能产生干涉现象。
4. 下列哪个现象不能用光的粒子性解释?A. 光的反射B. 光的折射C. 光的干涉D. 光的衍射答案:C. 光的干涉解析:光的干涉是一种波动性现象,不能用光的粒子性解释。
光的反射、折射和衍射现象可以用光的粒子性解释。
5. 以下哪个现象与光的波动性无关?A. 光的衍射B. 光的折射C. 光的干涉D. 光的偏振答案:D. 光的偏振解析:光的偏振是一种光的振动方向的特性,与光的波动性无关。
光的衍射、折射和干涉现象与光的波动性有关。
以上是一些光学考研题库及答案,希望能对考生备考有所帮助。
在备考过程中,考生除了熟悉光学的基本概念和原理,还应多做一些光学的习题,加深对知识的理解和掌握。
同时,考生也可以参考一些光学的经典教材,进一步拓宽知识面。
祝愿所有考生都能取得优异的成绩!。
1、光既有波动性,又具有粒子性,即光具有波粒二象性其中光的波动性:光的干涉和衍射光的粒子性:光电效应实验2、狭义相对论的基本原理是什么?答:(1)相对性原理:所有物理定律在一切惯性系中都具有相同的形式,或者说,所有惯性系都是平权的,在它们之中所有物理规律都一样。
(2)光速不变原理:所有惯性系中测量到的真空中光速沿各方向都等于c,与光源的运动状态无关。
3、什么是狭义相对论的时空观?答:(1)同时的相对性(2)长度的收缩(3)时间的延缓4、什么是热力学第二定律?答:开尔文表述:不可能制成一种循环动作的热机,它只从一个单一温度的热源吸取热量,并使其全部变为有用功,而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体。
5、什么是卡诺定理?答:(1)在相同的高温热源和相同的低温热源之间工作的一切可逆热机,其效率都相等,与工作物质无关。
(2)在相同的高温热源和相同的低温热源之间工作的一切不可逆热机,其效率都不可能大于可逆热机的效率。
6、什么是理想气体的微观模型?答:(1)分子可视为质点;线度d≈10-10m,间距r≈10-9m,d<<r;(2)除碰撞瞬间, 分子间无相互作用力;(3)弹性质点(碰撞均为完全弹性碰撞);(4)分子的运动遵从经典力学的规律 ;7、理想气体的压强公式 答:8、什么是自由度?答:分子能量中独立的速度和坐标的二次方项数目叫做分子能量自由度的数目, 简称自由度,用符号i 表示。
刚性分子的自由度9、麦克斯韦速率分布函数答: 物理意义:表示速率在 区间的分子数占总分子数的百分比(或表示在温度为T 的平衡状态下,速率在V 附近单位速率区间的分子数占总数的百分比)10、什么是能量均分定理?k 32εn p =单原子分子 3 0 3 双原子分子 3 2 5 多原子分子 3 3 6t r i 分子 自由度 平动 转动 总v v f )d ( vv v d +→答:气体处于平衡态时,分子任何一个自由度的平均能量都相等,均1KT,这就是能量按自由度均分定理。
PS 1 S 2r 1n 1n 2t 2r 2t 1大学物理---光学部分练习题及答案解析一、选择题1. 有一平面透射光栅,每毫米有500条刻痕,刻痕间距是刻痕宽度的两倍。
若用600nm 的平行光垂直照射该光栅,问第几级亮条纹缺级?能观察到几条亮条纹? ( C )A. 第1级,7条B. 第2级,6条C. 第3级,5条D. 第2级,3条2. 下列情形中,在计算两束反射光线的光程差时,不需要计算因半波损失而产生的额外光程的是:( D )A BCD3. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中( C ) (A) 传播的路程相等,走过的光程相等 (B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等 (D) 传播的路程不相等,走过的光程不相等4. 如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2。
路径S 1P 垂直穿过一块厚度为t 1、折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2、折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于( B )(A) )()(111222t n r t n r +-+(B) ])1([])1([111222t n r t n r -+--+ (C) )()(111222t n r t n r ---空气油膜n=1.4 水MgF 2 n=1.38 空气玻璃 n=1.5油膜n=1.4 空气 水空气MgF 2 n=1.38玻璃 n=1.5(D) 1122t n t n -5、如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,1λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为 ( C )(A) )/(2112λπn e n (B) πλπ+)/(4121n e n (C) πλπ+)/(4112n e n(D) )/(4112λπn e n6、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为( A )(A) 1.5 λ(B) 1.5 λ / n(C) 1.5n λ(D) 3 λ7、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的透振方向成45°角,则穿过两个偏振片后的光强I 为( B )(A) 24/0I(B )4/0I(C )2/0I(D)2/20I8、波长为λ的单色光垂直入射于光栅常数为d 、缝宽为a 、总缝数为N 的光栅上。
波粒二象性大学物理中光和物质的波粒性质波粒二象性是指一种现象,即光和物质在某些实验条件下,既可以表现出波动性,又可以表现出粒子性。
这个概念自20世纪初由物理学家们提出以来,对于量子力学的发展和对光和物质的理解有着重要意义。
本文将探讨光和物质的波粒二象性以及相关实验和应用。
一、光的波粒二象性光既可以被看作是一种电磁波,也可以被看作是由光子组成的粒子。
光的波动性可以通过干涉、衍射和偏振等实验得到验证。
其中,干涉实验可以用来证明光的波动性,它基于光波的叠加和相干性原理。
而衍射实验则通过光波在物体边缘的扩散现象来证明光的波动性。
此外,光的偏振现象也是光波动性的重要证据。
然而,光也表现出粒子性,这一观点最早由爱因斯坦在1905年提出,并为此获得了诺贝尔物理学奖。
根据爱因斯坦的光电效应理论,当光照射到金属表面时,光子会与金属内的电子发生相互作用,将一部分能量传递给电子,使其成为自由电子。
这表明光可以像粒子一样具有能量和动量,并与物质发生相互作用。
二、物质的波粒二象性物质的波粒二象性最明显的体现是在电子和其他微观粒子上。
根据德布罗意的波动假说,任何具有动量的物质粒子都可以看作是一个波动,其波长与动量呈反比。
这一假说随后通过实验证实,例如电子经过晶体的衍射实验。
该实验使用电子束代替光束,显示出与光的衍射类似的干涉条纹。
物质的粒子性主要可通过散射和定点成像实验来验证。
散射实验表明物质粒子在碰撞或探测物体时,呈现出像粒子一样的特性,可以观察到散射角度和动量传递的关系。
而定点成像实验证实了物质粒子的位置和路径的局部化。
三、波粒二象性的实验和应用波粒二象性的实验证明了量子力学的基本原理,进一步加深了对光和物质的理解。
例如双缝干涉实验是研究光和物质波动性的重要实验之一,不仅可以验证波动性,还可以通过单个粒子穿过两个缝隙的干涉现象来观察粒子性。
波粒二象性的研究也为一些现代科技带来了巨大影响。
例如,基于光子的激光技术已广泛应用于医学、通信和材料科学等领域。
大学物理光学知识点光学是物理学的一个重要分支,在大学物理课程中,光学部分涵盖了丰富的知识。
下面让我们一起来了解一下其中的关键知识点。
一、光的本性光具有波粒二象性。
在某些情况下,光表现出粒子的特性,比如光电效应,说明光的能量是一份一份传播的,这些能量子被称为光子。
而在另一些情况下,光又表现出波动的特性,如光的干涉、衍射和偏振现象。
二、光的直线传播光在均匀介质中沿直线传播。
小孔成像就是光沿直线传播的一个典型例子。
但是,当光遇到障碍物时,会出现衍射现象,即光会绕过障碍物传播。
三、光的反射和折射当光射到两种介质的分界面时,一部分光会返回原来的介质,这就是光的反射。
反射定律指出,反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居法线两侧,反射角等于入射角。
光从一种介质斜射入另一种介质时,传播方向会发生改变,这就是光的折射。
折射定律表明,折射光线、入射光线和法线在同一平面内,折射光线和入射光线分居法线两侧,入射角的正弦与折射角的正弦成正比。
四、全反射当光从光密介质射向光疏介质时,入射角增大到一定程度,折射光线会消失,只剩下反射光线,这种现象称为全反射。
发生全反射的条件是入射角大于临界角。
五、光的干涉两列频率相同、振动方向相同、相位差恒定的光相遇时,会发生干涉现象。
干涉条纹的间距与光的波长、双缝间距以及双缝到屏的距离有关。
杨氏双缝干涉实验是证明光的干涉现象的经典实验。
六、光的衍射光在传播过程中遇到障碍物或小孔时,会偏离直线传播,在屏幕上出现明暗相间的条纹,这就是光的衍射。
单缝衍射、圆孔衍射等都是常见的衍射现象。
七、光的偏振光是一种横波,其振动方向与传播方向垂直。
光的偏振现象表明了光是横波。
偏振片可以用来检验光的偏振状态,常见的有线偏振光和圆偏振光。
八、薄膜干涉利用薄膜上下表面反射的光发生干涉,可以制成增透膜和增反膜。
比如,在照相机镜头上镀一层增透膜,可以减少反射光,增加透射光,从而提高成像质量。
九、几何光学主要研究光的直线传播、反射、折射等现象,利用几何作图和数学方法来解决光学问题。
大学物理大一上学期知识点大学物理在大一上学期的学习中,主要涵盖了多个知识点。
以下将逐一介绍这些知识点,包括力学、热学、电磁学和光学。
一、力学力学是物理学的基础,其研究的是物体的运动规律和力的作用。
在大一上学期的力学中,主要学习了以下几个知识点:1. 牛顿运动定律:包括第一定律(惯性定律)、第二定律(力的作用导致加速度)和第三定律(作用力与反作用力)。
2. 运动学:涉及到位移、速度、加速度等概念,以及匀速直线运动和匀变速直线运动。
3. 动力学:学习了力的概念,以及质点和刚体的运动规律,如牛顿第二定律和力的合成分解等。
4. 力的分析方法:包括平衡力分析、动力学分析和静力学分析等。
二、热学热学是研究热现象及其规律的学科,它是物理学中重要的分支。
在大一上学期的热学学习中,主要包括以下几个知识点:1. 温度和热量:学习了温度的定义和测量方法,以及热量的传递方式,如热传导、对流和辐射等。
2. 理想气体状态方程:学习了理想气体状态方程和理想气体的性质,如理想气体的压强、体积和温度之间的关系。
3. 热力学定律:学习了热力学定律,如热力学第一定律(能量守恒定律)和热力学第二定律(热传递的方向性)等。
三、电磁学电磁学是研究电荷、电场和磁场的学科。
在大一上学期的电磁学学习中,主要学习了以下几个知识点:1. 静电学:学习了静电场的基本性质和电势的概念,以及库仑定律和电场线的性质等。
2. 电场和电势:学习了电场的计算方法和电势的概念,以及电势能和电势差等重要概念。
3. 电流和电阻:学习了电流的定义和电阻的概念,以及欧姆定律和瞬态电流等知识。
4. 磁场和电磁感应:学习了磁场的基本性质和电磁感应的原理,包括安培力和电磁感应定律等。
四、光学光学是研究光的传播、反射、折射和干涉等现象的学科,在大一上学期的光学学习中,主要学习了以下几个知识点:1. 光的传播:学习了光的传播方式,如直线传播和波动传播等。
2. 反射和折射:学习了光的反射和折射定律,以及相关的光线追迹法。
大学物理量子力学总结大学物理量子力学总结篇一:大学物理下必考15量子物理知识点总结15.1 量子物理学的诞生—普朗克量子假设一、黑体辐射物体由其温度所决定的电磁辐射称为热辐射。
物体辐射的本领越大,吸收的本领也越大,反之亦然。
能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。
二、普朗克的量子假设:1. 组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。
2. 每个谐振子的能量不是任意的数值, 频率为ν的谐振子,其能量只能为hν, 2hν, …分立值,其中n = 1,2,3…,h =6.626×10 –。
3. 当谐振子从一个能量状态变化到另一个状态时,辐射和吸收的能量是hν的整数倍。
15.2 光电效应爱因斯坦光量子理论一、光电效应的实验规律金属及其化合物在光照射下发射电子的现象称为光电效应。
逸出的电子为光电子,所测电流为光电流。
截止频率:对一定金属,只有入射光的频率大于某一频率ν0时, 电子才能从该金属表面逸出,这个频率叫红限。
遏制电压:当外加电压为零时,光电流不为零。
因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。
当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。
1 mvm2?eU2二、爱因斯坦光子假说和光电效应方程1. 光子假说一束光是一束以光速运动的粒子流,这些粒子称为光子;频率为v 的每一个光子所具有的能量为??h?, 它不能再分割,只能整个地被吸收或产生出来。
2. 光电效应方程根据能量守恒定律, 当金属中一个电子从入射光中吸收一个光子后,获得能量hv,如果hv 大于该金属的电子逸出功A,这个电子就能从金属中逸出,并且有 1上式为爱因斯坦光电效应方程,式中mvm2为光电子的最大初动能。
大学物理光学必考知识点光学是物理学的一个重要分支,研究光的传播、发射、反射、折射、干涉和衍射等现象。
作为大学物理学的一门必修课程,光学涉及到许多重要的知识点。
本文将介绍大学物理光学必考的知识点,帮助同学们系统地理解光学的基本原理和应用。
1.光的性质光既具有波动性质,也具有粒子性质。
根据电磁波理论,光是由电磁波组成的,具有波长、频率和速度等特性。
光的粒子性质则可以用光子的概念来解释,光子是光的基本粒子,具有能量和动量。
2.光的传播光在空气、水、玻璃等介质中的传播遵循直线传播的原理。
光在介质中的传播速度与介质的折射率有关,根据斯涅尔定律,光在不同介质之间传播时会发生折射现象。
3.光的反射光的反射是指光线遇到界面时发生反射现象。
根据光的入射角和反射角之间的关系,可以得到光的反射定律,即入射角等于反射角。
4.光的折射光的折射是指光线从一种介质传播到另一种介质时发生的偏折现象。
根据光的入射角、折射角和两种介质的折射率之间的关系,可以得到光的折射定律,即入射角的正弦与折射角的正弦之比等于两种介质的折射率之比。
5.光的干涉光的干涉是指两束或多束光波相互叠加时所产生的干涉现象。
根据光的相干性理论,当两束光波相位差为整数倍时,它们将发生叠加增强,形成明纹;当相位差为半整数倍时,它们将发生叠加抵消,形成暗纹。
6.光的衍射光的衍射是指光通过一个狭缝或物体边缘时所产生的弯曲现象。
根据光的衍射理论,当光通过一个狭缝或物体边缘时,光波将朝各个方向散射,形成衍射图样。
7.光的偏振光的偏振是指光波中的电场振动方向在一个特定平面上的现象。
根据光的偏振理论,只有在特定方向上的光波才具有偏振性,其他方向上的光波则无偏振性。
8.光的色散光的色散是指光在物质中传播时,不同频率的光波具有不同的折射率,从而形成不同颜色的现象。
根据光的色散理论,不同介质对不同频率的光波的折射率不同,导致光的折射角度也不同,进而引起光的色散现象。
总结起来,大学物理光学的必考知识点包括光的性质、传播、反射、折射、干涉、衍射、偏振和色散等。