abaqus有限元分析简支梁
- 格式:doc
- 大小:1.51 MB
- 文档页数:19
Abaqus分析实例(梁单元计算简支梁的挠度)精讲ABAQUS计畀捲导0 : 应用梁单元计算简支梁的挠度o对于梁的分析可以使用梁单元、壳单元或是固体单元。
Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。
注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。
简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,尸0.28, p=7850kg/m3 (在不计重力的静力学分析中可以不要)。
F=10kN,不计重力。
计算中点挠度,两端转角。
理论解:I =2.239 X 10-5m, w中=2.769 X 10-3m B边=2.077 X 10-3。
文件与路径:顶部下拉菜单File, Save As ExpAbq00 。
一部件1 创建部件:Module, Part, Create Part, 命名为Prat-1; 3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。
2绘模型图:选用折线,从(0,0)T(2,0)T(4,0)绘出梁的轴线。
3 退出:Done。
二性质1 创建截面几何形状:Module , Property, Create Profile ,命名为Profile-1,选I 型截面,按图输入数据,1=0.1 , h=0.2 , b l =0.1 , b2=0.1 , t l=0.01 ,t 2 = 0.01 , t 3=0.01 ,关闭。
2 定义梁方向:Module , Property , Assign Beam Orientation ,选中两段线段,输入主轴 1 方向单位矢量(0,0,1)或(0,0,-1) ,关闭。
3 定义截面力学性质:Module ,Property ,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1 ,输入E=210e9 (程序默认单位为N/m2,92GPa=10 N/m),G=82.03e9 , v0.28,关闭。
ABAQUS简支梁分析梁单元和实体单元梁单元是ABAQUS中常用的一种单元类型,适用于对梁结构进行分析。
它是一维元素,具有沿一个坐标轴的长度、截面积和转动惯量等属性。
梁单元适用于对纤维偏离主轴较小的梁进行建模。
与梁单元相比,实体单元更适用于对复杂几何形状的梁进行建模。
实体单元是三维元素,它在三个坐标轴上都具有长度,并且可以定义复杂的几何形状。
实体单元适用于对纤维偏离主轴较大的梁、异形梁和复杂梁进行建模。
梁单元的建模步骤如下:1.创建部件:在ABAQUS中创建一个新部件,并设定其属性,如截面形状、材料参数等。
2.创建草图:使用ABAQUS提供的工具创建梁单元的草图,定义梁的几何形状和尺寸。
3.定义截面:将截面属性应用到梁单元上,包括截面形状和尺寸。
4.创建网格:使用ABAQUS的网格划分工具将梁的草图划分为网格,生成梁单元。
5.设置材料属性:为梁单元定义材料属性,包括弹性模量、泊松比等。
6.施加边界条件:为梁单元定义边界条件,如支撑和加载情况。
7.定义分析类型:选择适当的分析类型,如静力分析或动力分析。
8.执行分析:运行分析,并获取梁的响应结果,如位移、应变和应力。
实体单元的建模步骤如下:1.创建部件:在ABAQUS中创建一个新部件,并设定其属性,如材料参数等。
2.创建草图:使用ABAQUS提供的工具创建梁的草图,定义梁的几何形状和尺寸。
3.创建几何图形:使用ABAQUS的几何模块创建复杂的实体几何形状。
4.定义材料属性:为实体单元定义材料属性,包括弹性模量、泊松比等。
5.生成网格:使用ABAQUS的网格划分工具将实体几何形状划分为网格,生成实体单元。
6.施加边界条件:为实体单元定义边界条件,如支撑和加载情况。
7.定义分析类型:选择适当的分析类型,如静力分析或动力分析。
8.执行分析:运行分析,并获取梁的响应结果,如位移、应变和应力。
梁单元和实体单元在ABAQUS中都提供了丰富的分析功能和选项,可以根据实际需要使用不同的单元类型来建模和分析梁结构。
基于ABAQUS简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。
另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。
对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。
不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。
可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。
对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。
现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。
材料采用45#钢,弹性模量E=2.1e6MPa,泊松比v=0.28。
图1 简支梁结构简图1.梁单元分析ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。
在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。
图2 建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。
然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。
图3 创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。
基于ABAQUS简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。
另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。
对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。
不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。
可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。
对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。
现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。
材料采用45#钢,弹性模量E=2.1e6MPa,泊松比v=0.28。
图1 简支梁结构简图1.梁单元分析ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。
在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。
图2 建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。
然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。
图3 创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。
ABAQUS计算指导0:应用梁单元计算简支梁的挠度对于梁的分析可以使用梁单元、壳单元或是固体单元。
Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。
注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。
简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。
F=10kN,不计重力。
计算中点挠度,两端转角。
理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。
文件与路径:顶部下拉菜单File, Save As ExpAbq00。
一部件1 创建部件:Module,Part,Create Part,命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。
2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。
3 退出:Done。
二性质1 创建截面几何形状:Module,Property,Create Profile,命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。
2 定义梁方向:Module,Property,Assign Beam Orientation,选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。
3 定义截面力学性质:Module,Property,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2),G=82.03e9,ν=0.28,关闭。
矩形截面梁有限元分析对下面矩形截面简支梁进行线弹性分析,截面尺寸b ×h :200×500mm ,跨度L=6m ,跨中受集中荷载F=10kN ,考虑体力,单位体积重量γ=7.85t/m ³,弹性模量E=206×103N/mm 2,泊松比ν=0.3,分别利用8节点6面体块单元和梁/杆单元进行计算分析,并对跨中截面进行解析计算结果和有限元结果作对比。
通过结构力学知识求解 集中荷载F=10kN 作用下两端支座反力为F/2=5kN ,取一半结构对支座求弯矩∑M=0,可求得跨中弯矩大小为FL/4=15kN .m 。
自重作用下q=γ×b ×h=785kg/m=7.7 kN/m 。
两端支座反力为qL/2=23.1kN ,取一半结构对支座求弯矩∑M=0,可求得跨中弯矩大小为qL 2/8=34.65kN .m 。
叠加得M max =49.62kN截面上的最大正应力zMyI σ=其中,对于矩形截面2h y =312bh I =得b(mm)h(mm)I(mm 4)M(kN.m)σmax (MPa)200500208333333349.62 5.9544200mm500mm3单位:建议采用国际单位制采用m、kg、N、s国际单位制时,重力加速度9.8m/s2,质量为kg,密度为7850 kg/m3,E=206×109Pa,泊松比ν=0.3,ABAQUS操作打开ABAQUS界面开始→所有程序→ABAQUS6.10-1→ABAQUS CAE,依次出现创建Part创建Part,重新命名liang23,选择三维(3D)可变形体(Deformable)实体(Solid)单元,建模方式选择拉伸(Extrusion),截面的大致尺寸(Approximate site)便于建模,默认即可。
continue继续点击,以坐标的格式创建模型。
依次在中输入(0,0)回车,(-3,0)回车,(-3,-0.5)回车,(0,-0.5)回车,(0,0)回车,点击下图中的或点击一次鼠标中键,继续点击下图中的或点击一次鼠标中键,(注:点击一次鼠标中键等价于)出现如下对话框Depth表示拉伸(Extrusion)距离,取值为0.1,继续,出现下图(此模型为1/4半梁,之所以不一次建好,是为了后续工作中跨中施加一个集中力)点击保存一下(注:ABAQUS不自动保存)文件名(File)取(liang23)继续回到Property(特性)二、进入Module(模块)列表中选择Property(特性)功能模块,出现如下点击,创建材料,出现Name随便命名比如默认的(Material-1),点击,选择下拉菜单Density(密度)取为7850,(注:统一成国际单位7.85t/m3=7850 kg/m3)继续点击(力学特性)选择下拉菜单Elasticity(弹性)→Elastic(弹性)出现在(杨氏模量,即弹性模量)写入206e9,(注:E=206×103N/mm2=206×109Pa),在(泊松比)写入0.3,(注:ν=0.3,)继续创建截面属性,点击,出现(可重命名,也可默认)继续出现继续。
abaqus经典例题集下面是一些abaqus的经典例题,以帮助大家更好地理解和掌握这款强大的有限元分析软件。
1.线性弹性问题例题1:在一个长方形平板上施加均匀分布的载荷,求解板的应力和应变。
解题步骤:-创建模型,定义几何参数和材料属性;-划分网格;-应用边界条件;-施加载荷;-求解;- 后处理,查看结果。
2.非线性问题例题2:一个简支梁在受力过程中,梁的横截面半径发生变化。
求解梁的挠度和应力。
解题步骤:-创建模型,定义几何参数、材料属性和边界条件;-划分网格;-应用材料的本构关系;-施加载荷;-求解;- 后处理,查看结果。
3.热力学问题例题3:一个平板在均匀温度差的作用下,求解热应力和温度分布。
解题步骤:-创建模型,定义几何参数、材料属性、边界条件和温度差;-划分网格;-应用热力学本构关系;-施加温度边界条件;-求解;- 后处理,查看结果。
4.耦合问题例题4:一个悬臂梁在受到弯曲应力和剪切应力的同时,还受到温度的变化。
求解梁的应力和温度分布。
解题步骤:-创建模型,定义几何参数、材料属性、边界条件、载荷和温度变化;-划分网格;-应用耦合场本构关系;-施加边界条件、载荷和温度边界条件;-求解;- 后处理,查看结果。
5.接触问题例题5:两个物体相互挤压,求解接触面上的应力和接触力。
解题步骤:-创建模型,定义几何参数、材料属性、边界条件和接触属性;-划分网格;-应用接触算法;-施加边界条件和接触力;-求解;- 后处理,查看结果。
通过以上五个经典例题的讲解,相信大家对abaqus的应用有了更深入的了解。
在实际应用中,我们应根据具体问题选择合适的分析类型,并灵活运用所学知识。
希望大家能在实践中不断提高,成为优秀的有限元分析工程师。
钢筋混凝土梁尺寸下图1所示,该梁为对称结构,两端简支,承受对称的位移荷载,两位移荷载间距为1000mm,方向向下,大小为10mm。
简支梁上部配有两根直径为10mm的架立钢筋,下部配有两根直径为18mm的受力纵筋,直径为10mm的箍筋满布整个简支梁。
混凝土的材料参数如下:C45,f ck=26。
9MPa,E c=3。
35×104MPa;C55,f ck=35。
5MPa,E c=3。
55×104MPa;架立钢筋和箍筋的材料参数如下:f yk=235MPa,f uk=315MPa,E s=200GPa; 纵筋的材料参数如下:f yk=275MPa,f uk=345MPa,E s=200GPa图1采用ABAQUS软件对上图1中的钢筋混凝土梁进行非线性分析,要求采用abaqus standard求解器要求出具分析报告,报告包含以下几个章节:模型说明(3分)、单元类型及尺寸(2分)、材料模型(3分)、相互作用关系说明(2分)、边界条件(2分)等有限元分析要素.结果包括:1、应力云图,针对钢筋等提供Mises第一主应力.(7分)2、应变云图,混凝土提供LE应变。
(7分)3、荷载—跨中挠度曲线。
(7分)4、跨中主筋荷载—应变曲线。
(7分)注:各尺寸大小如下表1所示提示:集中位移荷载可模拟加载装置(例如加载板宽100mm)以解决分析收敛问题,加载板宽度需在报告中进行说明。
报告提交日期:2017年11月13日.表1 学生学号与分析参数对应表钢筋混凝土梁abaqus分析报告学院:姓名:学号:指导老师:年月日钢筋混凝土的分析参数分析参数如下:b=200mm,h=300mm,L=3200mm,箍筋间距为100mm,混凝土采用C45标号.第一章数值模型模型说明混凝土梁尺寸为200mm*300mm*3200mm,模型如图所示:箍筋尺寸为140mm*240mm,断面面积为78。
5398mm2,采用三维线模型,如图所示:架立钢筋尺寸为3140mm,断面面积为78。
ABAQUS简支梁分析梁单元是一种一维元素,用于模拟梁结构的性能。
这些单元只在一维方向上有自由度,并且可以模拟杆、梁、桁架等结构的变形和应力响应。
梁单元的计算速度相对较快,且具有较高的精度,适用于较长且较细的结构中,如钢筋混凝土构件、悬索桥、高层建筑等。
实体单元是一种三维元素,用于对立方体、球体、柱体等实体结构的性能进行分析。
实体单元具有六个自由度,分别为三个平移自由度和三个旋转自由度,能够充分模拟结构的各向异性、非线性和复杂几何形状等特性。
实体单元可以用来分析基础、墙体、桥梁、汽车车身等各种结构的力学响应和变形特性。
在ABAQUS中,梁单元和实体单元的使用方式类似,首先需要定义节点坐标和单元拓扑关系,并指定材料属性、边界条件和加载方式等。
然后,可以进行求解并获取结构的应力、应变、位移和变形等结果。
以下内容将详细介绍如何使用ABAQUS进行简支梁的分析。
1. 创建模型:首先,在ABAQUS的Preprocessing环境中创建模型。
选择适当的单位系统,并定义节点坐标和单元拓扑关系。
在创建节点时,需要注意节点编号和坐标的设置,以确保准确的节点连接关系。
2. 定义材料属性:根据实际材料的力学性质,在Material Manager中定义材料的弹性模量和泊松比等参数。
如果需要考虑材料的非线性行为,可以添加相应的本构模型。
3. 指定边界条件:根据简支梁的边界条件,使用Boundary Conditions Manager指定约束条件。
通常,简支梁的两个端点应变为零,即不存在位移和转角。
在指定边界条件时,需要选择适当的边界条件类型并将其应用到相关节点上。
4. 定义加载方式:根据实际加载情况,在Load Manager中定义加载方式。
对于简支梁,可以施加集中载荷、均布载荷、自重载荷等。
在定义载荷的时候,需要指定作用方向、大小和加载位置等。
5. 设置求解选项:在Step Manager中设置求解选项,包括求解器类型、收敛准则和迭代次数等。
1.梁C 的主要参数:其中:梁长3000mm ,高为406mm ,上下部保护层厚度为38mm ,纵筋端部保护层厚度为25mm 抗压强度:35.1MPa 抗拉强度:2.721MPa受拉钢筋为2Y16,受压钢筋为2Y9.5,屈服强度均为440MPa 箍筋:Y7@102,屈服强度为596MPa2.混凝土及钢筋的本构关系1、运用陈光明老师的论文(Chen et al. 2011)来确定混凝土的本构关系: 受压强度:其中C a E ==28020,c f ρσ'=,0.002ρε= 2、受压强度与开裂位移的相互关系:其中123.0, 6.93c c == 3、损伤因子:其中2c h e = e=10(选取网格为10mm ) 4、钢筋取理想弹塑性5、名义应力应变和真实应力及对数应变的转换:ln (1)ln(1)true nom nom Pltruenom Eσσεσεε=+=+- 6、混凝土最终输入的本构关系如下:compressive behaviortensile behaviortension damageyield stress inelastic strain yield stress displacement parameter displacement21.50274036 02.721 025.56359281 2.72247E-05 2.683556882 0.0003129 0.18766492 0.0003129 28.88477336 8.85105E-05 2.646628319 0.0006258 0.31902609 0.0006258 31.43501884 0.000177278 2.610210508 0.0009387 0.41606933 0.0009387 33.24951537 0.000292271 2.574299562 0.0012516 0.49065237 0.0012516 34.40787673 0.000430648 2.538891515 0.0015645 0.54973463 0.0015645 35.01203181 0.000588772 2.503982327 0.0018774 0.5976698 0.0018774 35.16872106 0.000762833 2.46956789 0.0021903 0.63732097 0.0021903 34.97805548 0.000949259 2.435644029 0.0025032 0.67064827 0.0025032 34.52749204 0.001144928 2.402206512 0.0028161 0.69903885 0.0028161 33.88973649 0.001347245 2.369251048 0.003129 0.72350194 0.003129 33.17350898 0.001541185 2.336773294 0.0034419 0.74478941 0.0034419 32.38173508 0.001737792 2.30476886 0.0037548 0.76347284 0.0037548 31.54367693 30.68161799 0.001936023 0.002135082 2.27323331 2.242162167 0.0040677 0.0043806 0.77999451 0.79470205 0.0040677 0.004380629.81223971 0.002334374 2.211550916 0.0046935 0.8078724 0.0046935 28.94780823 0.002533461 2.181395011 0.0050064 0.81972898 0.0050064 28.09715868 0.002732028 2.151689871 0.0053193 0.83045397 0.0053193 27.26649041 0.002929854 2.12243089 0.0056322 0.84019745 0.0056322 26.45999792 0.003126788 2.093613436 0.0059451 0.84908413 0.0059451 25.68036458 0.003322736 2.065232857 0.006258 0.85721852 0.006258 24.9291453 0.003517641 1.811529794 0.00929484 0.91044231 0.00929484 24.20706088 0.003711478 1.594228557 0.01233168 0.93874748 0.01233168 23.51422292 0.003904244 1.409074138 0.01536852 0.95577145 0.01536852 22.85030486 0.004095949 1.251989877 0.01840536 0.96680725 0.01840536 22.21467144 0.004286616 1.119164686 0.0214422 0.97433278 0.0214422 21.60647616 0.004476276 1.007104262 0.02447904 0.97965764 0.02447904 21.02473425 0.004664963 0.912655765 0.02751588 0.98353505 0.02751588 19.46615199 0.005211136 0.83301335 0.03055272 0.98642583 0.03055272 18.09649573 0.005750325 0.76571027 0.03358956 0.98862533 0.03358956 16.88924056 0.006283479 0.70860194 0.0366264 0.99032981 0.0366264 15.82079897 0.006811438 0.659843281 0.03966324 0.99167339 0.03966324 14.87092257 0.007334926 0.617862826 0.04270008 0.9927498 0.04270008 14.0225145 0.007854553 0.581335427 0.04573692 0.99362574 0.04573692 13.26124068 0.008370831 0.549154863 0.04877376 0.9943494 0.04877376 12.57510634 0.008884188 0.520407288 0.0518106 0.994956 0.0518106 11.95406409 0.009394984 0.494346111 0.05484744 0.99547154 0.05484744 11.38967485 0.009903518 0.470368707 0.05788428 0.99591542 0.05788428 10.8748243 0.010410047 0.447995166 0.06092112 0.9963022 0.06092112 10.40348957 0.010914784 0.426849151 0.06395796 0.99664288 0.06395796 9.970548886 0.011417913 0.406640876 0.0669948 0.99694586 0.0669948 9.571626813 0.01191959 0.387152119 0.07003164 0.99721757 0.07003164 9.202968392 0.01241995 0.368223154 0.07306848 0.99746298 0.07306848 8.861336697 0.012919108 0.349741479 0.07610532 0.99768595 0.07610532 8.543929179 0.013417164 0.331632153 0.07914216 0.99788954 0.07914216 8.248309139 0.013914206 0.313849623 0.082179 0.99807615 0.082179 7.972349361 0.01441031 0.296370844 0.08521584 0.99824773 0.08521584 7.714185579 0.014905542 0.279189562 0.08825268 0.99840586 0.08825268 7.472177877 0.015399962 0.262311613 0.09128952 0.99855185 0.09128952 7.244878552 0.015893621 0.245751087 0.09432636 0.99868678 0.09432636 7.03100523 0.016386565 0.229527257 0.0973632 0.99881158 0.0973632 6.829418289 0.016878835 0.21366215 0.10040004 0.99892706 0.10040004 6.639101829 0.017370468 0.19817866 0.10343688 0.99903393 0.10343688 6.459147548 0.017861496 0.183099114 0.10647372 0.99913281 0.10647372 6.28874105 0.018351948 0.168444224 0.10951056 0.99922427 0.10951056 6.127150156 0.018841851 0.154232347 0.1125474 0.99930883 0.1125474 5.973714902 0.019331229 0.140478996 0.11558424 0.99938695 0.115584245.827838946 5.688982154 0.0198201040.0203084930.1271965570.114394170.118621080.121657920.999459090.999525640.118621080.121657925.556654195 0.020796417 0.102077724 0.12469476 0.999587 0.12469476 5.430408983 0.021283889 0.09024996 0.1277316 0.99964352 0.1277316 5.309839835 0.021770927 0.078910632 0.13076844 0.99969553 0.13076844 5.194575252 0.022257541 0.068056727 0.13380528 0.99974335 0.133805280.057682705 0.13684212 0.99978729 0.136842120.047780771 0.13987896 0.99982763 0.139878960.038341146 0.1429158 0.99986461 0.14291580.02935234 0.14595264 0.99989851 0.14595264 3.建模过程1、Part梁和垫块选择shell,钢筋选择wire2、Property混凝土:density以及Elastic的数值参考老师的论文Concrete damaged plasticity:数值为前面的本构关系值。